ESP32-PaxCounter/src/gpsread.cpp

225 lines
6.3 KiB
C++
Raw Normal View History

2019-04-14 14:35:07 +02:00
#if (HAS_GPS)
2018-06-08 22:41:37 +02:00
#include "globals.h"
2020-03-29 18:08:52 +02:00
#include "gpsread.h"
2018-06-08 22:41:37 +02:00
// Local logging tag
2019-02-27 00:52:27 +01:00
static const char TAG[] = __FILE__;
2018-06-09 17:59:59 +02:00
TinyGPSPlus gps;
2018-10-03 16:24:45 +02:00
TaskHandle_t GpsTask;
2019-01-26 12:32:58 +01:00
HardwareSerial GPS_Serial(1); // use UART #1
2018-06-09 13:18:59 +02:00
2022-02-13 15:41:42 +01:00
// Ublox UBX packet data
// UBX CFG-PRT packet
byte CFG_PRT[] = {
0xB5, // sync char 1
0x62, // sync char 2
0x06, // class
0x00, // id
0x14, // length
0x00, // .
0x01, // portID (UART 1)
0x00, // reserved
0x00, // txReady
0x00, // .
0b11010000, // UART mode: 8N1
0b00001000, // .
0x00, // .
0x00, // .
(byte)GPS_BAUDRATE, // baudrate
(byte)(GPS_BAUDRATE >> 8), // .
(byte)(GPS_BAUDRATE >> 16), // .
(byte)(GPS_BAUDRATE >> 24), // .
0b00000011, // input protocols: NMEA + UBX
0b00000000, // .
0b00000010, // output protocols: NMEA
0x00000000, // .
0x00, // reserved
0x00, // .
0x00, // .
0x00 // .
};
// Array of two bytes for CFG-MSG packets payload.
2022-02-13 18:41:22 +01:00
byte CFG_MSG_CID[][2] = {{0xF0, 0x01}, {0xF0, 0x02}, {0xF0, 0x03}, {0xF0, 0x05},
{0xF0, 0x06}, {0xF0, 0x07}, {0xF0, 0x08}, {0xF0, 0x09},
{0xF0, 0x0A}, {0xF0, 0x0E}, {0xF1, 0x00}, {0xF1, 0x03},
{0xF1, 0x04}, {0xF1, 0x05}, {0xF1, 0x06}};
2022-02-13 15:41:42 +01:00
// UBX CFG-MSG packet
byte CFG_MSG[] = {
0xB5, // sync char 1
0x62, // sync char 2
0x06, // class
0x01, // id
0x03, // length
0x00, // .
0x00, // payload (first byte from messages array element)
0x00, // payload (second byte from messages array element)
0x00 // payload (zero to disable message)
};
// UBX CFG-CFG packet
byte CFG_CFG[] = {
0xB5, // sync char 1
0x62, // sync char 2
0x06, // class
0x09, // id
0x0D, // length
0x00, // .
0b00011111, // clearmask
0b00000110, // .
0x00, // .
0x00, // .
0x00, // savemask
0x00, // .
0x00, // .
0x00, // .
0b00011111, // loadmask
0b00000110, // .
0x00, // .
0x00, // .
0b00010001 // devicemask
};
2022-02-06 18:29:30 +01:00
// helper functions to send UBX commands to ublox gps chip
void sendPacket(byte *packet, byte len) {
uint8_t CK_A = 0;
uint8_t CK_B = 0;
2022-02-06 18:33:17 +01:00
for (int i = 0; i < len; i++)
2022-02-06 18:29:30 +01:00
GPS_Serial.write(packet[i]);
2022-02-06 18:33:17 +01:00
// calculate and send Fletcher checksum
2022-02-06 18:29:30 +01:00
for (int i = 2; i < len; i++) {
CK_A += packet[i];
CK_B += CK_A;
}
GPS_Serial.write(CK_A);
GPS_Serial.write(CK_B);
}
2022-02-13 15:41:42 +01:00
void restoreDefaults() { sendPacket(CFG_CFG, sizeof(CFG_CFG)); }
void changeBaudrate() { sendPacket(CFG_PRT, sizeof(CFG_PRT)); }
2022-02-12 16:26:41 +01:00
2022-02-06 18:29:30 +01:00
void disableNmea() {
// tinygps++ processes only $GPGGA/$GNGGA and $GPRMC/$GNRMC
2022-02-12 16:26:41 +01:00
// thus, we disable all other NMEA messages
2022-02-06 18:29:30 +01:00
2022-02-13 15:41:42 +01:00
byte packetSize = sizeof(CFG_MSG);
2022-02-06 18:29:30 +01:00
// Offset to the place where payload starts.
byte payloadOffset = 6;
// Iterate over the messages array.
2022-02-13 15:41:42 +01:00
for (byte i = 0; i < sizeof(CFG_MSG_CID) / sizeof(*CFG_MSG_CID); i++) {
2022-02-06 18:29:30 +01:00
// Copy two bytes of payload to the packet buffer.
2022-02-13 15:41:42 +01:00
for (byte j = 0; j < sizeof(*CFG_MSG_CID); j++) {
CFG_MSG[payloadOffset + j] = CFG_MSG_CID[i][j];
2022-02-06 18:29:30 +01:00
}
2022-02-13 15:41:42 +01:00
sendPacket(CFG_MSG, packetSize);
2022-02-06 18:29:30 +01:00
}
}
2018-11-25 16:05:30 +01:00
// initialize and configure GPS
int gps_init(void) {
2021-01-07 22:07:55 +01:00
ESP_LOGI(TAG, "Opening serial GPS");
2022-02-12 16:26:41 +01:00
GPS_Serial.begin(GPS_SERIAL);
2022-02-12 16:26:41 +01:00
2022-02-06 20:23:34 +01:00
restoreDefaults();
2022-02-12 16:26:41 +01:00
delay(100);
2022-02-06 20:23:34 +01:00
2022-02-13 15:41:42 +01:00
changeBaudrate();
2022-02-06 18:29:30 +01:00
delay(100);
GPS_Serial.flush();
GPS_Serial.updateBaudRate(GPS_BAUDRATE);
disableNmea();
2019-02-09 13:02:38 +01:00
2022-02-06 18:29:30 +01:00
return 1;
} // gps_init()
2019-02-09 13:02:38 +01:00
2019-04-15 12:57:55 +02:00
// store current GPS location data in struct
2019-07-28 23:51:24 +02:00
void gps_storelocation(gpsStatus_t *gps_store) {
if (gps.location.isUpdated() && gps.location.isValid() &&
(gps.location.age() < 1500)) {
gps_store->latitude = (int32_t)(gps.location.lat() * 1e6);
gps_store->longitude = (int32_t)(gps.location.lng() * 1e6);
2019-07-28 23:51:24 +02:00
gps_store->satellites = (uint8_t)gps.satellites.value();
gps_store->hdop = (uint16_t)gps.hdop.value();
gps_store->altitude = (int16_t)gps.altitude.meters();
}
2018-11-25 16:05:30 +01:00
}
2020-01-03 09:59:10 +01:00
bool gps_hasfix() {
// adapted from source:
// https://github.com/hottimuc/Lora-TTNMapper-T-Beam/blob/master/fromV08/gps.cpp
return (gps.location.isValid() && gps.location.age() < 4000 &&
gps.hdop.isValid() && gps.hdop.value() <= 600 &&
gps.hdop.age() < 4000 && gps.altitude.isValid() &&
gps.altitude.age() < 4000);
}
// function to poll UTC time from GPS NMEA data; note: this is costly
2022-02-13 15:41:42 +01:00
time_t get_gpstime(uint16_t *msec = 0) {
const uint16_t txDelay =
2022-02-13 18:41:22 +01:00
70U * 1000 / (GPS_BAUDRATE / 9); // serial tx of 70 NMEA chars
// did we get a current date & time?
2022-02-13 15:41:42 +01:00
if (gps.time.age() < 1000) {
2022-02-12 16:26:41 +01:00
// convert tinygps time format to struct tm format
struct tm gps_tm = {0};
2022-02-12 16:26:41 +01:00
gps_tm.tm_sec = gps.time.second();
gps_tm.tm_min = gps.time.minute();
gps_tm.tm_hour = gps.time.hour();
gps_tm.tm_mday = gps.date.day();
gps_tm.tm_mon = gps.date.month() - 1; // 1-12 -> 0-11
gps_tm.tm_year = gps.date.year() - 1900; // 2000+ -> years since 1900
2022-01-26 16:58:05 +01:00
// convert UTC tm to time_t epoch
2022-01-26 16:58:05 +01:00
gps_tm.tm_isdst = 0; // UTC has no DST
time_t t = mkgmtime(&gps_tm);
2020-10-05 13:40:22 +02:00
2022-02-12 16:26:41 +01:00
#ifdef GPS_INT
// if we have a recent GPS PPS pulse, sync on top of next second
2022-02-13 18:41:22 +01:00
uint16_t ppsDiff = millis() - lastPPS;
if (ppsDiff < 1000)
*msec = ppsDiff;
2022-02-12 16:26:41 +01:00
else {
ESP_LOGD(TAG, "no PPS from GPS");
return 0;
}
#else
2022-02-13 18:41:22 +01:00
// best guess for sync on top of next second
*msec = gps.time.centisecond() * 10U + txDelay;
2022-02-12 16:26:41 +01:00
#endif
2020-10-05 13:40:22 +02:00
return t;
}
2019-04-15 12:57:55 +02:00
2020-10-05 13:40:22 +02:00
ESP_LOGD(TAG, "no valid GPS time");
return 0;
2020-03-11 23:47:33 +01:00
} // get_gpstime()
2019-01-28 23:59:52 +01:00
2018-11-25 16:05:30 +01:00
// GPS serial feed FreeRTos Task
void gps_loop(void *pvParameters) {
2020-10-30 12:24:16 +01:00
_ASSERT((uint32_t)pvParameters == 1); // FreeRTOS check
2018-11-25 16:05:30 +01:00
// feed GPS decoder with serial NMEA data from GPS device
while (1) {
2022-01-26 22:45:23 +01:00
while (cfg.payloadmask & GPS_DATA) {
while (GPS_Serial.available())
gps.encode(GPS_Serial.read());
delay(5);
2022-02-12 16:26:41 +01:00
}
delay(1000);
2022-02-12 16:26:41 +01:00
} // infinite while loop
2018-06-09 19:20:34 +02:00
} // gps_loop()
#endif // HAS_GPS