ESP32-PaxCounter/src/lorawan.cpp

497 lines
15 KiB
C++
Raw Normal View History

2018-03-18 19:45:17 +01:00
// Basic Config
#if(HAS_LORA)
#include "lorawan.h"
#endif
2018-03-18 19:45:17 +01:00
// Local logging Tag
2018-06-02 18:28:01 +02:00
static const char TAG[] = "lora";
2018-03-18 19:45:17 +01:00
#if(HAS_LORA)
2018-11-03 20:44:54 +01:00
2019-02-16 15:02:07 +01:00
#if CLOCK_ERROR_PROCENTAGE > 7
#warning CLOCK_ERROR_PROCENTAGE value in lmic_config.h is too high; values > 7 will cause side effects
#endif
2018-10-03 16:24:45 +02:00
osjob_t sendjob;
QueueHandle_t LoraSendQueue;
2018-11-27 10:10:20 +01:00
class MyHalConfig_t : public Arduino_LMIC::HalConfiguration_t {
public:
2018-11-27 10:10:20 +01:00
MyHalConfig_t(){};
virtual void begin(void) override {
SPI.begin(LORA_SCK, LORA_MISO, LORA_MOSI, LORA_CS);
}
};
2018-11-27 10:10:20 +01:00
MyHalConfig_t myHalConfig{};
2018-11-27 10:10:20 +01:00
// LMIC pin mapping
2018-11-26 23:56:25 +01:00
const lmic_pinmap lmic_pins = {
.nss = LORA_CS,
.rxtx = LMIC_UNUSED_PIN,
.rst = LORA_RST == NOT_A_PIN ? LMIC_UNUSED_PIN : LORA_RST,
.dio = {LORA_IRQ, LORA_IO1,
LORA_IO2 == NOT_A_PIN ? LMIC_UNUSED_PIN : LORA_IO2},
// optional: set polarity of rxtx pin.
.rxtx_rx_active = 0,
// optional: set RSSI cal for listen-before-talk
// this value is in dB, and is added to RSSI
// measured prior to decision.
// Must include noise guardband! Ignored in US,
// EU, IN, other markets where LBT is not required.
.rssi_cal = 0,
// optional: override LMIC_SPI_FREQ if non-zero
.spi_freq = 0,
2018-11-26 23:56:25 +01:00
.pConfig = &myHalConfig};
2018-07-23 13:20:06 +02:00
2018-03-18 19:45:17 +01:00
// DevEUI generator using devices's MAC address
void gen_lora_deveui(uint8_t *pdeveui) {
2018-06-12 12:52:48 +02:00
uint8_t *p = pdeveui, dmac[6];
int i = 0;
esp_efuse_mac_get_default(dmac);
// deveui is LSB, we reverse it so TTN DEVEUI display
// will remain the same as MAC address
// MAC is 6 bytes, devEUI 8, set first 2 ones
// with an arbitrary value
*p++ = 0xFF;
*p++ = 0xFE;
// Then next 6 bytes are mac address reversed
for (i = 0; i < 6; i++) {
*p++ = dmac[5 - i];
}
2018-03-18 19:45:17 +01:00
}
/* new version, does it with well formed mac according IEEE spec, but is
breaking change
// DevEUI generator using devices's MAC address
void gen_lora_deveui(uint8_t *pdeveui) {
uint8_t *p = pdeveui, dmac[6];
ESP_ERROR_CHECK(esp_efuse_mac_get_default(dmac));
// deveui is LSB, we reverse it so TTN DEVEUI display
2018-09-20 12:53:58 +02:00
// will remain the same as MAC address
// MAC is 6 bytes, devEUI 8, set middle 2 ones
// to an arbitrary value
*p++ = dmac[5];
*p++ = dmac[4];
*p++ = dmac[3];
*p++ = 0xfe;
*p++ = 0xff;
*p++ = dmac[2];
*p++ = dmac[1];
*p++ = dmac[0];
}
*/
2018-03-21 22:32:59 +01:00
// Function to do a byte swap in a byte array
2018-06-12 12:52:48 +02:00
void RevBytes(unsigned char *b, size_t c) {
2018-03-21 22:32:59 +01:00
u1_t i;
2018-06-12 12:52:48 +02:00
for (i = 0; i < c / 2; i++) {
unsigned char t = b[i];
2018-03-21 22:32:59 +01:00
b[i] = b[c - 1 - i];
2018-06-12 12:52:48 +02:00
b[c - 1 - i] = t;
}
2018-03-21 22:32:59 +01:00
}
2018-07-15 14:28:05 +02:00
// LMIC callback functions
void os_getDevKey(u1_t *buf) { memcpy(buf, APPKEY, 16); }
void os_getArtEui(u1_t *buf) {
memcpy(buf, APPEUI, 8);
RevBytes(buf, 8); // TTN requires it in LSB First order, so we swap bytes
}
void os_getDevEui(u1_t *buf) {
int i = 0, k = 0;
memcpy(buf, DEVEUI, 8); // get fixed DEVEUI from loraconf.h
for (i = 0; i < 8; i++) {
k += buf[i];
}
if (k) {
RevBytes(buf, 8); // use fixed DEVEUI and swap bytes to LSB format
} else {
gen_lora_deveui(buf); // generate DEVEUI from device's MAC
}
// Get MCP 24AA02E64 hardware DEVEUI (override default settings if found)
#ifdef MCP_24AA02E64_I2C_ADDRESS
get_hard_deveui(buf);
RevBytes(buf, 8); // swap bytes to LSB format
#endif
}
void get_hard_deveui(uint8_t *pdeveui) {
2018-06-12 12:52:48 +02:00
// read DEVEUI from Microchip 24AA02E64 2Kb serial eeprom if present
#ifdef MCP_24AA02E64_I2C_ADDRESS
uint8_t i2c_ret;
2018-06-12 12:52:48 +02:00
// Init this just in case, no more to 100KHz
Wire.begin(MY_OLED_SDA, MY_OLED_SCL, 100000);
2018-06-12 12:52:48 +02:00
Wire.beginTransmission(MCP_24AA02E64_I2C_ADDRESS);
Wire.write(MCP_24AA02E64_MAC_ADDRESS);
i2c_ret = Wire.endTransmission();
// check if device was seen on i2c bus
if (i2c_ret == 0) {
2018-06-12 12:52:48 +02:00
char deveui[32] = "";
uint8_t data;
Wire.beginTransmission(MCP_24AA02E64_I2C_ADDRESS);
2018-06-12 12:52:48 +02:00
Wire.write(MCP_24AA02E64_MAC_ADDRESS);
Wire.endTransmission();
Wire.requestFrom(MCP_24AA02E64_I2C_ADDRESS, 8);
while (Wire.available()) {
data = Wire.read();
sprintf(deveui + strlen(deveui), "%02X ", data);
*pdeveui++ = data;
}
ESP_LOGI(TAG, "Serial EEPROM found, read DEVEUI %s", deveui);
} else
ESP_LOGI(TAG, "Could not read DEVEUI from serial EEPROM");
2018-06-12 12:52:48 +02:00
// Set back to 400KHz to speed up OLED
Wire.setClock(400000);
#endif // MCP 24AA02E64
}
2019-03-09 00:53:11 +01:00
#if (VERBOSE)
2018-03-18 19:45:17 +01:00
// Display OTAA keys
2018-08-03 23:50:04 +02:00
void showLoraKeys(void) {
2018-06-12 12:52:48 +02:00
// LMIC may not have used callback to fill
// all EUI buffer so we do it here to a temp
// buffer to be able to display them
uint8_t buf[32];
os_getDevEui((u1_t *)buf);
printKey("DevEUI", buf, 8, true);
os_getArtEui((u1_t *)buf);
printKey("AppEUI", buf, 8, true);
os_getDevKey((u1_t *)buf);
printKey("AppKey", buf, 16, false);
2018-03-18 19:45:17 +01:00
}
#endif // VERBOSE
2018-06-12 12:52:48 +02:00
void onEvent(ev_t ev) {
char buff[24] = "";
2019-03-12 23:50:02 +01:00
uint32_t now_micros = 0;
2019-03-09 15:25:44 +01:00
2018-06-12 12:52:48 +02:00
switch (ev) {
2018-06-12 12:52:48 +02:00
case EV_SCAN_TIMEOUT:
2018-11-25 20:56:14 +01:00
strcpy_P(buff, PSTR("SCAN_TIMEOUT"));
2018-06-12 12:52:48 +02:00
break;
2018-06-12 12:52:48 +02:00
case EV_BEACON_FOUND:
strcpy_P(buff, PSTR("BEACON_FOUND"));
2018-06-12 12:52:48 +02:00
break;
2018-06-12 12:52:48 +02:00
case EV_BEACON_MISSED:
strcpy_P(buff, PSTR("BEACON_MISSED"));
2018-06-12 12:52:48 +02:00
break;
2018-06-12 12:52:48 +02:00
case EV_BEACON_TRACKED:
strcpy_P(buff, PSTR("BEACON_TRACKED"));
2018-06-12 12:52:48 +02:00
break;
2018-06-12 12:52:48 +02:00
case EV_JOINING:
strcpy_P(buff, PSTR("JOINING"));
break;
2018-06-10 21:03:16 +02:00
2018-06-12 12:52:48 +02:00
case EV_JOINED:
strcpy_P(buff, PSTR("JOINED"));
2018-07-14 20:07:33 +02:00
sprintf(display_line6, " "); // clear previous lmic status
// set data rate adaptation according to saved setting
2018-06-12 12:52:48 +02:00
LMIC_setAdrMode(cfg.adrmode);
// set cyclic lmic link check to off if no ADR because is not supported by
// ttn (but enabled by lmic after join)
LMIC_setLinkCheckMode(cfg.adrmode);
2018-06-12 12:52:48 +02:00
// Set data rate and transmit power (note: txpower seems to be ignored by
// the library)
switch_lora(cfg.lorasf, cfg.txpower);
2018-10-03 16:24:45 +02:00
// kickoff first send job
os_setCallback(&sendjob, lora_send);
2018-06-12 12:52:48 +02:00
// show effective LoRa parameters after join
ESP_LOGI(TAG, "ADR=%d, SF=%d, TXPOWER=%d", cfg.adrmode, cfg.lorasf,
cfg.txpower);
break;
case EV_JOIN_FAILED:
strcpy_P(buff, PSTR("JOIN_FAILED"));
break;
case EV_REJOIN_FAILED:
strcpy_P(buff, PSTR("REJOIN_FAILED"));
break;
2018-06-12 12:52:48 +02:00
case EV_TXCOMPLETE:
2019-03-06 23:21:46 +01:00
2019-03-09 00:53:11 +01:00
#if (TIME_SYNC_TIMESERVER)
2019-03-09 22:08:57 +01:00
// if last packet sent was a timesync request, store TX timestamp
if (LMIC.pendTxPort == TIMEPORT)
2019-03-09 15:25:44 +01:00
store_time_sync_req(now(now_micros), now_micros);
2019-03-09 22:08:57 +01:00
// maybe use more precise osticks2ms(LMIC.txend) here?
2019-03-06 23:21:46 +01:00
#endif
2018-11-25 20:56:14 +01:00
strcpy_P(buff, (LMIC.txrxFlags & TXRX_ACK) ? PSTR("RECEIVED_ACK")
: PSTR("TX_COMPLETE"));
2018-07-14 20:07:33 +02:00
sprintf(display_line6, " "); // clear previous lmic status
2018-06-12 12:52:48 +02:00
2019-03-12 23:50:02 +01:00
if (LMIC.dataLen) { // did we receive data -> display info
2019-03-13 20:20:19 +01:00
ESP_LOGI(TAG, "Received %d bytes of payload, RSSI %d SNR %d",
LMIC.dataLen, LMIC.rssi, LMIC.snr / 4);
2019-03-13 20:20:19 +01:00
sprintf(display_line6, "RSSI %d SNR %d", LMIC.rssi, LMIC.snr / 4);
2018-06-12 12:52:48 +02:00
2019-03-12 23:50:02 +01:00
if (LMIC.txrxFlags & TXRX_PORT) { // FPort -> use to switch
switch (LMIC.frame[LMIC.dataBeg - 1]) {
2019-03-09 22:08:57 +01:00
#if (TIME_SYNC_TIMESERVER)
2019-03-12 23:50:02 +01:00
case TIMEPORT: // timesync answer -> call timesync processor
recv_timesync_ans(LMIC.frame + LMIC.dataBeg, LMIC.dataLen);
break;
2019-03-09 22:08:57 +01:00
#endif
2019-03-12 23:50:02 +01:00
case RCMDPORT: // opcode -> call rcommand interpreter
rcommand(LMIC.frame + LMIC.dataBeg, LMIC.dataLen);
break;
default: // unknown port -> display info
ESP_LOGI(TAG, "Received data on unsupported port #%d",
LMIC.frame[LMIC.dataBeg - 1]);
break;
}
}
}
2018-06-12 12:52:48 +02:00
break;
case EV_LOST_TSYNC:
strcpy_P(buff, PSTR("LOST_TSYNC"));
break;
case EV_RESET:
strcpy_P(buff, PSTR("RESET"));
break;
case EV_RXCOMPLETE:
// data received in ping slot
2018-11-25 20:56:14 +01:00
strcpy_P(buff, PSTR("RX_COMPLETE"));
break;
case EV_LINK_DEAD:
2018-11-25 20:56:14 +01:00
strcpy_P(buff, PSTR("LINK_DEAD"));
break;
case EV_LINK_ALIVE:
2018-11-25 20:56:14 +01:00
strcpy_P(buff, PSTR("LINK_ALIVE"));
break;
case EV_TXSTART:
if (!(LMIC.opmode & OP_JOINING))
2018-11-25 20:56:14 +01:00
strcpy_P(buff, PSTR("TX_START"));
break;
2018-10-22 19:42:27 +02:00
case EV_SCAN_FOUND:
strcpy_P(buff, PSTR("SCAN_FOUND"));
break;
case EV_RFU1:
strcpy_P(buff, PSTR("RFU1"));
break;
2018-06-12 12:52:48 +02:00
default:
2018-11-25 20:56:14 +01:00
sprintf_P(buff, PSTR("UNKNOWN_EVENT_%d"), ev);
2018-06-12 12:52:48 +02:00
break;
}
2018-06-12 12:52:48 +02:00
// Log & Display if asked
if (*buff) {
ESP_LOGI(TAG, "EV_%s", buff);
2018-07-14 20:07:33 +02:00
sprintf(display_line7, buff);
2018-06-12 12:52:48 +02:00
}
}
2018-07-14 20:07:33 +02:00
2018-08-05 12:16:54 +02:00
// helper function to assign LoRa datarates to numeric spreadfactor values
void switch_lora(uint8_t sf, uint8_t tx) {
if (tx > 20)
return;
cfg.txpower = tx;
switch (sf) {
case 7:
LMIC_setDrTxpow(DR_SF7, tx);
cfg.lorasf = sf;
break;
case 8:
LMIC_setDrTxpow(DR_SF8, tx);
cfg.lorasf = sf;
break;
case 9:
LMIC_setDrTxpow(DR_SF9, tx);
cfg.lorasf = sf;
break;
case 10:
LMIC_setDrTxpow(DR_SF10, tx);
cfg.lorasf = sf;
break;
case 11:
#if defined(CFG_us915)
LMIC_setDrTxpow(DR_SF11CR, tx);
2018-08-05 12:16:54 +02:00
cfg.lorasf = sf;
break;
#else
LMIC_setDrTxpow(DR_SF11, tx);
2018-08-05 12:16:54 +02:00
cfg.lorasf = sf;
break;
#endif
case 12:
#if defined(CFG_us915)
LMIC_setDrTxpow(DR_SF12CR, tx);
2018-08-05 12:16:54 +02:00
cfg.lorasf = sf;
break;
#else
LMIC_setDrTxpow(DR_SF12, tx);
2018-08-05 12:16:54 +02:00
cfg.lorasf = sf;
break;
#endif
default:
break;
}
}
2018-10-03 16:24:45 +02:00
void lora_send(osjob_t *job) {
MessageBuffer_t SendBuffer;
// Check if there is a pending TX/RX job running, if yes don't eat data
// since it cannot be sent right now
if ((LMIC.opmode & (OP_JOINING | OP_REJOIN | OP_TXDATA | OP_POLL)) != 0) {
// waiting for LoRa getting ready
} else {
if (xQueueReceive(LoraSendQueue, &SendBuffer, (TickType_t)0) == pdTRUE) {
// SendBuffer now filled with next payload from queue
2018-11-04 14:55:30 +01:00
if (!LMIC_setTxData2(SendBuffer.MessagePort, SendBuffer.Message,
SendBuffer.MessageSize, (cfg.countermode & 0x02))) {
2018-11-04 14:55:30 +01:00
ESP_LOGI(TAG, "%d byte(s) sent to LoRa", SendBuffer.MessageSize);
} else {
2018-11-04 14:55:30 +01:00
ESP_LOGE(TAG, "could not send %d byte(s) to LoRa",
SendBuffer.MessageSize);
}
// sprintf(display_line7, "PACKET QUEUED");
2018-10-03 16:24:45 +02:00
}
}
// reschedule job every 0,5 - 1 sec. including a bit of random to prevent
// systematic collisions
os_setTimedCallback(job, os_getTime() + 500 + ms2osticks(random(500)),
lora_send);
}
2018-11-03 20:29:02 +01:00
esp_err_t lora_stack_init() {
assert(SEND_QUEUE_SIZE);
2018-11-03 20:29:02 +01:00
LoraSendQueue = xQueueCreate(SEND_QUEUE_SIZE, sizeof(MessageBuffer_t));
if (LoraSendQueue == 0) {
ESP_LOGE(TAG, "Could not create LORA send queue. Aborting.");
return ESP_FAIL;
}
ESP_LOGI(TAG, "LORA send queue created, size %d Bytes",
SEND_QUEUE_SIZE * PAYLOAD_BUFFER_SIZE);
ESP_LOGI(TAG, "Starting LMIC...");
2018-11-26 23:56:25 +01:00
os_init(); // initialize lmic run-time environment on core 1
LMIC_reset(); // initialize lmic MAC
2018-11-03 20:29:02 +01:00
LMIC_setLinkCheckMode(0);
// This tells LMIC to make the receive windows bigger, in case your clock is
// faster or slower. This causes the transceiver to be earlier switched on,
// so consuming more power. You may sharpen (reduce) CLOCK_ERROR_PERCENTAGE
// in src/lmic_config.h if you are limited on battery.
LMIC_setClockError(MAX_CLOCK_ERROR * CLOCK_ERROR_PROCENTAGE / 100);
// Set the data rate to Spreading Factor 7. This is the fastest supported
2019-03-09 00:53:11 +01:00
// rate for 125 kHz channels, and it minimizes air time and battery power.
// Set the transmission power to 14 dBi (25 mW).
2018-11-03 20:29:02 +01:00
LMIC_setDrTxpow(DR_SF7, 14);
#if defined(CFG_US915) || defined(CFG_au921)
2019-03-09 00:53:11 +01:00
// in the US, with TTN, it saves join time if we start on subband 1
// (channels 8-15). This will get overridden after the join by parameters
// from the network. If working with other networks or in other regions,
// this will need to be changed.
2018-11-03 20:29:02 +01:00
LMIC_selectSubBand(1);
#endif
if (!LMIC_startJoining()) { // start joining
ESP_LOGI(TAG, "Already joined");
}
return ESP_OK; // continue main program
2018-11-03 20:29:02 +01:00
}
void lora_enqueuedata(MessageBuffer_t *message, sendprio_t prio) {
2018-11-03 20:29:02 +01:00
// enqueue message in LORA send queue
BaseType_t ret;
switch (prio) {
case prio_high:
2019-02-16 15:02:07 +01:00
ret = xQueueSendToFront(LoraSendQueue, (void *)message, (TickType_t)0);
break;
case prio_low:
case prio_normal:
default:
ret = xQueueSendToBack(LoraSendQueue, (void *)message, (TickType_t)0);
break;
}
2019-03-09 22:08:57 +01:00
if (ret != pdTRUE)
2018-11-03 20:29:02 +01:00
ESP_LOGW(TAG, "LORA sendqueue is full");
}
2019-02-27 00:52:27 +01:00
void lora_queuereset(void) { xQueueReset(LoraSendQueue); }
2018-11-03 20:29:02 +01:00
void lora_housekeeping(void) {
2019-02-27 00:52:27 +01:00
// ESP_LOGD(TAG, "loraloop %d bytes left",
// uxTaskGetStackHighWaterMark(LoraTask));
2018-11-03 20:29:02 +01:00
}
void user_request_network_time_callback(void *pVoidUserUTCTime,
int flagSuccess) {
// Explicit conversion from void* to uint32_t* to avoid compiler errors
2019-02-23 23:39:45 +01:00
time_t *pUserUTCTime = (time_t *)pVoidUserUTCTime;
2019-02-27 00:52:27 +01:00
// A struct that will be populated by LMIC_getNetworkTimeReference.
// It contains the following fields:
// - tLocal: the value returned by os_GetTime() when the time
// request was sent to the gateway, and
// - tNetwork: the seconds between the GPS epoch and the time
// the gateway received the time request
lmic_time_reference_t lmicTimeReference;
if (flagSuccess != 1) {
2018-11-17 18:30:19 +01:00
ESP_LOGW(TAG, "LoRaWAN network did not answer time request");
return;
}
// Populate lmic_time_reference
flagSuccess = LMIC_getNetworkTimeReference(&lmicTimeReference);
if (flagSuccess != 1) {
2018-11-17 18:30:19 +01:00
ESP_LOGW(TAG, "LoRaWAN time request failed");
return;
}
// Update userUTCTime, considering the difference between the GPS and UTC
2019-03-09 15:25:44 +01:00
// time, and the leap seconds until year 2019
*pUserUTCTime = lmicTimeReference.tNetwork + 315964800;
// Current time, in ticks
ostime_t ticksNow = os_getTime();
// Time when the request was sent, in ticks
ostime_t ticksRequestSent = lmicTimeReference.tLocal;
// Add the delay between the instant the time was transmitted and
// the current time
2019-02-23 23:39:45 +01:00
time_t requestDelaySec = osticks2ms(ticksNow - ticksRequestSent) / 1000;
*pUserUTCTime += requestDelaySec;
2019-01-28 23:59:52 +01:00
// Update system time with time read from the network
2019-03-02 13:32:02 +01:00
if (timeIsValid(*pUserUTCTime)) {
2019-03-03 17:35:08 +01:00
setTime(*pUserUTCTime);
timeSource = _lora;
2019-03-03 17:35:08 +01:00
timesyncer.attach(TIME_SYNC_INTERVAL * 60, timeSync); // regular repeat
2019-02-24 23:13:15 +01:00
ESP_LOGI(TAG, "Received recent time from LoRa");
2019-02-27 00:52:27 +01:00
} else
2019-02-24 23:13:15 +01:00
ESP_LOGI(TAG, "Invalid time received from LoRa");
2019-02-27 00:52:27 +01:00
} // user_request_network_time_callback
#endif // HAS_LORA