ESP32-PaxCounter/src/dcf77.cpp

124 lines
3.4 KiB
C++
Raw Normal View History

2019-02-04 20:02:30 +01:00
/*
// Emulate a DCF77 radio receiver to control an external clock
//
2019-02-05 23:50:05 +01:00
// a nice & free logic test program for DCF77 can be found here:
https://www-user.tu-chemnitz.de/~heha/viewzip.cgi/hs/Funkuhr.zip/
//
2019-02-17 22:12:14 +01:00
// a DCF77 digital scope for Arduino boards can be found here:
https://github.com/udoklein/dcf77
//
*/
#ifdef HAS_DCF77
#include "dcf77.h"
// Local logging tag
2019-02-27 00:52:27 +01:00
static const char TAG[] = __FILE__;
2019-02-23 20:28:11 +01:00
// triggered by second timepulse to ticker out DCF signal
void DCF77_Pulse(time_t t, uint8_t const *DCFpulse) {
2019-02-04 20:02:30 +01:00
2019-02-23 18:12:43 +01:00
TickType_t startTime = xTaskGetTickCount();
uint8_t sec = t % 60;
2019-02-16 15:02:07 +01:00
ESP_LOGD(TAG, "[%0.3f] DCF second: %d", _seconds(), sec);
2019-02-27 22:40:58 +01:00
// induce a DCF Pulse
for (uint8_t pulse = 0; pulse <= 2; pulse++) {
2019-02-04 20:02:30 +01:00
switch (pulse) {
2019-02-04 20:02:30 +01:00
case 0: // start of second -> start of timeframe for logic signal
2019-02-23 20:28:11 +01:00
if (DCFpulse[sec] != dcf_Z)
2019-02-23 18:12:43 +01:00
digitalWrite(HAS_DCF77, dcf_low);
2019-02-04 23:42:17 +01:00
break;
2019-02-04 20:02:30 +01:00
case 1: // 100ms after start of second -> end of timeframe for logic 0
2019-02-23 20:28:11 +01:00
if (DCFpulse[sec] == dcf_0)
2019-02-23 18:12:43 +01:00
digitalWrite(HAS_DCF77, dcf_high);
2019-02-04 23:42:17 +01:00
break;
2019-02-04 20:02:30 +01:00
case 2: // 200ms after start of second -> end of timeframe for logic 1
2019-02-23 18:12:43 +01:00
digitalWrite(HAS_DCF77, dcf_high);
2019-02-04 23:42:17 +01:00
break;
} // switch
2019-02-05 23:50:05 +01:00
2019-02-23 20:28:11 +01:00
// pulse pause
vTaskDelayUntil(&startTime, pdMS_TO_TICKS(100));
2019-02-05 23:50:05 +01:00
} // for
2019-02-23 20:28:11 +01:00
} // DCF77_Pulse()
2019-02-05 23:50:05 +01:00
uint8_t *IRAM_ATTR DCF77_Frame(time_t const tt) {
2019-02-23 20:28:11 +01:00
struct tm t = {0};
localtime_r(&tt, &t); // convert to local time
2019-02-23 20:28:11 +01:00
// array of dcf pulses for one minute
// secs 0..15 and 20 are never changing, thus we keep them statically to avoid
// same recalculation every minute
static uint8_t DCFpulse[61] = {dcf_0, dcf_0, dcf_0, dcf_0, dcf_0, dcf_0,
dcf_0, dcf_0, dcf_0, dcf_0, dcf_0, dcf_0,
dcf_0, dcf_0, dcf_0, dcf_0, dcf_0, dcf_0,
dcf_0, dcf_0, dcf_1};
2019-02-07 20:39:32 +01:00
2019-02-16 15:02:07 +01:00
uint8_t Parity;
2019-02-07 20:39:32 +01:00
// ENCODE DST CHANGE ANNOUNCEMENT (sec 16)
2019-02-23 20:28:11 +01:00
DCFpulse[16] = dcf_0; // not yet implemented
2019-02-23 18:12:43 +01:00
// ENCODE DAYLIGHTSAVING (secs 17..18)
// "01" = MEZ / "10" = MESZ
DCFpulse[17] = (t.tm_isdst > 0) ? dcf_1 : dcf_0;
DCFpulse[18] = (t.tm_isdst > 0) ? dcf_0 : dcf_1;
2019-02-07 20:39:32 +01:00
// ENCODE MINUTE (secs 21..28)
Parity = dec2bcd(t.tm_min, 21, 27, DCFpulse);
2019-02-23 18:12:43 +01:00
DCFpulse[28] = setParityBit(Parity);
2019-02-07 20:39:32 +01:00
// ENCODE HOUR (secs 29..35)
Parity = dec2bcd(t.tm_hour, 29, 34, DCFpulse);
2019-02-23 18:12:43 +01:00
DCFpulse[35] = setParityBit(Parity);
2019-02-07 20:39:32 +01:00
// ENCODE DATE (secs 36..58)
Parity = dec2bcd(t.tm_mday, 36, 41, DCFpulse);
Parity += dec2bcd((t.tm_wday == 0) ? 7 : t.tm_wday, 42, 44, DCFpulse);
Parity += dec2bcd(t.tm_mon + 1, 45, 49, DCFpulse);
Parity += dec2bcd(t.tm_year + 1900 - 2000, 50, 57, DCFpulse);
2019-02-23 18:12:43 +01:00
DCFpulse[58] = setParityBit(Parity);
// ENCODE MARK (sec 59)
2019-02-23 20:28:11 +01:00
DCFpulse[59] = dcf_Z; // !! missing code here for leap second !!
2019-02-23 18:12:43 +01:00
2019-02-23 18:31:47 +01:00
// timestamp this frame with it's minute
DCFpulse[60] = t.tm_min;
2019-02-23 18:12:43 +01:00
2019-02-23 20:28:11 +01:00
return DCFpulse;
2019-02-23 18:12:43 +01:00
2019-02-23 20:28:11 +01:00
} // DCF77_Frame()
2019-02-07 20:39:32 +01:00
// helper function to convert decimal to bcd digit
2019-03-16 21:01:43 +01:00
uint8_t IRAM_ATTR dec2bcd(uint8_t const dec, uint8_t const startpos,
uint8_t const endpos, uint8_t *DCFpulse) {
uint8_t data = (dec < 10) ? dec : ((dec / 10) << 4) + (dec % 10);
uint8_t parity = 0;
2019-02-23 20:28:11 +01:00
for (uint8_t i = startpos; i <= endpos; i++) {
DCFpulse[i] = (data & 1) ? dcf_1 : dcf_0;
parity += (data & 1);
data >>= 1;
}
return parity;
}
2019-02-23 20:28:11 +01:00
// helper function to encode parity
2019-03-16 21:01:43 +01:00
uint8_t IRAM_ATTR setParityBit(uint8_t const p) {
return ((p & 1) ? dcf_1 : dcf_0);
}
2019-02-23 20:28:11 +01:00
#endif // HAS_DCF77