ESP32-PaxCounter/src/gpsread.cpp

326 lines
9.5 KiB
C++
Raw Normal View History

2019-04-14 14:35:07 +02:00
#if (HAS_GPS)
2018-06-08 22:41:37 +02:00
#include "globals.h"
2020-03-29 18:08:52 +02:00
#include "gpsread.h"
2018-06-08 22:41:37 +02:00
// Local logging tag
2019-02-27 00:52:27 +01:00
static const char TAG[] = __FILE__;
2018-06-09 17:59:59 +02:00
2020-09-29 17:27:52 +02:00
// we use NMEA ZDA sentence field 1 for time synchronization
// ZDA gives time for preceding pps pulse
// downsight is that it does not have a constant offset
// thus precision is only +/- 1 second
TinyGPSPlus gps;
TinyGPSCustom gpstime(gps, "GPZDA", 1); // field 1 = UTC time (hhmmss.ss)
TinyGPSCustom gpsday(gps, "GPZDA", 2); // field 2 = day (01..31)
TinyGPSCustom gpsmonth(gps, "GPZDA", 3); // field 3 = month (01..12)
TinyGPSCustom gpsyear(gps, "GPZDA", 4); // field 4 = year (4-digit)
static const String ZDA_Request = "$EIGPQ,ZDA*39\r\n";
2018-10-03 16:24:45 +02:00
TaskHandle_t GpsTask;
2018-07-19 21:53:56 +02:00
2018-11-25 16:05:30 +01:00
#ifdef GPS_SERIAL
2019-01-26 12:32:58 +01:00
HardwareSerial GPS_Serial(1); // use UART #1
static uint16_t nmea_txDelay_ms =
2019-08-03 14:01:25 +02:00
(tx_Ticks(NMEA_FRAME_SIZE, GPS_SERIAL) / portTICK_PERIOD_MS);
2019-04-14 14:35:07 +02:00
#else
static uint16_t nmea_txDelay_ms = 0;
2018-11-25 16:05:30 +01:00
#endif
2018-06-09 13:18:59 +02:00
2022-02-06 18:29:30 +01:00
// helper functions to send UBX commands to ublox gps chip
// Send the packet specified to the receiver.
void sendPacket(byte *packet, byte len) {
uint8_t CK_A = 0;
uint8_t CK_B = 0;
for (int i = 0; i < len; i++) {
#ifdef GPS_SERIAL
GPS_Serial.write(packet[i]);
#elif defined GPS_I2C
Wire.write(packet[i]);
#endif
}
// calculate Fletcher checksum
for (int i = 2; i < len; i++) {
CK_A += packet[i];
CK_B += CK_A;
}
// send checksum
#ifdef GPS_SERIAL
GPS_Serial.write(CK_A);
GPS_Serial.write(CK_B);
#elif defined GPS_I2C
Wire.write(CK_A);
Wire.write(CK_B);
#endif
}
// Send a packet to the receiver to restore default configuration.
void restoreDefaults() {
// CFG-CFG packet.
byte packet[] = {
0xB5, // sync char 1
0x62, // sync char 2
0x06, // class
0x09, // id
0x0D, // length
0x00, // length
0b00011111, // clearmask
0b00000110, // clearmask
0x00, // clearmask
0x00, // clearmask
0x00, // savemask
0x00, // savemask
0x00, // savemask
0x00, // savemask
0b00011111, // loadmask
0b00000110, // loadmask
0x00, // loadmask
0x00, // loadmask
0b00010001 // devicemask
};
sendPacket(packet, sizeof(packet));
}
// Send a set of packets to the receiver to disable NMEA messages.
void disableNmea() {
// for tinygps++ we need only $GPGGA and $GPRMC
// for time we use $GPZDA
// we disable all others
// Array of two bytes for CFG-MSG packets payload.
byte messages[][2] = {{0xF0, 0x01}, {0xF0, 0x02}, {0xF0, 0x03}, {0xF0, 0x05},
{0xF0, 0x06}, {0xF0, 0x07}, {0xF0, 0x09}, {0xF0, 0x0A},
{0xF0, 0x0E}, {0xF1, 0x00}, {0xF1, 0x03}, {0xF1, 0x04},
{0xF1, 0x05}, {0xF1, 0x06}};
// CFG-MSG packet buffer.
byte packet[] = {
0xB5, // sync char 1
0x62, // sync char 2
0x06, // class
0x01, // id
0x03, // length
0x00, // length
0x00, // payload (first byte from messages array element)
0x00, // payload (second byte from messages array element)
0x00 // payload (zero to disable message)
};
byte packetSize = sizeof(packet);
// Offset to the place where payload starts.
byte payloadOffset = 6;
// Iterate over the messages array.
for (byte i = 0; i < sizeof(messages) / sizeof(*messages); i++) {
// Copy two bytes of payload to the packet buffer.
for (byte j = 0; j < sizeof(*messages); j++) {
packet[payloadOffset + j] = messages[i][j];
}
sendPacket(packet, packetSize);
}
}
// Send a packet to the receiver to change baudrate to 115200.
void changeBaudrate(uint32_t baudRate) {
// CFG-PRT packet.
byte packet[] = {
0xB5, // sync char 1
0x62, // sync char 2
0x06, // class
0x00, // id
0x14, // length
0x00, // length
0x01, // portID (UART 1)
0x00, // reserved
0x00, // reserved
0x00, // reserved
0b11010000, // UART mode: 8bit
0b00001000, // UART mode: No Parity, 1 Stopbit
0x00, // UART mode
0x00, // UART mode
(byte)baudRate, // baudrate (4 bytes)
(byte)(baudRate >> 4), // .
(byte)(baudRate >> 8), // .
(byte)(baudRate >> 12), // .
0b00000011, // input protocols: NMEA + UBX
0b00000000, // input protocols
0b00000010, // output protocols: NMEA
0x00000000, // output protocols
0x00, // reserved
0x00, // reserved
0x00, // reserved
0x00 // reserved
};
sendPacket(packet, sizeof(packet));
}
// Send a packet to the receiver to change frequency to 100 ms.
void changeFrequency() {
// CFG-RATE packet.
byte packet[] = {
0xB5, // sync char 1
0x62, // sync char 2
0x06, // class
0x08, // id
0x06, // length
0x00, // length
0x64, // Measurement rate 100ms
0x00, // Measurement rate
0x01, // Measurement cycles
0x00, // Measurement cycles
0x01, // Alignment to reference time: GPS time
0x00 // payload
};
sendPacket(packet, sizeof(packet));
}
2018-11-25 16:05:30 +01:00
// initialize and configure GPS
int gps_init(void) {
2022-02-06 18:29:30 +01:00
restoreDefaults();
2019-02-09 13:02:38 +01:00
#ifdef GPS_SERIAL
2021-01-07 22:07:55 +01:00
ESP_LOGI(TAG, "Opening serial GPS");
GPS_Serial.begin(GPS_SERIAL);
2022-02-06 18:29:30 +01:00
changeBaudrate(GPS_BAUDRATE);
delay(100);
GPS_Serial.flush();
GPS_Serial.updateBaudRate(GPS_BAUDRATE);
#elif defined GPS_I2C
2021-01-07 22:07:55 +01:00
ESP_LOGI(TAG, "Opening I2C GPS");
Wire.begin(GPS_I2C, 400000); // I2C connect to GPS device with 400 KHz
Wire.beginTransmission(GPS_ADDR);
2021-01-07 22:07:55 +01:00
Wire.write(0x00); // dummy write
if (Wire.endTransmission()) {
ESP_LOGE(TAG, "Quectel L76 GPS chip not found");
return 0;
} else
2018-11-25 16:05:30 +01:00
ESP_LOGI(TAG, "Quectel L76 GPS chip found");
#endif
2022-02-06 18:29:30 +01:00
disableNmea();
changeFrequency();
// enableNavTimeUTC();
2019-02-09 13:02:38 +01:00
2022-02-06 18:29:30 +01:00
return 1;
2019-02-09 13:02:38 +01:00
2022-02-06 18:29:30 +01:00
} // gps_init()
2019-02-09 13:02:38 +01:00
2019-04-15 12:57:55 +02:00
// store current GPS location data in struct
2019-07-28 23:51:24 +02:00
void gps_storelocation(gpsStatus_t *gps_store) {
if (gps.location.isUpdated() && gps.location.isValid() &&
(gps.location.age() < 1500)) {
gps_store->latitude = (int32_t)(gps.location.lat() * 1e6);
gps_store->longitude = (int32_t)(gps.location.lng() * 1e6);
2019-07-28 23:51:24 +02:00
gps_store->satellites = (uint8_t)gps.satellites.value();
gps_store->hdop = (uint16_t)gps.hdop.value();
gps_store->altitude = (int16_t)gps.altitude.meters();
}
2018-11-25 16:05:30 +01:00
}
2020-01-03 09:59:10 +01:00
bool gps_hasfix() {
// adapted from source:
// https://github.com/hottimuc/Lora-TTNMapper-T-Beam/blob/master/fromV08/gps.cpp
return (gps.location.isValid() && gps.location.age() < 4000 &&
gps.hdop.isValid() && gps.hdop.value() <= 600 &&
gps.hdop.age() < 4000 && gps.altitude.isValid() &&
gps.altitude.age() < 4000);
}
// function to poll UTC time from GPS NMEA data; note: this is costly
2020-03-11 23:47:33 +01:00
time_t get_gpstime(uint16_t *msec) {
2020-09-29 17:27:52 +02:00
// poll NMEA ZDA sentence
#ifdef GPS_SERIAL
GPS_Serial.print(ZDA_Request);
2019-08-18 17:44:42 +02:00
// wait for gps NMEA answer
// vTaskDelay(tx_Ticks(NMEA_FRAME_SIZE, GPS_SERIAL));
#elif defined GPS_I2C
Wire.print(ZDA_Request);
#endif
// did we get a current date & time?
if (gpstime.isValid()) {
2019-04-15 12:57:55 +02:00
2019-08-18 17:44:42 +02:00
uint32_t delay_ms =
gpstime.age() + nmea_txDelay_ms + NMEA_COMPENSATION_FACTOR;
2020-10-05 13:40:22 +02:00
uint32_t zdatime = atof(gpstime.value());
// convert UTC time from gps NMEA ZDA sentence to tm format
struct tm gps_tm = {0};
gps_tm.tm_sec = zdatime % 100; // second (UTC)
gps_tm.tm_min = (zdatime / 100) % 100; // minute (UTC)
gps_tm.tm_hour = zdatime / 10000; // hour (UTC)
gps_tm.tm_mday = atoi(gpsday.value()); // day, 01 to 31
gps_tm.tm_mon = atoi(gpsmonth.value()) - 1; // month, 01 to 12
gps_tm.tm_year = atoi(gpsyear.value()) - 1900; // year, YYYY
2022-01-26 16:58:05 +01:00
// convert UTC tm to time_t epoch
2022-01-26 16:58:05 +01:00
gps_tm.tm_isdst = 0; // UTC has no DST
time_t t = mkgmtime(&gps_tm);
2020-10-05 13:40:22 +02:00
// add protocol delay with millisecond precision
t += (time_t)(delay_ms / 1000);
*msec = delay_ms % 1000; // fractional seconds
2020-10-05 13:40:22 +02:00
return t;
}
2019-04-15 12:57:55 +02:00
2020-10-05 13:40:22 +02:00
ESP_LOGD(TAG, "no valid GPS time");
return 0;
2019-04-14 14:35:07 +02:00
2020-03-11 23:47:33 +01:00
} // get_gpstime()
2019-01-28 23:59:52 +01:00
2018-11-25 16:05:30 +01:00
// GPS serial feed FreeRTos Task
void gps_loop(void *pvParameters) {
2020-10-30 12:24:16 +01:00
_ASSERT((uint32_t)pvParameters == 1); // FreeRTOS check
2018-11-25 16:05:30 +01:00
while (1) {
2022-01-26 22:45:23 +01:00
while (cfg.payloadmask & GPS_DATA) {
#ifdef GPS_SERIAL
// feed GPS decoder with serial NMEA data from GPS device
2022-01-26 22:45:23 +01:00
while (GPS_Serial.available())
if (gps.encode(GPS_Serial.read()))
break; // NMEA sentence complete
#elif defined GPS_I2C
Wire.requestFrom(GPS_ADDR, 32); // caution: this is a blocking call
2022-01-26 22:45:23 +01:00
while (Wire.available())
if (gps.encode(Wire.read()))
break; // NMEA sentence complete
#endif
2020-10-05 13:40:22 +02:00
// (only) while device time is not set or unsynched, and we have a valid
2022-01-26 22:45:23 +01:00
// GPS time, we call calibrateTime to poll time immeditately from GPS
2021-03-31 09:44:23 +02:00
if ((timeSource == _unsynced || timeSource == _set) &&
2022-01-26 22:45:23 +01:00
(gpstime.isUpdated() && gpstime.isValid() && gpstime.age() < 1000))
calibrateTime();
2022-01-26 22:45:23 +01:00
// show NMEA data, very noisy, useful only for debugging GPS
// ESP_LOGV(TAG, "GPS NMEA data: passed %u / failed: %u / with fix:
// %u", gps.passedChecksum(), gps.failedChecksum(), gps
// .sentencesWithFix());
2022-01-26 22:45:23 +01:00
delay(2);
} // inner while loop
2019-07-28 23:51:24 +02:00
2022-01-26 22:45:23 +01:00
delay(1000);
} // outer while loop
2018-06-09 19:20:34 +02:00
} // gps_loop()
#endif // HAS_GPS