Merge pull request #460 from cyberman54/ss_oled

New OLED driver
This commit is contained in:
Verkehrsrot 2019-10-04 16:10:03 +02:00 committed by GitHub
commit a518c1a5e5
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
34 changed files with 581 additions and 388 deletions

View File

@ -150,7 +150,13 @@ Paxcounter generates identifiers for sniffed MAC adresses and collects them temp
# Display # Display
If you're using a device with OLED display, or if you add such one to the I2C bus, the device shows live data on the display. You can flip between pages showing pax, time, GPS and BME sensor data by pressing the button of the device. If you're using a device with OLED display, or if you add such one to the I2C bus, the device shows live data on the display. You can flip display pages showing
- recent count of pax
- histogram
- GPS data
- BME sensor data
- Time of day
by pressing the button of the device.
# Sensors and Peripherals # Sensors and Peripherals

View File

@ -5,6 +5,7 @@
#include "senddata.h" #include "senddata.h"
#include "rcommand.h" #include "rcommand.h"
#include "spislave.h" #include "spislave.h"
#if(HAS_LORA) #if(HAS_LORA)
#include <lmic.h> #include <lmic.h>
#endif #endif
@ -13,6 +14,10 @@
#include "bmesensor.h" #include "bmesensor.h"
#endif #endif
#ifdef HAS_DISPLAY
#include "display.h"
#endif
extern Ticker housekeeper; extern Ticker housekeeper;
void housekeeping(void); void housekeeping(void);

View File

@ -1,16 +1,24 @@
#ifndef _DISPLAY_H #ifndef _DISPLAY_H
#define _DISPLAY_H #define _DISPLAY_H
#include <U8x8lib.h>
#include "cyclic.h" #include "cyclic.h"
#include "qrcode.h"
extern uint8_t DisplayIsOn; extern uint8_t DisplayIsOn;
extern HAS_DISPLAY u8x8;
void init_display(const char *Productname, const char *Version);
void refreshTheDisplay(bool nextPage = false); void refreshTheDisplay(bool nextPage = false);
void init_display(uint8_t verbose = 0);
void draw_page(time_t t, uint8_t page); void draw_page(time_t t, uint8_t page);
void DisplayKey(const uint8_t *key, uint8_t len, bool lsb); void dp_printf(uint16_t x, uint16_t y, uint8_t font, uint8_t inv,
const char *format, ...);
void dp_printqr(uint16_t offset_x, uint16_t offset_y, const char *Message);
void oledfillRect(uint16_t x, uint16_t y, uint16_t width, uint16_t height,
uint8_t bRender);
void oledScrollBufferLeft(uint8_t *buf, const uint16_t width,
const uint16_t height);
int oledDrawPixel(uint8_t *buf, const uint16_t x, const uint16_t y,
const uint8_t dot);
void oledPlotCurve(uint16_t count, bool reset);
void oledRescaleBuffer(uint8_t *buf, const int factor);
#endif #endif

View File

@ -13,6 +13,6 @@ void refreshTheMatrixDisplay(bool nextPage = false);
void DrawNumber(String strNum, uint8_t iDotPos = 0); void DrawNumber(String strNum, uint8_t iDotPos = 0);
uint8_t GetCharFromFont(char cChar); uint8_t GetCharFromFont(char cChar);
uint8_t GetCharWidth(char cChar); uint8_t GetCharWidth(char cChar);
void ScrollLeft(uint8_t *buf, const uint16_t cols, const uint16_t rows); void ScrollMatrixLeft(uint8_t *buf, const uint16_t cols, const uint16_t rows);
#endif #endif

View File

@ -4,6 +4,7 @@
#ifdef USE_OTA #ifdef USE_OTA
#include "globals.h" #include "globals.h"
#include <ss_oled.h>
#include <Update.h> #include <Update.h>
#include <WiFi.h> #include <WiFi.h>
#include <WiFiClientSecure.h> #include <WiFiClientSecure.h>
@ -14,11 +15,9 @@
int do_ota_update(); int do_ota_update();
void start_ota_update(); void start_ota_update();
int version_compare(const String v1, const String v2); int version_compare(const String v1, const String v2);
void display(const uint8_t row, const std::string status, void ota_display(const uint8_t row, const std::string status,
const std::string msg); const std::string msg);
#ifdef HAS_DISPLAY
void show_progress(unsigned long current, unsigned long size); void show_progress(unsigned long current, unsigned long size);
#endif
#endif // USE_OTA #endif // USE_OTA

View File

@ -19,6 +19,8 @@ void power_event_IRQ(void);
void AXP192_power(bool on); void AXP192_power(bool on);
void AXP192_init(void); void AXP192_init(void);
void AXP192_showstatus(void); void AXP192_showstatus(void);
uint8_t i2c_writeBytes(uint8_t addr, uint8_t reg, uint8_t *data, uint8_t len);
uint8_t i2c_readBytes(uint8_t addr, uint8_t reg, uint8_t *data, uint8_t len);
#endif // HAS_PMU #endif // HAS_PMU
#endif #endif

View File

@ -2,10 +2,15 @@
#define _SENDDATA_H #define _SENDDATA_H
#include "spislave.h" #include "spislave.h"
#include "cyclic.h"
#if(HAS_LORA) #if(HAS_LORA)
#include "lorawan.h" #include "lorawan.h"
#endif #endif
#include "cyclic.h"
#ifdef HAS_DISPLAY
#include "display.h"
#endif
extern Ticker sendcycler; extern Ticker sendcycler;

View File

@ -34,16 +34,16 @@ halfile = generic.h
[platformio] [platformio]
; upload firmware to board with usb cable ; upload firmware to board with usb cable
default_envs = usb ;default_envs = usb
; upload firmware to a jfrog bintray repository ; upload firmware to a jfrog bintray repository
;default_envs = ota ;default_envs = ota
; use latest versions of libraries ; use latest versions of libraries
;default_envs = dev default_envs = usb
description = Paxcounter is a device for metering passenger flows in realtime. It counts how many mobile devices are around. description = Paxcounter is a device for metering passenger flows in realtime. It counts how many mobile devices are around.
[common] [common]
; for release_version use max. 10 chars total, use any decimal format like "a.b.c" ; for release_version use max. 10 chars total, use any decimal format like "a.b.c"
release_version = 1.8.34 release_version = 1.8.52
; DEBUG LEVEL: For production run set to 0, otherwise device will leak RAM while running! ; DEBUG LEVEL: For production run set to 0, otherwise device will leak RAM while running!
; 0=None, 1=Error, 2=Warn, 3=Info, 4=Debug, 5=Verbose ; 0=None, 1=Error, 2=Warn, 3=Info, 4=Debug, 5=Verbose
debug_level = 3 debug_level = 3
@ -57,7 +57,9 @@ upload_speed = 115200
lib_deps_lora = lib_deps_lora =
MCCI LoRaWAN LMIC library@>=3.0.99 MCCI LoRaWAN LMIC library@>=3.0.99
lib_deps_display = lib_deps_display =
U8g2@>=2.26.13 ss_oled@>=3.0.0
BitBang_I2C@>=1.2.0
QRCode@>=0.0.1
lib_deps_matrix_display = lib_deps_matrix_display =
https://github.com/Seeed-Studio/Ultrathin_LED_Matrix.git https://github.com/Seeed-Studio/Ultrathin_LED_Matrix.git
lib_deps_rgbled = lib_deps_rgbled =
@ -66,14 +68,13 @@ lib_deps_gps =
1655@>=1.0.2 ;TinyGPSPlus by Mikal Hart 1655@>=1.0.2 ;TinyGPSPlus by Mikal Hart
lib_deps_sensors = lib_deps_sensors =
Adafruit Unified Sensor@>=1.0.3 Adafruit Unified Sensor@>=1.0.3
Adafruit BME280 Library@>=1.0.9 Adafruit BME280 Library@>=1.0.10
lib_deps_basic = lib_deps_basic =
ArduinoJson@^5.13.1 ArduinoJson@^5.13.1
76@>=1.2.2 ;Timezone by Jack Christensen 76@>=1.2.2 ;Timezone by Jack Christensen
274@>=2.3.3 ;RTC by Michael Miller 274@>=2.3.3 ;RTC by Michael Miller
SimpleButton SimpleButton
;AXP202X_Library@^1.0.1 AXP202X_Library@>=1.0.1
https://github.com/lewisxhe/AXP202X_Library.git#8045ddf
lib_deps_all = lib_deps_all =
${common.lib_deps_basic} ${common.lib_deps_basic}
${common.lib_deps_lora} ${common.lib_deps_lora}

View File

@ -20,7 +20,7 @@ void defaultConfig() {
cfg.adrmode = 1; // 0=disabled, 1=enabled cfg.adrmode = 1; // 0=disabled, 1=enabled
cfg.screensaver = 0; // 0=disabled, 1=enabled cfg.screensaver = 0; // 0=disabled, 1=enabled
cfg.screenon = 1; // 0=disabled, 1=enabled cfg.screenon = 1; // 0=disabled, 1=enabled
cfg.countermode = 0; // 0=cyclic, 1=cumulative, 2=cyclic confirmed cfg.countermode = COUNTERMODE; // 0=cyclic, 1=cumulative, 2=cyclic confirmed
cfg.rssilimit = 0; // threshold for rssilimiter, negative value! cfg.rssilimit = 0; // threshold for rssilimiter, negative value!
cfg.sendcycle = SENDCYCLE; // payload send cycle [seconds/2] cfg.sendcycle = SENDCYCLE; // payload send cycle [seconds/2]
cfg.wifichancycle = cfg.wifichancycle =

View File

@ -128,5 +128,9 @@ void reset_counters() {
macs_total = 0; // reset all counters macs_total = 0; // reset all counters
macs_wifi = 0; macs_wifi = 0;
macs_ble = 0; macs_ble = 0;
#ifdef HAS_DISPLAY
oledPlotCurve(0, true);
#endif
#endif #endif
} }

View File

@ -4,116 +4,134 @@
Display-Mask (128 x 64 pixel): Display-Mask (128 x 64 pixel):
| 111111 | | |
|0123456789012345 | 11111111112
------------------ |012345678901234567890 Font
0|PAX:aabbccddee ----------------------- ---------
1|PAX:aabbccddee 0|PAX:aabbccdd STRETCHED
2|B:a.bcV Sats:ab 1|PAX:aabbccdd STRETCHED
3|BLTH:abcde SFab 2|
4|WIFI:abcde ch:ab 3|B:a.bcV Sats:ab ch:ab SMALL
5|RLIM:abcd abcdKB 4|WIFI:abcde BLTH:abcde SMALL
6|20:27:00* 27.Feb 5|RLIM:abcd Mem:abcdKB SMALL
7|yyyyyyyyyyyyyyab 6|27.Feb 2019 20:27:00* SMALL
7|yyyyyyyyyyyyyyyy SFab SMALL
line 6: * = char {L|G|R|?} indicates time source, * = char {L|G|R|?} indicates time source,
inverse = clock controller is active, inverse = clock controller is active,
pulsed = pps input signal is active pulsed = pps input signal is active
line 7: y = LMIC event message; ab = payload queue length y = LMIC event message; ab = payload queue length
FONT_SMALL: 6x8px = 21 chars / line
FONT_NORMAL: 8x8px = 16 chars / line
FONT_STRETCHED: 16x32px = 8 chars / line
*/ */
// Basic Config // Basic Config
#include "globals.h" #include "globals.h"
#include <ss_oled.h>
#include <esp_spi_flash.h> // needed for reading ESP32 chip attributes #include <esp_spi_flash.h> // needed for reading ESP32 chip attributes
#define DISPLAY_PAGES (4) // number of display pages // local Tag for logging
static const char TAG[] = __FILE__;
HAS_DISPLAY u8x8(MY_OLED_RST, MY_OLED_SCL, MY_OLED_SDA); #define DISPLAY_PAGES (5) // number of paxcounter display pages
// helper arry for converting month values to text // settings for oled display library
#define USE_BACKBUFFER
// settings for qr code generator
#define QR_VERSION 3 // 29 x 29px
#define QR_SCALEFACTOR 2 // 29 -> 58x < 64px
// settings for curve plotter
#define DISPLAY_WIDTH 128 // Width in pixels of OLED-display, must be 32X
#define DISPLAY_HEIGHT 64 // Height in pixels of OLED-display, must be 64X
// helper array for converting month values to text
const char *printmonth[] = {"xxx", "Jan", "Feb", "Mar", "Apr", "May", "Jun", const char *printmonth[] = {"xxx", "Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"}; "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};
uint8_t DisplayIsOn = 0; uint8_t DisplayIsOn = 0;
uint8_t displaybuf[DISPLAY_WIDTH * DISPLAY_HEIGHT / 8] = {0};
// helper function, prints a hex key on display QRCode qrcode;
void DisplayKey(const uint8_t *key, uint8_t len, bool lsb) {
const uint8_t *p;
for (uint8_t i = 0; i < len; i++) {
p = lsb ? key + len - i - 1 : key + i;
u8x8.printf("%02X", *p);
}
u8x8.printf("\n");
}
void init_display(const char *Productname, const char *Version) { void init_display(uint8_t verbose) {
// block i2c bus access // block i2c bus access
if (!I2C_MUTEX_LOCK()) if (!I2C_MUTEX_LOCK())
ESP_LOGV(TAG, "[%0.3f] i2c mutex lock failed", millis() / 1000.0); ESP_LOGV(TAG, "[%0.3f] i2c mutex lock failed", millis() / 1000.0);
else { else {
// show startup screen
uint8_t buf[32];
u8x8.begin();
u8x8.setFont(u8x8_font_chroma48medium8_r);
u8x8.clear();
u8x8.setFlipMode(0);
u8x8.setInverseFont(1);
u8x8.draw2x2String(0, 0, Productname);
u8x8.setInverseFont(0);
u8x8.draw2x2String(2, 2, Productname);
delay(500);
u8x8.clear();
u8x8.setFlipMode(1);
u8x8.setInverseFont(1);
u8x8.draw2x2String(0, 0, Productname);
u8x8.setInverseFont(0);
u8x8.draw2x2String(2, 2, Productname);
delay(500);
u8x8.setFlipMode(0); // init display
u8x8.clear(); #ifndef DISPLAY_FLIP
oledInit(OLED_128x64, ANGLE_0, false, -1, -1, 400000L);
#ifdef DISPLAY_FLIP #else
u8x8.setFlipMode(1); oledInit(OLED_128x64, ANGLE_FLIPY, false, -1, -1, 400000L);
#endif #endif
// Display chip information // clear display
oledSetContrast(DISPLAYCONTRAST);
oledFill(0, 1);
if (verbose) {
// show startup screen
// to come -> display .bmp file with logo
// show chip information
#if (VERBOSE) #if (VERBOSE)
esp_chip_info_t chip_info; esp_chip_info_t chip_info;
esp_chip_info(&chip_info); esp_chip_info(&chip_info);
u8x8.printf("ESP32 %d cores\nWiFi%s%s\n", chip_info.cores, dp_printf(0, 0, 0, 0, "** PAXCOUNTER **");
dp_printf(0, 1, 0, 0, "Software v%s", PROGVERSION);
dp_printf(0, 3, 0, 0, "ESP32 %d cores", chip_info.cores);
dp_printf(0, 4, 0, 0, "Chip Rev.%d", chip_info.revision);
dp_printf(0, 5, 0, 0, "WiFi%s%s",
(chip_info.features & CHIP_FEATURE_BT) ? "/BT" : "", (chip_info.features & CHIP_FEATURE_BT) ? "/BT" : "",
(chip_info.features & CHIP_FEATURE_BLE) ? "/BLE" : ""); (chip_info.features & CHIP_FEATURE_BLE) ? "/BLE" : "");
u8x8.printf("ESP Rev.%d\n", chip_info.revision); dp_printf(0, 6, 0, 0, "%dMB %s Flash",
u8x8.printf("%dMB %s Flash\n", spi_flash_get_chip_size() / (1024 * 1024), spi_flash_get_chip_size() / (1024 * 1024),
(chip_info.features & CHIP_FEATURE_EMB_FLASH) ? "int." (chip_info.features & CHIP_FEATURE_EMB_FLASH) ? "int."
: "ext."); : "ext.");
// give user some time to read or take picture
oledDumpBuffer(NULL);
delay(2000);
oledFill(0x00, 1);
#endif // VERBOSE #endif // VERBOSE
u8x8.print(Productname);
u8x8.print(" v");
u8x8.println(PROGVERSION);
#if (HAS_LORA) #if (HAS_LORA)
u8x8.println("DEVEUI:"); // generate DEVEUI as QR code and text
uint8_t buf[8];
char deveui[17];
os_getDevEui((u1_t *)buf); os_getDevEui((u1_t *)buf);
DisplayKey(buf, 8, true); sprintf(deveui, "%016llX", *((uint64_t *)&buf));
delay(3000);
// display DEVEUI as QR code on the left
oledSetContrast(30);
dp_printqr(3, 3, deveui);
// display DEVEUI as plain text on the right
dp_printf(72, 0, FONT_NORMAL, 0, "LORAWAN");
dp_printf(72, 1, FONT_NORMAL, 0, "DEVEUI:");
dp_printf(80, 3, FONT_NORMAL, 0, "%4.4s", deveui);
dp_printf(80, 4, FONT_NORMAL, 0, "%4.4s", deveui + 4);
dp_printf(80, 5, FONT_NORMAL, 0, "%4.4s", deveui + 8);
dp_printf(80, 6, FONT_NORMAL, 0, "%4.4s", deveui + 12);
// give user some time to read or take picture
oledDumpBuffer(NULL);
delay(8000);
oledSetContrast(DISPLAYCONTRAST);
oledFill(0x00, 1);
#endif // HAS_LORA #endif // HAS_LORA
u8x8.clear();
u8x8.setPowerSave(!cfg.screenon); // set display off if disabled } // verbose
u8x8.draw2x2String(0, 0, "PAX:0");
#if (BLECOUNTER) oledPower(cfg.screenon); // set display off if disabled
u8x8.setCursor(0, 3);
u8x8.printf("BLTH:0");
#endif
u8x8.setCursor(0, 4);
u8x8.printf("WIFI:0");
u8x8.setCursor(0, 5);
u8x8.printf(!cfg.rssilimit ? "RLIM:off " : "RLIM:%d", cfg.rssilimit);
I2C_MUTEX_UNLOCK(); // release i2c bus access I2C_MUTEX_UNLOCK(); // release i2c bus access
} // mutex } // mutex
@ -137,15 +155,16 @@ void refreshTheDisplay(bool nextPage) {
// set display on/off according to current device configuration // set display on/off according to current device configuration
if (DisplayIsOn != cfg.screenon) { if (DisplayIsOn != cfg.screenon) {
DisplayIsOn = cfg.screenon; DisplayIsOn = cfg.screenon;
u8x8.setPowerSave(!cfg.screenon); oledPower(cfg.screenon);
} }
if (nextPage) { if (nextPage) {
DisplayPage = (DisplayPage >= DISPLAY_PAGES - 1) ? 0 : (DisplayPage + 1); DisplayPage = (DisplayPage >= DISPLAY_PAGES - 1) ? 0 : (DisplayPage + 1);
u8x8.clear(); oledFill(0, 1);
} }
draw_page(t, DisplayPage); draw_page(t, DisplayPage);
oledDumpBuffer(NULL);
I2C_MUTEX_UNLOCK(); // release i2c bus access I2C_MUTEX_UNLOCK(); // release i2c bus access
@ -154,191 +173,160 @@ void refreshTheDisplay(bool nextPage) {
void draw_page(time_t t, uint8_t page) { void draw_page(time_t t, uint8_t page) {
char timeState, buff[16]; char timeState;
uint8_t msgWaiting; uint8_t msgWaiting;
#if (HAS_GPS) #if (HAS_GPS)
static bool wasnofix = true; static bool wasnofix = true;
#endif #endif
// update counter (lines 0-1) // line 1/2: pax counter
snprintf( dp_printf(0, 0, FONT_STRETCHED, 0, "PAX:%-4d",
buff, sizeof(buff), "PAX:%-4d", macs.size()); // display number of unique macs total Wifi + BLE
(int)macs.size()); // convert 16-bit MAC counter to decimal counter value
u8x8.draw2x2String(0, 0, // update histogram if we have a display
buff); // display number on unique macs total Wifi + BLE oledPlotCurve(macs.size(), false);
switch (page % DISPLAY_PAGES) { switch (page % DISPLAY_PAGES) {
// page 0: parameters overview // page 0: parameters overview
// page 1: time // page 1: pax graph
// page 2: GPS // page 2: GPS
// page 3: BME280/680 // page 3: BME280/680
// page 4: time
// page 0: parameters overview
case 0: case 0:
// update Battery status (line 2) // line 3: wifi + bluetooth counters
#if (defined BAT_MEASURE_ADC || defined HAS_PMU) dp_printf(0, 3, FONT_SMALL, 0, "WIFI:%-5d", macs_wifi);
u8x8.setCursor(0, 2);
if (batt_voltage == 0xffff)
u8x8.printf("B:USB ");
else
u8x8.printf("B:%.2fV", batt_voltage / 1000.0);
#endif
// update GPS status (line 2)
#if (HAS_GPS)
u8x8.setCursor(9, 2);
if (gps.location.age() < 1500) // if no fix then display Sats value inverse
u8x8.printf("Sats:%.2d", gps.satellites.value());
else {
u8x8.setInverseFont(1);
u8x8.printf("Sats:%.2d", gps.satellites.value());
u8x8.setInverseFont(0);
}
#endif
// update bluetooth counter + LoRa SF (line 3)
#if (BLECOUNTER) #if (BLECOUNTER)
u8x8.setCursor(0, 3);
if (cfg.blescan) if (cfg.blescan)
u8x8.printf("BLTH:%-5d", macs_ble); dp_printf(66, 3, FONT_SMALL, 0, "BLTH:%-5d", macs_ble);
else else
u8x8.printf("%s", "BLTH:off"); dp_printf(66, 3, FONT_SMALL, 0, "%s", "BLTH:off");
#endif #endif
#if (HAS_LORA) // line 4: Battery + GPS status + Wifi channel
u8x8.setCursor(12, 3); #if (defined BAT_MEASURE_ADC || defined HAS_PMU)
if (!cfg.adrmode) // if ADR=off then display SF value inverse if (batt_voltage == 0xffff)
u8x8.setInverseFont(1); dp_printf(0, 4, FONT_SMALL, 0, "%s", "USB ");
u8x8.printf("%-4s", getSfName(updr2rps(LMIC.datarate))); else if (batt_voltage == 0)
if (!cfg.adrmode) // switch off inverse if it was turned on dp_printf(0, 4, FONT_SMALL, 0, "%s", "No batt");
u8x8.setInverseFont(0); else
#endif // HAS_LORA dp_printf(0, 4, FONT_SMALL, 0, "B:%.2fV", batt_voltage / 1000.0);
#endif
#if (HAS_GPS)
if (gps.location.age() < 1500) // if no fix then display Sats value inverse
dp_printf(48, 4, FONT_SMALL, 0, "Sats:%.2d", gps.satellites.value());
else
dp_printf(48, 4, FONT_SMALL, 1, "Sats:%.2d", gps.satellites.value());
#endif
dp_printf(96, 4, FONT_SMALL, 0, "ch:%02d", channel);
// line 4: update wifi counter + channel display // line 5: RSSI limiter + free memory
u8x8.setCursor(0, 4); dp_printf(0, 5, FONT_SMALL, 0, !cfg.rssilimit ? "RLIM:off " : "RLIM:%-4d",
u8x8.printf("WIFI:%-5d", macs_wifi); cfg.rssilimit);
u8x8.setCursor(11, 4); dp_printf(66, 5, FONT_SMALL, 0, "Mem:%4dKB", getFreeRAM() / 1024);
u8x8.printf("ch:%02d", channel);
// line 5: update RSSI limiter status & free memory display // line 6: time + date
u8x8.setCursor(0, 5);
u8x8.printf(!cfg.rssilimit ? "RLIM:off " : "RLIM:%-4d", cfg.rssilimit);
u8x8.setCursor(10, 5);
u8x8.printf("%4dKB", getFreeRAM() / 1024);
// line 6: update time-of-day or LoRa status display
u8x8.setCursor(0, 6);
#if (TIME_SYNC_INTERVAL) #if (TIME_SYNC_INTERVAL)
// we want a systime display instead LoRa status
timeState = TimePulseTick ? ' ' : timeSetSymbols[timeSource]; timeState = TimePulseTick ? ' ' : timeSetSymbols[timeSource];
TimePulseTick = false; TimePulseTick = false;
dp_printf(0, 6, FONT_SMALL, 0, "%02d.%3s %4d", day(t), printmonth[month(t)],
year(t));
dp_printf(72, 6, FONT_SMALL, 0, "%02d:%02d:%02d", hour(t), minute(t),
second(t));
// display inverse timeState if clock controller is enabled // display inverse timeState if clock controller is enabled
#if (defined HAS_DCF77) || (defined HAS_IF482) #if (defined HAS_DCF77) || (defined HAS_IF482)
u8x8.printf("%02d:%02d:%02d", hour(t), minute(t), second(t)); dp_printf(120, 6, FONT_SMALL, 1, "%c", timeState);
u8x8.setInverseFont(1);
u8x8.printf("%c", timeState);
u8x8.setInverseFont(0);
#else #else
u8x8.printf("%02d:%02d:%02d%c", hour(t), minute(t), second(t), timeState); dp_printf(120, 6, FONT_SMALL, 0, "%c", timeState);
#endif // HAS_DCF77 || HAS_IF482 #endif
if (timeSource != _unsynced)
u8x8.printf(" %2d.%3s", day(t), printmonth[month(t)]);
#endif // TIME_SYNC_INTERVAL #endif // TIME_SYNC_INTERVAL
// line 7: LORA network status
#if (HAS_LORA) #if (HAS_LORA)
// line 7: update LMiC event display // LMiC event display, display inverse if sendqueue not empty
u8x8.setCursor(0, 7);
u8x8.printf("%-14s", lmic_event_msg);
// update LoRa send queue display
msgWaiting = uxQueueMessagesWaiting(LoraSendQueue); msgWaiting = uxQueueMessagesWaiting(LoraSendQueue);
if (msgWaiting) { if (msgWaiting)
sprintf(buff, "%2d", msgWaiting); dp_printf(0, 7, FONT_SMALL, 1, "%-16s", lmic_event_msg);
u8x8.setCursor(14, 7); else
u8x8.printf("%-2s", msgWaiting == SEND_QUEUE_SIZE ? "<>" : buff); dp_printf(0, 7, FONT_SMALL, 0, "%-16s", lmic_event_msg);
} else // LORA datarate, display inverse if ADR disabled
u8x8.printf(" "); if (cfg.adrmode)
dp_printf(100, 7, FONT_SMALL, 0, "%-4s",
getSfName(updr2rps(LMIC.datarate)));
else
dp_printf(100, 7, FONT_SMALL, 1, "%-4s",
getSfName(updr2rps(LMIC.datarate)));
#endif // HAS_LORA #endif // HAS_LORA
break; // page0 break; // page0
// page 1: pax graph
case 1: case 1:
oledDumpBuffer(displaybuf);
// line 4-5: update time-of-day
snprintf(buff, sizeof(buff), "%02d:%02d:%02d", hour(t), minute(t),
second(t));
u8x8.draw2x2String(0, 4, buff);
break; // page1 break; // page1
// page 2: GPS
case 2: case 2:
// update counter (lines 0-1)
snprintf(
buff, sizeof(buff), "PAX:%-4d",
(int)
macs.size()); // convert 16-bit MAC counter to decimal counter value
u8x8.draw2x2String(0, 0,
buff); // display number on unique macs total Wifi + BLE
#if (HAS_GPS) #if (HAS_GPS)
if (gps.location.age() < 1500) { if (gps.location.age() < 1500) {
// line 5: clear "No fix" // line 5: clear "No fix"
if (wasnofix) { if (wasnofix) {
snprintf(buff, sizeof(buff), " "); dp_printf(16, 5, FONT_STRETCHED, 0, " ");
u8x8.draw2x2String(2, 5, buff);
wasnofix = false; wasnofix = false;
} }
// line 3-4: GPS latitude // line 3-4: GPS latitude
snprintf(buff, sizeof(buff), "%c%07.4f", dp_printf(0, 3, FONT_STRETCHED, 0, "%c%07.4f",
gps.location.rawLat().negative ? 'S' : 'N', gps.location.lat()); gps.location.rawLat().negative ? 'S' : 'N', gps.location.lat());
u8x8.draw2x2String(0, 3, buff);
// line 6-7: GPS longitude // line 6-7: GPS longitude
snprintf(buff, sizeof(buff), "%c%07.4f", dp_printf(0, 6, FONT_STRETCHED, 0, "%c%07.4f",
gps.location.rawLat().negative ? 'W' : 'E', gps.location.lng()); gps.location.rawLat().negative ? 'W' : 'E', gps.location.lng());
u8x8.draw2x2String(0, 6, buff);
} else { } else {
snprintf(buff, sizeof(buff), "No fix"); dp_printf(16, 5, FONT_STRETCHED, 1, "No fix");
u8x8.setInverseFont(1);
u8x8.draw2x2String(2, 5, buff);
u8x8.setInverseFont(0);
wasnofix = true; wasnofix = true;
} }
#else #else
snprintf(buff, sizeof(buff), "No GPS"); dp_printf(16, 5, FONT_STRETCHED, 1, "No GPS");
u8x8.draw2x2String(2, 5, buff);
#endif #endif
break; // page2 break; // page2
// page 3: BME280/680
case 3: case 3:
#if (HAS_BME) #if (HAS_BME)
// line 2-3: Temp // line 2-3: Temp
snprintf(buff, sizeof(buff), "TMP:%-2.1f", bme_status.temperature); dp_printf(0, 2, FONT_STRETCHED, 0, "TMP:%-2.1f", bme_status.temperature);
u8x8.draw2x2String(0, 2, buff);
// line 4-5: Hum // line 4-5: Hum
snprintf(buff, sizeof(buff), "HUM:%-2.1f", bme_status.humidity); dp_printf(0, 4, FONT_STRETCHED, 0, "HUM:%-2.1f", bme_status.humidity);
u8x8.draw2x2String(0, 4, buff);
#ifdef HAS_BME680 #ifdef HAS_BME680
// line 6-7: IAQ // line 6-7: IAQ
snprintf(buff, sizeof(buff), "IAQ:%-3.0f", bme_status.iaq); dp_printf(0, 6, FONT_STRETCHED, 0, "IAQ:%-3.0f", bme_status.iaq);
u8x8.draw2x2String(0, 6, buff);
#endif #endif
#else #else
snprintf(buff, sizeof(buff), "No BME"); dp_printf(16, 5, FONT_STRETCHED, 1, "No BME");
u8x8.draw2x2String(2, 5, buff);
#endif #endif
break; // page3 break; // page3
// page 4: time
case 4:
dp_printf(0, 4, FONT_LARGE, 0, "%02d:%02d:%02d", hour(t), minute(t),
second(t));
break;
default: default:
break; // default break; // default
@ -346,4 +334,148 @@ void draw_page(time_t t, uint8_t page) {
} // draw_page } // draw_page
// display helper functions
void dp_printf(uint16_t x, uint16_t y, uint8_t font, uint8_t inv,
const char *format, ...) {
char loc_buf[64];
char *temp = loc_buf;
va_list arg;
va_list copy;
va_start(arg, format);
va_copy(copy, arg);
int len = vsnprintf(temp, sizeof(loc_buf), format, copy);
va_end(copy);
if (len < 0) {
va_end(arg);
return;
};
if (len >= sizeof(loc_buf)) {
temp = (char *)malloc(len + 1);
if (temp == NULL) {
va_end(arg);
return;
}
len = vsnprintf(temp, len + 1, format, arg);
}
va_end(arg);
oledWriteString(0, x, y, temp, font, inv, false);
if (temp != loc_buf) {
free(temp);
}
}
void dp_printqr(uint16_t offset_x, uint16_t offset_y, const char *Message) {
uint8_t qrcodeData[qrcode_getBufferSize(QR_VERSION)];
qrcode_initText(&qrcode, qrcodeData, QR_VERSION, ECC_HIGH, Message);
// draw QR code
for (uint16_t y = 0; y < qrcode.size; y++)
for (uint16_t x = 0; x < qrcode.size; x++)
if (!qrcode_getModule(&qrcode, x, y)) // "black"
oledfillRect(x * QR_SCALEFACTOR + offset_x,
y * QR_SCALEFACTOR + offset_y, QR_SCALEFACTOR,
QR_SCALEFACTOR, false);
// draw horizontal frame lines
oledfillRect(0, 0, qrcode.size * QR_SCALEFACTOR + 2 * offset_x, offset_y,
false);
oledfillRect(0, qrcode.size * QR_SCALEFACTOR + offset_y,
qrcode.size * QR_SCALEFACTOR + 2 * offset_x, offset_y, false);
// draw vertical frame lines
oledfillRect(0, 0, offset_x, qrcode.size * QR_SCALEFACTOR + 2 * offset_y,
false);
oledfillRect(qrcode.size * QR_SCALEFACTOR + offset_x, 0, offset_x,
qrcode.size * QR_SCALEFACTOR + 2 * offset_y, false);
}
void oledfillRect(uint16_t x, uint16_t y, uint16_t width, uint16_t height,
uint8_t bRender) {
for (uint16_t xi = x; xi < x + width; xi++)
oledDrawLine(xi, y, xi, y + height - 1, bRender);
}
int oledDrawPixel(uint8_t *buf, const uint16_t x, const uint16_t y,
const uint8_t dot) {
if (x > DISPLAY_WIDTH || y > DISPLAY_HEIGHT)
return -1;
uint8_t bit = y & 7;
uint16_t idx = y / 8 * DISPLAY_WIDTH + x;
buf[idx] &= ~(1 << bit); // clear pixel
if (dot)
buf[idx] |= (1 << bit); // set pixel
return 0;
}
void oledScrollBufferLeft(uint8_t *buf, const uint16_t width,
const uint16_t height) {
uint16_t col, page, idx;
for (page = 0; page < height / 8; page++) {
for (col = 0; col < width - 1; col++) {
idx = page * width + col;
buf[idx] = buf[idx + 1];
}
buf[idx + 1] = 0;
}
}
void oledPlotCurve(uint16_t count, bool reset) {
static uint16_t last_count = 0, col = 0, row = 0;
static int scalefactor = 1, oldsf = 1;
if ((last_count == count) && !reset)
return;
if (reset) { // next count cycle?
if (col < DISPLAY_WIDTH - 1) // matrix not full -> increment column
col++;
else // matrix full -> scroll left 1 dot
oledScrollBufferLeft(displaybuf, DISPLAY_WIDTH, DISPLAY_HEIGHT);
} else // clear current dot
oledDrawPixel(displaybuf, col, row, 0);
// re-scale, if necessary
oldsf = scalefactor;
while (((count / scalefactor) <= DISPLAY_HEIGHT) && (scalefactor > 1))
scalefactor--;
while ((count / scalefactor) > DISPLAY_HEIGHT)
scalefactor++;
if (scalefactor != oldsf)
oledRescaleBuffer(displaybuf, scalefactor);
// set new dot
row = DISPLAY_HEIGHT - 1 - (count / scalefactor) % DISPLAY_HEIGHT;
last_count = count;
oledDrawPixel(displaybuf, col, row, 1);
}
void oledRescaleBuffer(uint8_t *buf, const int factor) {
if (!factor)
return;
uint64_t buf_col;
for (uint16_t col = 0; col < DISPLAY_WIDTH; col++) {
// convert column bytes from display buffer to uint64_t
buf_col = *(uint64_t *)&buf[col * DISPLAY_HEIGHT / 8];
if (factor < 0)
// shift left: scroll up = scale down
buf_col <= abs(factor);
else
// shift right: scroll down = scale up
buf_col >= abs(factor);
// write back uint64_t to uint8_t display buffer
*(uint64_t *)&buf[col * DISPLAY_HEIGHT / 8] = buf_col;
}
}
#endif // HAS_DISPLAY #endif // HAS_DISPLAY

View File

@ -1,5 +1,5 @@
// clang-format off // clang-format off
// upload_speed 115200 // upload_speed 921600
// board esp32dev // board esp32dev
#ifndef _EBOX_H #ifndef _EBOX_H

View File

@ -1,5 +1,5 @@
// clang-format off // clang-format off
// upload_speed 115200 // upload_speed 921600
// board esp32dev // board esp32dev

View File

@ -12,7 +12,7 @@
//#define DISABLE_BROWNOUT 1 // comment out if you want to keep brownout feature //#define DISABLE_BROWNOUT 1 // comment out if you want to keep brownout feature
#define HAS_DISPLAY U8X8_SSD1306_128X64_NONAME_HW_I2C #define HAS_DISPLAY 1
//#define DISPLAY_FLIP 1 // use if display is rotated //#define DISPLAY_FLIP 1 // use if display is rotated
#define BAT_MEASURE_ADC ADC1_GPIO35_CHANNEL // battery probe GPIO pin -> ADC1_CHANNEL_7 #define BAT_MEASURE_ADC ADC1_GPIO35_CHANNEL // battery probe GPIO pin -> ADC1_CHANNEL_7
#define BAT_VOLTAGE_DIVIDER ((82.0+220.0)/82.0) // 82k + 220k 1% #define BAT_VOLTAGE_DIVIDER ((82.0+220.0)/82.0) // 82k + 220k 1%
@ -29,7 +29,7 @@
// Pins for I2C interface of OLED Display // Pins for I2C interface of OLED Display
#define MY_OLED_SDA SDA #define MY_OLED_SDA SDA
#define MY_OLED_SCL SCL #define MY_OLED_SCL SCL
#define MY_OLED_RST U8X8_PIN_NONE #define MY_OLED_RST NOT_A_PIN
// Settings for on board DS3231 RTC chip // Settings for on board DS3231 RTC chip
// note: to use RTC_INT, capacitor 100nF next to red LED must be removed to sharpen interrupt signal slope // note: to use RTC_INT, capacitor 100nF next to red LED must be removed to sharpen interrupt signal slope

View File

@ -44,7 +44,7 @@
#define BOARD_HAS_PSRAM // use if board has external PSRAM #define BOARD_HAS_PSRAM // use if board has external PSRAM
#define DISABLE_BROWNOUT 1 // comment out if you want to keep brownout feature #define DISABLE_BROWNOUT 1 // comment out if you want to keep brownout feature
#define HAS_DISPLAY U8X8_SSD1306_128X64_NONAME_HW_I2C #define HAS_DISPLAY 1
//#define DISPLAY_FLIP 1 // use if display is rotated //#define DISPLAY_FLIP 1 // use if display is rotated
#define BAT_MEASURE_ADC ADC1_GPIO35_CHANNEL // battery probe GPIO pin -> ADC1_CHANNEL_7 #define BAT_MEASURE_ADC ADC1_GPIO35_CHANNEL // battery probe GPIO pin -> ADC1_CHANNEL_7
#define BAT_VOLTAGE_DIVIDER 2 // voltage divider 100k/100k on board #define BAT_VOLTAGE_DIVIDER 2 // voltage divider 100k/100k on board

View File

@ -16,7 +16,7 @@
#define HAS_LORA 1 // comment out if device shall not send data via LoRa #define HAS_LORA 1 // comment out if device shall not send data via LoRa
#define CFG_sx1276_radio 1 #define CFG_sx1276_radio 1
#define HAS_DISPLAY U8X8_SSD1306_128X64_NONAME_HW_I2C // OLED-Display on board #define HAS_DISPLAY 1 // OLED-Display on board
#define HAS_LED LED_BUILTIN // white LED on board #define HAS_LED LED_BUILTIN // white LED on board
#define HAS_BUTTON KEY_BUILTIN // button "PROG" on board #define HAS_BUTTON KEY_BUILTIN // button "PROG" on board

View File

@ -16,7 +16,7 @@
#define HAS_LORA 1 // comment out if device shall not send data via LoRa #define HAS_LORA 1 // comment out if device shall not send data via LoRa
#define CFG_sx1276_radio 1 #define CFG_sx1276_radio 1
#define HAS_DISPLAY U8X8_SSD1306_128X64_NONAME_HW_I2C // OLED-Display on board #define HAS_DISPLAY 1 // OLED-Display on board
#define HAS_LED LED_BUILTIN // white LED on board #define HAS_LED LED_BUILTIN // white LED on board
#define HAS_BUTTON KEY_BUILTIN // button "PROG" on board #define HAS_BUTTON KEY_BUILTIN // button "PROG" on board

View File

@ -13,7 +13,7 @@
// disable brownout detection (avoid unexpected reset on some boards) // disable brownout detection (avoid unexpected reset on some boards)
#define DISABLE_BROWNOUT 1 // comment out if you want to keep brownout feature #define DISABLE_BROWNOUT 1 // comment out if you want to keep brownout feature
#define HAS_DISPLAY U8X8_SSD1306_128X64_NONAME_HW_I2C // OLED-Display on board #define HAS_DISPLAY 1 // OLED-Display on board
//#define DISPLAY_FLIP 1 // uncomment this for rotated display //#define DISPLAY_FLIP 1 // uncomment this for rotated display
#define HAS_LED 22 // ESP32 GPIO12 (pin22) On Board LED #define HAS_LED 22 // ESP32 GPIO12 (pin22) On Board LED
#define LED_ACTIVE_LOW 1 // Onboard LED is active when pin is LOW #define LED_ACTIVE_LOW 1 // Onboard LED is active when pin is LOW
@ -37,7 +37,7 @@
// Pins for I2C interface of OLED Display // Pins for I2C interface of OLED Display
#define MY_OLED_SDA (14) #define MY_OLED_SDA (14)
#define MY_OLED_SCL (12) #define MY_OLED_SCL (12)
#define MY_OLED_RST U8X8_PIN_NONE #define MY_OLED_RST NOT_A_PIN
// I2C config for Microchip 24AA02E64 DEVEUI unique address // I2C config for Microchip 24AA02E64 DEVEUI unique address
#define MCP_24AA02E64_I2C_ADDRESS 0x50 // I2C address for the 24AA02E64 #define MCP_24AA02E64_I2C_ADDRESS 0x50 // I2C address for the 24AA02E64

View File

@ -13,7 +13,7 @@
// disable brownout detection (avoid unexpected reset on some boards) // disable brownout detection (avoid unexpected reset on some boards)
#define DISABLE_BROWNOUT 1 // comment out if you want to keep brownout feature #define DISABLE_BROWNOUT 1 // comment out if you want to keep brownout feature
#define HAS_DISPLAY U8X8_SSD1306_128X64_NONAME_HW_I2C // OLED-Display on board #define HAS_DISPLAY 1 // OLED-Display on board
//#define DISPLAY_FLIP 1 // uncomment this for rotated display //#define DISPLAY_FLIP 1 // uncomment this for rotated display
#define HAS_LED NOT_A_PIN // Led os on same pin as Lora SS pin, to avoid problems, we don't use it #define HAS_LED NOT_A_PIN // Led os on same pin as Lora SS pin, to avoid problems, we don't use it
#define LED_ACTIVE_LOW 1 // Onboard LED is active when pin is LOW #define LED_ACTIVE_LOW 1 // Onboard LED is active when pin is LOW
@ -39,7 +39,7 @@
// Pins for I2C interface of OLED Display // Pins for I2C interface of OLED Display
#define MY_OLED_SDA (21) #define MY_OLED_SDA (21)
#define MY_OLED_SCL (22) #define MY_OLED_SCL (22)
#define MY_OLED_RST U8X8_PIN_NONE #define MY_OLED_RST NOT_A_PIN
// I2C config for Microchip 24AA02E64 DEVEUI unique address // I2C config for Microchip 24AA02E64 DEVEUI unique address
#define MCP_24AA02E64_I2C_ADDRESS 0x50 // I2C address for the 24AA02E64 #define MCP_24AA02E64_I2C_ADDRESS 0x50 // I2C address for the 24AA02E64

View File

@ -41,10 +41,10 @@
#define LORA_IO2 LMIC_UNUSED_PIN #define LORA_IO2 LMIC_UNUSED_PIN
// Pins for I2C interface of OLED Display // Pins for I2C interface of OLED Display
#define HAS_DISPLAY U8X8_SSD1306_128X64_NONAME_HW_I2C // U8X8_SSD1306_128X32_UNIVISION_SW_I2C // #define HAS_DISPLAY 1
//#define DISPLAY_FLIP 1 // uncomment this for rotated display //#define DISPLAY_FLIP 1 // uncomment this for rotated display
#define MY_OLED_SDA (23) #define MY_OLED_SDA (23)
#define MY_OLED_SCL (22) #define MY_OLED_SCL (22)
#define MY_OLED_RST U8X8_PIN_NONE #define MY_OLED_RST NOT_A_PIN
#endif #endif

View File

@ -33,10 +33,10 @@
#define BME680_ADDR BME680_I2C_ADDR_PRIMARY // !! connect SDIO of BME680 to GND !! #define BME680_ADDR BME680_I2C_ADDR_PRIMARY // !! connect SDIO of BME680 to GND !!
// display (if connected) // display (if connected)
#define HAS_DISPLAY U8X8_SSD1306_128X64_NONAME_HW_I2C #define HAS_DISPLAY 1
#define MY_OLED_SDA SDA #define MY_OLED_SDA SDA
#define MY_OLED_SCL SCL #define MY_OLED_SCL SCL
#define MY_OLED_RST U8X8_PIN_NONE #define MY_OLED_RST NOT_A_PIN
//#define DISPLAY_FLIP 1 // use if display is rotated //#define DISPLAY_FLIP 1 // use if display is rotated
// user defined sensors (if connected) // user defined sensors (if connected)

View File

@ -20,10 +20,10 @@ User, long press -> send LORA message
Reset -> reset device Reset -> reset device
*/ */
//#define HAS_DISPLAY U8X8_SSD1306_128X64_NONAME_HW_I2C #define HAS_DISPLAY 1
#define MY_OLED_SDA SDA #define MY_OLED_SDA SDA
#define MY_OLED_SCL SCL #define MY_OLED_SCL SCL
#define MY_OLED_RST U8X8_PIN_NONE #define MY_OLED_RST NOT_A_PIN
//#define DISPLAY_FLIP 1 // use if display is rotated //#define DISPLAY_FLIP 1 // use if display is rotated
#define HAS_LORA 1 // comment out if device shall not send data via LoRa #define HAS_LORA 1 // comment out if device shall not send data via LoRa

View File

@ -10,7 +10,7 @@
#define HAS_LORA 1 // comment out if device shall not send data via LoRa #define HAS_LORA 1 // comment out if device shall not send data via LoRa
#define CFG_sx1276_radio 1 // HPD13A LoRa SoC #define CFG_sx1276_radio 1 // HPD13A LoRa SoC
#define HAS_DISPLAY U8X8_SSD1306_128X64_NONAME_HW_I2C #define HAS_DISPLAY 1
#define HAS_LED NOT_A_PIN // green on board LED is useless, is GPIO25, which switches power for Lora+Display #define HAS_LED NOT_A_PIN // green on board LED is useless, is GPIO25, which switches power for Lora+Display
#define EXT_POWER_SW GPIO_NUM_25 // switches power for LoRa chip #define EXT_POWER_SW GPIO_NUM_25 // switches power for LoRa chip
@ -23,7 +23,7 @@
// Pins for I2C interface of OLED Display // Pins for I2C interface of OLED Display
#define MY_OLED_SDA (21) #define MY_OLED_SDA (21)
#define MY_OLED_SCL (22) #define MY_OLED_SCL (22)
#define MY_OLED_RST U8X8_PIN_NONE #define MY_OLED_RST NOT_A_PIN
// Settings for on board DS3231 RTC chip // Settings for on board DS3231 RTC chip
#define HAS_RTC MY_OLED_SDA, MY_OLED_SCL // SDA, SCL #define HAS_RTC MY_OLED_SDA, MY_OLED_SCL // SDA, SCL

View File

@ -12,7 +12,7 @@
#define HAS_LORA 1 // comment out if device shall not send data via LoRa #define HAS_LORA 1 // comment out if device shall not send data via LoRa
#define CFG_sx1276_radio 1 #define CFG_sx1276_radio 1
#define HAS_DISPLAY U8X8_SSD1306_128X64_NONAME_HW_I2C // OLED-Display on board #define HAS_DISPLAY 1 // OLED-Display on board
//#define DISPLAY_FLIP 1 // uncomment this for rotated display //#define DISPLAY_FLIP 1 // uncomment this for rotated display
#define HAS_LED LED_BUILTIN #define HAS_LED LED_BUILTIN
#define LED_ACTIVE_LOW 1 // Onboard LED is active when pin is LOW #define LED_ACTIVE_LOW 1 // Onboard LED is active when pin is LOW

View File

@ -12,7 +12,7 @@
#define HAS_LORA 1 // comment out if device shall not send data via LoRa #define HAS_LORA 1 // comment out if device shall not send data via LoRa
#define CFG_sx1276_radio 1 // HPD13A LoRa SoC #define CFG_sx1276_radio 1 // HPD13A LoRa SoC
#define HAS_DISPLAY U8X8_SSD1306_128X64_NONAME_HW_I2C #define HAS_DISPLAY 1
//#define DISPLAY_FLIP 1 // uncomment this for rotated display //#define DISPLAY_FLIP 1 // uncomment this for rotated display
#define HAS_LED NOT_A_PIN // on-board LED is wired to SCL (used by display) therefore totally useless #define HAS_LED NOT_A_PIN // on-board LED is wired to SCL (used by display) therefore totally useless
@ -22,7 +22,7 @@
// Pins for I2C interface of OLED Display // Pins for I2C interface of OLED Display
#define MY_OLED_SDA (21) #define MY_OLED_SDA (21)
#define MY_OLED_SCL (22) #define MY_OLED_SCL (22)
#define MY_OLED_RST U8X8_PIN_NONE #define MY_OLED_RST NOT_A_PIN
// Pins for LORA chip SPI interface come from board file, we need some // Pins for LORA chip SPI interface come from board file, we need some
// additional definitions for LMIC // additional definitions for LMIC

View File

@ -20,7 +20,7 @@
//#define HAS_BME 1 // Enable BME sensors in general //#define HAS_BME 1 // Enable BME sensors in general
//#define HAS_BME280 GPIO_NUM_21, GPIO_NUM_22 // SDA, SCL //#define HAS_BME280 GPIO_NUM_21, GPIO_NUM_22 // SDA, SCL
#define HAS_DISPLAY U8X8_SSD1306_128X64_NONAME_HW_I2C #define HAS_DISPLAY 1
#define HAS_LED (25) // green on board LED #define HAS_LED (25) // green on board LED
#define BAT_MEASURE_ADC ADC1_GPIO35_CHANNEL // battery probe GPIO pin -> ADC1_CHANNEL_7 #define BAT_MEASURE_ADC ADC1_GPIO35_CHANNEL // battery probe GPIO pin -> ADC1_CHANNEL_7
#define BAT_VOLTAGE_DIVIDER 2 // voltage divider 100k/100k on board #define BAT_VOLTAGE_DIVIDER 2 // voltage divider 100k/100k on board
@ -28,7 +28,7 @@
// Pins for I2C interface of OLED Display // Pins for I2C interface of OLED Display
#define MY_OLED_SDA (21) #define MY_OLED_SDA (21)
#define MY_OLED_SCL (22) #define MY_OLED_SCL (22)
#define MY_OLED_RST U8X8_PIN_NONE #define MY_OLED_RST NOT_A_PIN
// Pins for LORA chip SPI interface, reset line and interrupt lines // Pins for LORA chip SPI interface, reset line and interrupt lines
#define LORA_SCK (5) #define LORA_SCK (5)

View File

@ -19,7 +19,7 @@
#define HAS_LED NOT_A_PIN // no usable LED on board #define HAS_LED NOT_A_PIN // no usable LED on board
#define DISABLE_BROWNOUT 1 // comment out if you want to keep brownout feature #define DISABLE_BROWNOUT 1 // comment out if you want to keep brownout feature
#define HAS_DISPLAY U8X8_SSD1306_128X64_NONAME_HW_I2C #define HAS_DISPLAY 1
//#define DISPLAY_FLIP 1 // rotated display //#define DISPLAY_FLIP 1 // rotated display
//#define BAT_MEASURE_ADC ADC1_GPIO35_CHANNEL // battery probe GPIO pin -> ADC1_CHANNEL_7 //#define BAT_MEASURE_ADC ADC1_GPIO35_CHANNEL // battery probe GPIO pin -> ADC1_CHANNEL_7
//#define BAT_VOLTAGE_DIVIDER 2 // voltage divider 100k/100k on board //#define BAT_VOLTAGE_DIVIDER 2 // voltage divider 100k/100k on board
@ -27,7 +27,7 @@
// Pins for I2C interface of OLED Display // Pins for I2C interface of OLED Display
#define MY_OLED_SDA (21) #define MY_OLED_SDA (21)
#define MY_OLED_SCL (22) #define MY_OLED_SCL (22)
#define MY_OLED_RST U8X8_PIN_NONE #define MY_OLED_RST NOT_A_PIN
// Pins for LORA chip SPI interface, reset line and interrupt lines // Pins for LORA chip SPI interface, reset line and interrupt lines
#define LORA_SCK (5) #define LORA_SCK (5)

View File

@ -9,10 +9,10 @@
#define HAS_LED NOT_A_PIN // no LED #define HAS_LED NOT_A_PIN // no LED
#define HAS_DISPLAY U8X8_SSD1306_128X64_NONAME_HW_I2C #define HAS_DISPLAY 1
#define MY_OLED_SDA (5) #define MY_OLED_SDA (5)
#define MY_OLED_SCL (4) #define MY_OLED_SCL (4)
#define MY_OLED_RST U8X8_PIN_NONE #define MY_OLED_RST NOT_A_PIN
#define DISPLAY_FLIP 1 // use if display is rotated #define DISPLAY_FLIP 1 // use if display is rotated
#define DISABLE_BROWNOUT 1 // comment out if you want to keep brownout feature #define DISABLE_BROWNOUT 1 // comment out if you want to keep brownout feature

View File

@ -94,7 +94,7 @@ void refreshTheMatrixDisplay(bool nextPage) {
if (col < (LED_MATRIX_WIDTH - 1)) if (col < (LED_MATRIX_WIDTH - 1))
col++; col++;
else else
ScrollLeft(displaybuf, LED_MATRIX_WIDTH, LED_MATRIX_HEIGHT); ScrollMatrixLeft(displaybuf, LED_MATRIX_WIDTH, LED_MATRIX_HEIGHT);
} else } else
matrix.drawPoint(col, row, 0); // clear current dot matrix.drawPoint(col, row, 0); // clear current dot
@ -204,7 +204,7 @@ uint8_t GetCharWidth(char cChar) {
return CharDescriptor.width; return CharDescriptor.width;
} }
void ScrollLeft(uint8_t *buf, const uint16_t cols, const uint16_t rows) { void ScrollMatrixLeft(uint8_t *buf, const uint16_t cols, const uint16_t rows) {
uint32_t i, k, idx; uint32_t i, k, idx;
const uint32_t x = cols / 8; const uint32_t x = cols / 8;

View File

@ -129,7 +129,7 @@ void setup() {
esp_log_level_set("*", ESP_LOG_NONE); esp_log_level_set("*", ESP_LOG_NONE);
#endif #endif
ESP_LOGI(TAG, "Starting %s v%s", PRODUCTNAME, PROGVERSION); ESP_LOGI(TAG, "Starting Software v%s", PROGVERSION);
// print chip information on startup if in verbose mode // print chip information on startup if in verbose mode
#if (VERBOSE) #if (VERBOSE)
@ -172,9 +172,9 @@ void setup() {
// open i2c bus // open i2c bus
#ifdef HAS_DISPLAY #ifdef HAS_DISPLAY
Wire.begin(MY_OLED_SDA, MY_OLED_SCL, 100000); Wire.begin(MY_OLED_SDA, MY_OLED_SCL, 400000);
#else #else
Wire.begin(SDA, SCL, 100000); Wire.begin(SDA, SCL, 400000);
#endif #endif
// setup power on boards with power management logic // setup power on boards with power management logic
@ -200,7 +200,7 @@ void setup() {
#ifdef HAS_DISPLAY #ifdef HAS_DISPLAY
strcat_P(features, " OLED"); strcat_P(features, " OLED");
DisplayIsOn = cfg.screenon; DisplayIsOn = cfg.screenon;
init_display(PRODUCTNAME, PROGVERSION); // note: blocking call init_display(!cfg.runmode); // note: blocking call
#endif #endif
#ifdef BOARD_HAS_PSRAM #ifdef BOARD_HAS_PSRAM

View File

@ -48,25 +48,25 @@ void start_ota_update() {
switch_LED(LED_ON); switch_LED(LED_ON);
// init display
#ifdef HAS_DISPLAY #ifdef HAS_DISPLAY
u8x8.begin(); #ifndef DISPLAY_FLIP
u8x8.setFont(u8x8_font_chroma48medium8_r); oledInit(OLED_128x64, ANGLE_0, false, -1, -1, 400000L);
u8x8.clear(); #else
#ifdef DISPLAY_FLIP oledInit(OLED_128x64, ANGLE_FLIPY, false, -1, -1, 400000L);
u8x8.setFlipMode(1);
#endif #endif
u8x8.setInverseFont(1); oledFill(0, 1);
u8x8.print("SOFTWARE UPDATE \n"); dp_printf(0, 0, 0, 1, "SOFTWARE UPDATE");
u8x8.setInverseFont(0); dp_printf(0, 1, 0, 0, "WiFi connect ..");
u8x8.print("WiFi connect ..\n"); dp_printf(0, 2, 0, 0, "Has Update? ..");
u8x8.print("Has Update? ..\n"); dp_printf(0, 3, 0, 0, "Fetching ..");
u8x8.print("Fetching ..\n"); dp_printf(0, 4, 0, 0, "Downloading ..");
u8x8.print("Downloading ..\n"); dp_printf(0, 5, 0, 0, "Rebooting ..");
u8x8.print("Rebooting .."); oledDumpBuffer(NULL);
#endif #endif
ESP_LOGI(TAG, "Starting Wifi OTA update"); ESP_LOGI(TAG, "Starting Wifi OTA update");
display(1, "**", WIFI_SSID); ota_display(1, "**", WIFI_SSID);
WiFi.mode(WIFI_STA); WiFi.mode(WIFI_STA);
WiFi.begin(WIFI_SSID, WIFI_PASS); WiFi.begin(WIFI_SSID, WIFI_PASS);
@ -81,7 +81,7 @@ void start_ota_update() {
if (WiFi.status() == WL_CONNECTED) { if (WiFi.status() == WL_CONNECTED) {
// we now have wifi connection and try to do an OTA over wifi update // we now have wifi connection and try to do an OTA over wifi update
ESP_LOGI(TAG, "Connected to %s", WIFI_SSID); ESP_LOGI(TAG, "Connected to %s", WIFI_SSID);
display(1, "OK", "WiFi connected"); ota_display(1, "OK", "WiFi connected");
// do a number of tries to update firmware limited by OTA_MAX_TRY // do a number of tries to update firmware limited by OTA_MAX_TRY
uint8_t j = OTA_MAX_TRY; uint8_t j = OTA_MAX_TRY;
while ((j--) && (ret > 0)) { while ((j--) && (ret > 0)) {
@ -97,13 +97,13 @@ void start_ota_update() {
// wifi did not connect // wifi did not connect
ESP_LOGI(TAG, "Could not connect to %s", WIFI_SSID); ESP_LOGI(TAG, "Could not connect to %s", WIFI_SSID);
display(1, " E", "no WiFi connect"); ota_display(1, " E", "no WiFi connect");
delay(5000); delay(5000);
end: end:
switch_LED(LED_OFF); switch_LED(LED_OFF);
ESP_LOGI(TAG, "Rebooting to %s firmware", (ret == 0) ? "new" : "current"); ESP_LOGI(TAG, "Rebooting to %s firmware", (ret == 0) ? "new" : "current");
display(5, "**", ""); // mark line rebooting ota_display(5, "**", ""); // mark line rebooting
delay(5000); delay(5000);
ESP.restart(); ESP.restart();
@ -119,7 +119,7 @@ int do_ota_update() {
// Fetch the latest firmware version // Fetch the latest firmware version
ESP_LOGI(TAG, "Checking latest firmware version on server"); ESP_LOGI(TAG, "Checking latest firmware version on server");
display(2, "**", "checking version"); ota_display(2, "**", "checking version");
if (WiFi.status() != WL_CONNECTED) if (WiFi.status() != WL_CONNECTED)
return 1; return 1;
@ -128,23 +128,23 @@ int do_ota_update() {
if (latest.length() == 0) { if (latest.length() == 0) {
ESP_LOGI(TAG, "Could not fetch info on latest firmware"); ESP_LOGI(TAG, "Could not fetch info on latest firmware");
display(2, " E", "file not found"); ota_display(2, " E", "file not found");
return -1; return -1;
} else if (version_compare(latest, cfg.version) <= 0) { } else if (version_compare(latest, cfg.version) <= 0) {
ESP_LOGI(TAG, "Current firmware is up to date"); ESP_LOGI(TAG, "Current firmware is up to date");
display(2, "NO", "no update found"); ota_display(2, "NO", "no update found");
return -1; return -1;
} }
ESP_LOGI(TAG, "New firmware version v%s available", latest.c_str()); ESP_LOGI(TAG, "New firmware version v%s available", latest.c_str());
display(2, "OK", latest.c_str()); ota_display(2, "OK", latest.c_str());
display(3, "**", ""); ota_display(3, "**", "");
if (WiFi.status() != WL_CONNECTED) if (WiFi.status() != WL_CONNECTED)
return 1; return 1;
String firmwarePath = bintray.getBinaryPath(latest); String firmwarePath = bintray.getBinaryPath(latest);
if (!firmwarePath.endsWith(".bin")) { if (!firmwarePath.endsWith(".bin")) {
ESP_LOGI(TAG, "Unsupported binary format"); ESP_LOGI(TAG, "Unsupported binary format");
display(3, " E", "file type error"); ota_display(3, " E", "file type error");
return -1; return -1;
} }
@ -158,7 +158,7 @@ int do_ota_update() {
if (!client.connect(currentHost.c_str(), port)) { if (!client.connect(currentHost.c_str(), port)) {
ESP_LOGI(TAG, "Cannot connect to %s", currentHost.c_str()); ESP_LOGI(TAG, "Cannot connect to %s", currentHost.c_str());
display(3, " E", "connection lost"); ota_display(3, " E", "connection lost");
goto abort; goto abort;
} }
@ -169,7 +169,7 @@ int do_ota_update() {
if (!client.connect(currentHost.c_str(), port)) { if (!client.connect(currentHost.c_str(), port)) {
ESP_LOGI(TAG, "Redirect detected, but cannot connect to %s", ESP_LOGI(TAG, "Redirect detected, but cannot connect to %s",
currentHost.c_str()); currentHost.c_str());
display(3, " E", "server error"); ota_display(3, " E", "server error");
goto abort; goto abort;
} }
} }
@ -185,7 +185,7 @@ int do_ota_update() {
while (client.available() == 0) { while (client.available() == 0) {
if ((millis() - timeout) > (RESPONSE_TIMEOUT_MS)) { if ((millis() - timeout) > (RESPONSE_TIMEOUT_MS)) {
ESP_LOGI(TAG, "Client timeout"); ESP_LOGI(TAG, "Client timeout");
display(3, " E", "client timeout"); ota_display(3, " E", "client timeout");
goto abort; goto abort;
} }
} }
@ -243,12 +243,12 @@ int do_ota_update() {
} // while (client.available()) } // while (client.available())
} // while (redirect) } // while (redirect)
display(3, "OK", ""); // line download ota_display(3, "OK", ""); // line download
// check whether we have everything for OTA update // check whether we have everything for OTA update
if (!(contentLength && isValidContentType)) { if (!(contentLength && isValidContentType)) {
ESP_LOGI(TAG, "Invalid OTA server response"); ESP_LOGI(TAG, "Invalid OTA server response");
display(4, " E", "response error"); ota_display(4, " E", "response error");
goto retry; goto retry;
} }
@ -262,7 +262,7 @@ int do_ota_update() {
if (!Update.begin(contentLength)) { if (!Update.begin(contentLength)) {
#endif #endif
ESP_LOGI(TAG, "Not enough space to start OTA update"); ESP_LOGI(TAG, "Not enough space to start OTA update");
display(4, " E", "disk full"); ota_display(4, " E", "disk full");
goto abort; goto abort;
} }
@ -271,13 +271,13 @@ int do_ota_update() {
Update.onProgress(&show_progress); Update.onProgress(&show_progress);
#endif #endif
display(4, "**", "writing..."); ota_display(4, "**", "writing...");
written = Update.writeStream(client); // this is a blocking call written = Update.writeStream(client); // this is a blocking call
if (written == contentLength) { if (written == contentLength) {
ESP_LOGI(TAG, "Written %u bytes successfully", written); ESP_LOGI(TAG, "Written %u bytes successfully", written);
snprintf(buf, 17, "%ukB Done!", (uint16_t)(written / 1024)); snprintf(buf, 17, "%ukB Done!", (uint16_t)(written / 1024));
display(4, "OK", buf); ota_display(4, "OK", buf);
} else { } else {
ESP_LOGI(TAG, "Written only %u of %u bytes, OTA update attempt cancelled", ESP_LOGI(TAG, "Written only %u of %u bytes, OTA update attempt cancelled",
written, contentLength); written, contentLength);
@ -288,7 +288,7 @@ int do_ota_update() {
} else { } else {
ESP_LOGI(TAG, "An error occurred. Error#: %d", Update.getError()); ESP_LOGI(TAG, "An error occurred. Error#: %d", Update.getError());
snprintf(buf, 17, "Error#: %d", Update.getError()); snprintf(buf, 17, "Error#: %d", Update.getError());
display(4, " E", buf); ota_display(4, " E", buf);
goto retry; goto retry;
} }
@ -307,27 +307,26 @@ retry:
} // do_ota_update } // do_ota_update
void display(const uint8_t row, const std::string status, void ota_display(const uint8_t row, const std::string status,
const std::string msg) { const std::string msg) {
#ifdef HAS_DISPLAY #ifdef HAS_DISPLAY
u8x8.setCursor(14, row); dp_printf(112, row, 0, 0, status.substr(0, 2).c_str());
u8x8.print((status.substr(0, 2)).c_str());
if (!msg.empty()) { if (!msg.empty()) {
u8x8.clearLine(7); dp_printf(0, 7, 0, 0, " ");
u8x8.setCursor(0, 7); dp_printf(0, 7, 0, 0, msg.substr(0, 16).c_str());
u8x8.print(msg.substr(0, 16).c_str());
} }
oledDumpBuffer(NULL);
#endif #endif
} }
#ifdef HAS_DISPLAY
// callback function to show download progress while streaming data // callback function to show download progress while streaming data
void show_progress(unsigned long current, unsigned long size) { void show_progress(unsigned long current, unsigned long size) {
#ifdef HAS_DISPLAY
char buf[17]; char buf[17];
snprintf(buf, 17, "%-9lu (%3lu%%)", current, current * 100 / size); snprintf(buf, 17, "%-9lu (%3lu%%)", current, current * 100 / size);
display(4, "**", buf); ota_display(4, "**", buf);
}
#endif #endif
}
// helper function to convert strings into lower case // helper function to convert strings into lower case
bool comp(char s1, char s2) { return tolower(s1) < tolower(s2); } bool comp(char s1, char s2) { return tolower(s1) < tolower(s2); }

View File

@ -6,18 +6,17 @@
// //
// Note: After editing, before "build", use "clean" button in PlatformIO! // Note: After editing, before "build", use "clean" button in PlatformIO!
#define PRODUCTNAME "PAXCNT"
// Verbose enables serial output // Verbose enables serial output
#define VERBOSE 1 // set to 0 to silence the device, for mute use build option #define VERBOSE 1 // set to 0 to silence the device, for mute use build option
// Payload send cycle and encoding // Payload send cycle and encoding
#define SENDCYCLE 30 // payload send cycle [seconds/2], 0 .. 255 #define SENDCYCLE 30 // payload send cycle [seconds/2], 0 .. 255
#define PAYLOAD_ENCODER 2 // payload encoder: 1=Plain, 2=Packed, 3=Cayenne LPP dynamic, 4=Cayenne LPP packed #define PAYLOAD_ENCODER 2 // payload encoder: 1=Plain, 2=Packed, 3=Cayenne LPP dynamic, 4=Cayenne LPP packed
#define COUNTERMODE 0 // 0=cyclic, 1=cumulative, 2=cyclic confirmed
// Set this to include BLE counting and vendor filter functions, or to switch off WIFI counting // Set this to include BLE counting and vendor filter functions, or to switch off WIFI counting
#define VENDORFILTER 1 // set to 0 if you want to count things, not people #define VENDORFILTER 1 // set to 0 if you want to count things, not people
#define BLECOUNTER 0 // set it to 1 if you want to use BLE count, at expense of power & memory #define BLECOUNTER 1 // set it to 1 if you want to use BLE count, at expense of power & memory
#define WIFICOUNTER 1 // set it to 0 if you want to switch off WIFI count #define WIFICOUNTER 1 // set it to 0 if you want to switch off WIFI count
// BLE scan parameters // BLE scan parameters
@ -56,6 +55,7 @@
// Hardware settings // Hardware settings
#define RGBLUMINOSITY 30 // RGB LED luminosity [default = 30%] #define RGBLUMINOSITY 30 // RGB LED luminosity [default = 30%]
#define DISPLAYREFRESH_MS 40 // OLED refresh cycle in ms [default = 40] -> 1000/40 = 25 frames per second #define DISPLAYREFRESH_MS 40 // OLED refresh cycle in ms [default = 40] -> 1000/40 = 25 frames per second
#define DISPLAYCONTRAST 80 // 0 .. 255, OLED display contrast [default = 80]
#define HOMECYCLE 30 // house keeping cycle in seconds [default = 30 secs] #define HOMECYCLE 30 // house keeping cycle in seconds [default = 30 secs]
// Settings for BME680 environmental sensor // Settings for BME680 environmental sensor

View File

@ -11,12 +11,7 @@ AXP20X_Class pmu;
void power_event_IRQ(void) { void power_event_IRQ(void) {
if (!I2C_MUTEX_LOCK())
ESP_LOGW(TAG, "[%0.3f] i2c mutex lock failed", millis() / 1000.0);
else {
pmu.readIRQ(); pmu.readIRQ();
// put your power event handler code here
if (pmu.isVbusOverVoltageIRQ()) if (pmu.isVbusOverVoltageIRQ())
ESP_LOGI(TAG, "USB voltage %.2fV too high.", pmu.getVbusVoltage() / 1000); ESP_LOGI(TAG, "USB voltage %.2fV too high.", pmu.getVbusVoltage() / 1000);
@ -51,8 +46,6 @@ void power_event_IRQ(void) {
} }
pmu.clearIRQ(); pmu.clearIRQ();
I2C_MUTEX_UNLOCK();
} // mutex
// refresh stored voltage value // refresh stored voltage value
read_voltage(); read_voltage();
@ -75,10 +68,6 @@ void AXP192_power(bool on) {
void AXP192_showstatus(void) { void AXP192_showstatus(void) {
if (!I2C_MUTEX_LOCK())
ESP_LOGW(TAG, "[%0.3f] i2c mutex lock failed", millis() / 1000.0);
else {
if (pmu.isBatteryConnect()) if (pmu.isBatteryConnect())
if (pmu.isChargeing()) if (pmu.isChargeing())
ESP_LOGI(TAG, "Battery charging, %.2fV @ %.0fmAh", ESP_LOGI(TAG, "Battery charging, %.2fV @ %.0fmAh",
@ -93,17 +82,11 @@ void AXP192_showstatus(void) {
pmu.getVbusVoltage() / 1000 * pmu.getVbusCurrent()); pmu.getVbusVoltage() / 1000 * pmu.getVbusCurrent());
else else
ESP_LOGI(TAG, "USB not present"); ESP_LOGI(TAG, "USB not present");
I2C_MUTEX_UNLOCK();
} // mutex
} }
void AXP192_init(void) { void AXP192_init(void) {
// block i2c bus access if (pmu.begin(i2c_readBytes, i2c_writeBytes, AXP192_PRIMARY_ADDRESS) == AXP_FAIL)
if (I2C_MUTEX_LOCK()) {
if (pmu.begin(Wire, AXP192_PRIMARY_ADDRESS))
ESP_LOGI(TAG, "AXP192 PMU initialization failed"); ESP_LOGI(TAG, "AXP192 PMU initialization failed");
else { else {
@ -121,8 +104,6 @@ void AXP192_init(void) {
// switch power rails on // switch power rails on
AXP192_power(true); AXP192_power(true);
// I2C access of AXP202X library currently is not mutexable
// so we better should disable AXP interrupts... ?
#ifdef PMU_INT #ifdef PMU_INT
pinMode(PMU_INT, INPUT_PULLUP); pinMode(PMU_INT, INPUT_PULLUP);
attachInterrupt(digitalPinToInterrupt(PMU_INT), PMUIRQ, FALLING); attachInterrupt(digitalPinToInterrupt(PMU_INT), PMUIRQ, FALLING);
@ -135,10 +116,55 @@ void AXP192_init(void) {
ESP_LOGI(TAG, "AXP192 PMU initialized"); ESP_LOGI(TAG, "AXP192 PMU initialized");
} }
I2C_MUTEX_UNLOCK(); // release i2c bus access
} else
ESP_LOGE(TAG, "I2c bus busy - PMU initialization error");
} }
// helper functions for mutexing i2c access
uint8_t i2c_readBytes(uint8_t addr, uint8_t reg, uint8_t *data, uint8_t len) {
if (I2C_MUTEX_LOCK()) {
uint8_t ret = 0;
Wire.beginTransmission(addr);
Wire.write(reg);
Wire.endTransmission(false);
uint8_t cnt = Wire.requestFrom(addr, (uint8_t)len, (uint8_t)1);
if (!cnt) {
ret = 0xFF;
}
uint16_t index = 0;
while (Wire.available()) {
if (index > len)
return 0xFF;
data[index++] = Wire.read();
}
I2C_MUTEX_UNLOCK(); // release i2c bus access
return ret;
} else {
ESP_LOGW(TAG, "[%0.3f] i2c mutex lock failed", millis() / 1000.0);
return 0xFF;
}
}
uint8_t i2c_writeBytes(uint8_t addr, uint8_t reg, uint8_t *data, uint8_t len) {
if (I2C_MUTEX_LOCK()) {
uint8_t ret = 0;
Wire.beginTransmission(addr);
Wire.write(reg);
for (uint16_t i = 0; i < len; i++) {
Wire.write(data[i]);
}
ret = Wire.endTransmission();
I2C_MUTEX_UNLOCK(); // release i2c bus access
return ret ? 0xFF : ret;
//return ret ? ret : 0xFF;
} else {
ESP_LOGW(TAG, "[%0.3f] i2c mutex lock failed", millis() / 1000.0);
return 0xFF;
}
}
#endif // HAS_PMU #endif // HAS_PMU
#ifdef BAT_MEASURE_ADC #ifdef BAT_MEASURE_ADC
@ -196,26 +222,28 @@ uint16_t read_voltage() {
uint16_t voltage = 0; uint16_t voltage = 0;
#ifdef HAS_PMU #ifdef HAS_PMU
if (!I2C_MUTEX_LOCK()) // if (!I2C_MUTEX_LOCK())
ESP_LOGW(TAG, "[%0.3f] i2c mutex lock failed", millis() / 1000.0); // ESP_LOGW(TAG, "[%0.3f] i2c mutex lock failed", millis() / 1000.0);
else { // else {
voltage = pmu.isVBUSPlug() ? 0xffff : pmu.getBattVoltage(); voltage = pmu.isVBUSPlug() ? 0xffff : pmu.getBattVoltage();
I2C_MUTEX_UNLOCK(); // I2C_MUTEX_UNLOCK();
} // }
#else #else
#ifdef BAT_MEASURE_ADC #ifdef BAT_MEASURE_ADC
// multisample ADC // multisample ADC
uint32_t adc_reading = 0; uint32_t adc_reading = 0;
#ifndef BAT_MEASURE_ADC_UNIT // ADC1
for (int i = 0; i < NO_OF_SAMPLES; i++) {
adc_reading += adc1_get_raw(adc_channel);
}
#else // ADC2
int adc_buf = 0; int adc_buf = 0;
for (int i = 0; i < NO_OF_SAMPLES; i++) { for (int i = 0; i < NO_OF_SAMPLES; i++) {
#ifndef BAT_MEASURE_ADC_UNIT // ADC1
adc_reading += adc1_get_raw(adc_channel);
#else // ADC2
ESP_ERROR_CHECK(adc2_get_raw(adc_channel, ADC_WIDTH_BIT_12, &adc_buf)); ESP_ERROR_CHECK(adc2_get_raw(adc_channel, ADC_WIDTH_BIT_12, &adc_buf));
adc_reading += adc_buf; adc_reading += adc_buf;
#endif
} }
#endif
adc_reading /= NO_OF_SAMPLES; adc_reading /= NO_OF_SAMPLES;
// Convert ADC reading to voltage in mV // Convert ADC reading to voltage in mV
voltage = esp_adc_cal_raw_to_voltage(adc_reading, adc_characs); voltage = esp_adc_cal_raw_to_voltage(adc_reading, adc_characs);

View File

@ -75,6 +75,10 @@ void sendData() {
get_salt(); // get new salt for salting hashes get_salt(); // get new salt for salting hashes
ESP_LOGI(TAG, "Counter cleared"); ESP_LOGI(TAG, "Counter cleared");
} }
#ifdef HAS_DISPLAY
else
oledPlotCurve(macs.size(), true);
#endif
break; break;
#endif #endif