BSEC configuration
This commit is contained in:
parent
e2c975178a
commit
f024361c19
@ -5,6 +5,8 @@
|
||||
#include <Wire.h>
|
||||
#include "bsec_integration.h"
|
||||
|
||||
extern const uint8_t bsec_config_iaq[454];
|
||||
|
||||
extern bmeStatus_t
|
||||
bme_status; // Make struct for storing gps data globally available
|
||||
extern TaskHandle_t BmeTask;
|
||||
|
Binary file not shown.
@ -1 +0,0 @@
|
||||
454,1,7,4,1,61,0,0,0,0,0,0,0,174,1,0,0,48,0,1,0,137,65,0,63,205,204,204,62,0,0,64,63,205,204,204,62,0,0,225,68,0,168,19,73,64,49,119,76,0,0,0,0,0,80,5,95,0,0,0,0,0,0,0,0,28,0,2,0,0,244,1,225,0,25,0,0,128,64,0,0,32,65,144,1,0,0,112,65,0,0,0,63,16,0,3,0,10,215,163,60,10,215,35,59,10,215,35,59,9,0,5,0,0,0,0,0,1,88,0,9,0,7,240,150,61,0,0,0,0,0,0,0,0,28,124,225,61,52,128,215,63,0,0,160,64,0,0,0,0,0,0,0,0,205,204,12,62,103,213,39,62,230,63,76,192,0,0,0,0,0,0,0,0,145,237,60,191,251,58,64,63,177,80,131,64,0,0,0,0,0,0,0,0,93,254,227,62,54,60,133,191,0,0,64,64,12,0,10,0,0,0,0,0,0,0,0,0,229,0,254,0,2,1,5,48,117,100,0,44,1,112,23,151,7,132,3,197,0,92,4,144,1,64,1,64,1,144,1,48,117,48,117,48,117,48,117,100,0,100,0,100,0,48,117,48,117,48,117,100,0,100,0,48,117,48,117,100,0,100,0,100,0,100,0,48,117,48,117,48,117,100,0,100,0,100,0,48,117,48,117,100,0,100,0,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,255,255,255,255,255,255,255,255,220,5,220,5,220,5,255,255,255,255,255,255,220,5,220,5,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,48,117,0,0,0,0,30,235,0,0
|
|
@ -1,5 +0,0 @@
|
||||
#include "bsec_serialized_configurations_iaq.h"
|
||||
|
||||
const uint8_t bsec_config_iaq[454] =
|
||||
{1,7,4,1,61,0,0,0,0,0,0,0,174,1,0,0,48,0,1,0,137,65,0,63,205,204,204,62,0,0,64,63,205,204,204,62,0,0,225,68,0,168,19,73,64,49,119,76,0,0,0,0,0,80,5,95,0,0,0,0,0,0,0,0,28,0,2,0,0,244,1,225,0,25,0,0,128,64,0,0,32,65,144,1,0,0,112,65,0,0,0,63,16,0,3,0,10,215,163,60,10,215,35,59,10,215,35,59,9,0,5,0,0,0,0,0,1,88,0,9,0,7,240,150,61,0,0,0,0,0,0,0,0,28,124,225,61,52,128,215,63,0,0,160,64,0,0,0,0,0,0,0,0,205,204,12,62,103,213,39,62,230,63,76,192,0,0,0,0,0,0,0,0,145,237,60,191,251,58,64,63,177,80,131,64,0,0,0,0,0,0,0,0,93,254,227,62,54,60,133,191,0,0,64,64,12,0,10,0,0,0,0,0,0,0,0,0,229,0,254,0,2,1,5,48,117,100,0,44,1,112,23,151,7,132,3,197,0,92,4,144,1,64,1,64,1,144,1,48,117,48,117,48,117,48,117,100,0,100,0,100,0,48,117,48,117,48,117,100,0,100,0,48,117,48,117,100,0,100,0,100,0,100,0,48,117,48,117,48,117,100,0,100,0,100,0,48,117,48,117,100,0,100,0,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,255,255,255,255,255,255,255,255,220,5,220,5,220,5,255,255,255,255,255,255,220,5,220,5,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,48,117,0,0,0,0,30,235,0,0};
|
||||
|
@ -1,4 +0,0 @@
|
||||
#include <stdint.h>
|
||||
|
||||
extern const uint8_t bsec_config_iaq[454];
|
||||
|
Binary file not shown.
@ -1 +0,0 @@
|
||||
454,1,7,4,1,61,0,0,0,0,0,0,0,174,1,0,0,48,0,1,0,137,65,0,63,205,204,204,62,0,0,64,63,205,204,204,62,0,0,225,68,0,192,168,71,64,49,119,76,0,0,0,0,0,80,5,95,0,0,0,0,0,0,0,0,28,0,2,0,0,244,1,225,0,25,0,0,128,64,0,0,32,65,144,1,0,0,112,65,0,0,0,63,16,0,3,0,10,215,163,60,10,215,35,59,10,215,35,59,9,0,5,0,0,0,0,0,1,88,0,9,0,7,240,150,61,0,0,0,0,0,0,0,0,28,124,225,61,52,128,215,63,0,0,160,64,0,0,0,0,0,0,0,0,205,204,12,62,103,213,39,62,230,63,76,192,0,0,0,0,0,0,0,0,145,237,60,191,251,58,64,63,177,80,131,64,0,0,0,0,0,0,0,0,93,254,227,62,54,60,133,191,0,0,64,64,12,0,10,0,0,0,0,0,0,0,0,0,229,0,254,0,2,1,5,48,117,100,0,44,1,112,23,151,7,132,3,197,0,92,4,144,1,64,1,64,1,144,1,48,117,48,117,48,117,48,117,100,0,100,0,100,0,48,117,48,117,48,117,100,0,100,0,48,117,48,117,100,0,100,0,100,0,100,0,48,117,48,117,48,117,100,0,100,0,100,0,48,117,48,117,100,0,100,0,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,255,255,255,255,255,255,255,255,220,5,220,5,220,5,255,255,255,255,255,255,220,5,220,5,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,48,117,0,0,0,0,195,255,0,0
|
|
@ -1,5 +0,0 @@
|
||||
#include "bsec_serialized_configurations_iaq.h"
|
||||
|
||||
const uint8_t bsec_config_iaq[454] =
|
||||
{1,7,4,1,61,0,0,0,0,0,0,0,174,1,0,0,48,0,1,0,137,65,0,63,205,204,204,62,0,0,64,63,205,204,204,62,0,0,225,68,0,192,168,71,64,49,119,76,0,0,0,0,0,80,5,95,0,0,0,0,0,0,0,0,28,0,2,0,0,244,1,225,0,25,0,0,128,64,0,0,32,65,144,1,0,0,112,65,0,0,0,63,16,0,3,0,10,215,163,60,10,215,35,59,10,215,35,59,9,0,5,0,0,0,0,0,1,88,0,9,0,7,240,150,61,0,0,0,0,0,0,0,0,28,124,225,61,52,128,215,63,0,0,160,64,0,0,0,0,0,0,0,0,205,204,12,62,103,213,39,62,230,63,76,192,0,0,0,0,0,0,0,0,145,237,60,191,251,58,64,63,177,80,131,64,0,0,0,0,0,0,0,0,93,254,227,62,54,60,133,191,0,0,64,64,12,0,10,0,0,0,0,0,0,0,0,0,229,0,254,0,2,1,5,48,117,100,0,44,1,112,23,151,7,132,3,197,0,92,4,144,1,64,1,64,1,144,1,48,117,48,117,48,117,48,117,100,0,100,0,100,0,48,117,48,117,48,117,100,0,100,0,48,117,48,117,100,0,100,0,100,0,100,0,48,117,48,117,48,117,100,0,100,0,100,0,48,117,48,117,100,0,100,0,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,255,255,255,255,255,255,255,255,220,5,220,5,220,5,255,255,255,255,255,255,220,5,220,5,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,48,117,0,0,0,0,195,255,0,0};
|
||||
|
@ -1,4 +0,0 @@
|
||||
#include <stdint.h>
|
||||
|
||||
extern const uint8_t bsec_config_iaq[454];
|
||||
|
Binary file not shown.
@ -1 +0,0 @@
|
||||
454,1,7,4,1,61,0,0,0,0,0,0,0,174,1,0,0,48,0,1,0,137,65,0,63,205,204,204,62,0,0,64,63,205,204,204,62,0,0,225,68,0,168,19,73,64,49,119,76,0,0,0,0,0,80,5,95,0,0,0,0,0,0,0,0,28,0,2,0,0,244,1,225,0,25,0,0,128,64,0,0,32,65,144,1,0,0,112,65,0,0,0,63,16,0,3,0,10,215,163,60,10,215,35,59,10,215,35,59,9,0,5,0,0,0,0,0,1,88,0,9,0,7,240,150,61,0,0,0,0,0,0,0,0,28,124,225,61,52,128,215,63,0,0,160,64,0,0,0,0,0,0,0,0,205,204,12,62,103,213,39,62,230,63,76,192,0,0,0,0,0,0,0,0,145,237,60,191,251,58,64,63,177,80,131,64,0,0,0,0,0,0,0,0,93,254,227,62,54,60,133,191,0,0,64,64,12,0,10,0,0,0,0,0,0,0,0,0,229,0,254,0,2,1,5,48,117,100,0,44,1,112,23,151,7,132,3,197,0,92,4,144,1,64,1,64,1,144,1,48,117,48,117,48,117,48,117,100,0,100,0,100,0,48,117,48,117,48,117,100,0,100,0,48,117,48,117,100,0,100,0,100,0,100,0,48,117,48,117,48,117,100,0,100,0,100,0,48,117,48,117,100,0,100,0,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,255,255,255,255,255,255,255,255,220,5,220,5,220,5,255,255,255,255,255,255,220,5,220,5,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,44,1,0,0,0,0,140,226,0,0
|
|
@ -1,5 +0,0 @@
|
||||
#include "bsec_serialized_configurations_iaq.h"
|
||||
|
||||
const uint8_t bsec_config_iaq[454] =
|
||||
{1,7,4,1,61,0,0,0,0,0,0,0,174,1,0,0,48,0,1,0,137,65,0,63,205,204,204,62,0,0,64,63,205,204,204,62,0,0,225,68,0,168,19,73,64,49,119,76,0,0,0,0,0,80,5,95,0,0,0,0,0,0,0,0,28,0,2,0,0,244,1,225,0,25,0,0,128,64,0,0,32,65,144,1,0,0,112,65,0,0,0,63,16,0,3,0,10,215,163,60,10,215,35,59,10,215,35,59,9,0,5,0,0,0,0,0,1,88,0,9,0,7,240,150,61,0,0,0,0,0,0,0,0,28,124,225,61,52,128,215,63,0,0,160,64,0,0,0,0,0,0,0,0,205,204,12,62,103,213,39,62,230,63,76,192,0,0,0,0,0,0,0,0,145,237,60,191,251,58,64,63,177,80,131,64,0,0,0,0,0,0,0,0,93,254,227,62,54,60,133,191,0,0,64,64,12,0,10,0,0,0,0,0,0,0,0,0,229,0,254,0,2,1,5,48,117,100,0,44,1,112,23,151,7,132,3,197,0,92,4,144,1,64,1,64,1,144,1,48,117,48,117,48,117,48,117,100,0,100,0,100,0,48,117,48,117,48,117,100,0,100,0,48,117,48,117,100,0,100,0,100,0,100,0,48,117,48,117,48,117,100,0,100,0,100,0,48,117,48,117,100,0,100,0,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,255,255,255,255,255,255,255,255,220,5,220,5,220,5,255,255,255,255,255,255,220,5,220,5,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,44,1,0,0,0,0,140,226,0,0};
|
||||
|
@ -1,4 +0,0 @@
|
||||
#include <stdint.h>
|
||||
|
||||
extern const uint8_t bsec_config_iaq[454];
|
||||
|
Binary file not shown.
@ -1 +0,0 @@
|
||||
454,1,7,4,1,61,0,0,0,0,0,0,0,174,1,0,0,48,0,1,0,137,65,0,63,205,204,204,62,0,0,64,63,205,204,204,62,0,0,225,68,0,192,168,71,64,49,119,76,0,0,0,0,0,80,5,95,0,0,0,0,0,0,0,0,28,0,2,0,0,244,1,225,0,25,0,0,128,64,0,0,32,65,144,1,0,0,112,65,0,0,0,63,16,0,3,0,10,215,163,60,10,215,35,59,10,215,35,59,9,0,5,0,0,0,0,0,1,88,0,9,0,7,240,150,61,0,0,0,0,0,0,0,0,28,124,225,61,52,128,215,63,0,0,160,64,0,0,0,0,0,0,0,0,205,204,12,62,103,213,39,62,230,63,76,192,0,0,0,0,0,0,0,0,145,237,60,191,251,58,64,63,177,80,131,64,0,0,0,0,0,0,0,0,93,254,227,62,54,60,133,191,0,0,64,64,12,0,10,0,0,0,0,0,0,0,0,0,229,0,254,0,2,1,5,48,117,100,0,44,1,112,23,151,7,132,3,197,0,92,4,144,1,64,1,64,1,144,1,48,117,48,117,48,117,48,117,100,0,100,0,100,0,48,117,48,117,48,117,100,0,100,0,48,117,48,117,100,0,100,0,100,0,100,0,48,117,48,117,48,117,100,0,100,0,100,0,48,117,48,117,100,0,100,0,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,255,255,255,255,255,255,255,255,220,5,220,5,220,5,255,255,255,255,255,255,220,5,220,5,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,44,1,0,0,0,0,81,246,0,0
|
|
@ -1,5 +0,0 @@
|
||||
#include "bsec_serialized_configurations_iaq.h"
|
||||
|
||||
const uint8_t bsec_config_iaq[454] =
|
||||
{1,7,4,1,61,0,0,0,0,0,0,0,174,1,0,0,48,0,1,0,137,65,0,63,205,204,204,62,0,0,64,63,205,204,204,62,0,0,225,68,0,192,168,71,64,49,119,76,0,0,0,0,0,80,5,95,0,0,0,0,0,0,0,0,28,0,2,0,0,244,1,225,0,25,0,0,128,64,0,0,32,65,144,1,0,0,112,65,0,0,0,63,16,0,3,0,10,215,163,60,10,215,35,59,10,215,35,59,9,0,5,0,0,0,0,0,1,88,0,9,0,7,240,150,61,0,0,0,0,0,0,0,0,28,124,225,61,52,128,215,63,0,0,160,64,0,0,0,0,0,0,0,0,205,204,12,62,103,213,39,62,230,63,76,192,0,0,0,0,0,0,0,0,145,237,60,191,251,58,64,63,177,80,131,64,0,0,0,0,0,0,0,0,93,254,227,62,54,60,133,191,0,0,64,64,12,0,10,0,0,0,0,0,0,0,0,0,229,0,254,0,2,1,5,48,117,100,0,44,1,112,23,151,7,132,3,197,0,92,4,144,1,64,1,64,1,144,1,48,117,48,117,48,117,48,117,100,0,100,0,100,0,48,117,48,117,48,117,100,0,100,0,48,117,48,117,100,0,100,0,100,0,100,0,48,117,48,117,48,117,100,0,100,0,100,0,48,117,48,117,100,0,100,0,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,255,255,255,255,255,255,255,255,220,5,220,5,220,5,255,255,255,255,255,255,220,5,220,5,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,44,1,0,0,0,0,81,246,0,0};
|
||||
|
@ -1,4 +0,0 @@
|
||||
#include <stdint.h>
|
||||
|
||||
extern const uint8_t bsec_config_iaq[454];
|
||||
|
Binary file not shown.
@ -1 +0,0 @@
|
||||
454,1,7,4,1,61,0,0,0,0,0,0,0,174,1,0,0,48,0,1,0,137,65,0,63,205,204,204,62,0,0,64,63,205,204,204,62,0,0,225,68,0,168,19,73,64,49,119,76,0,0,0,0,0,80,5,95,0,0,0,0,0,0,0,0,28,0,2,0,0,244,1,225,0,25,0,0,128,64,0,0,32,65,144,1,0,0,112,65,0,0,0,63,16,0,3,0,10,215,163,60,10,215,35,59,10,215,35,59,9,0,5,0,0,0,0,0,1,88,0,9,0,229,208,34,62,0,0,0,0,0,0,0,0,218,27,156,62,225,11,67,64,0,0,160,64,0,0,0,0,0,0,0,0,94,75,72,189,93,254,159,64,66,62,160,191,0,0,0,0,0,0,0,0,33,31,180,190,138,176,97,64,65,241,99,190,0,0,0,0,0,0,0,0,167,121,71,61,165,189,41,192,184,30,189,64,12,0,10,0,0,0,0,0,0,0,0,0,229,0,254,0,2,1,5,48,117,100,0,44,1,112,23,151,7,132,3,197,0,92,4,144,1,64,1,64,1,144,1,48,117,48,117,48,117,48,117,100,0,100,0,100,0,48,117,48,117,48,117,100,0,100,0,48,117,48,117,100,0,100,0,100,0,100,0,48,117,48,117,48,117,100,0,100,0,100,0,48,117,48,117,100,0,100,0,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,255,255,255,255,255,255,255,255,220,5,220,5,220,5,255,255,255,255,255,255,220,5,220,5,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,48,117,0,0,0,0,160,82,0,0
|
|
@ -1,5 +0,0 @@
|
||||
#include "bsec_serialized_configurations_iaq.h"
|
||||
|
||||
const uint8_t bsec_config_iaq[454] =
|
||||
{1,7,4,1,61,0,0,0,0,0,0,0,174,1,0,0,48,0,1,0,137,65,0,63,205,204,204,62,0,0,64,63,205,204,204,62,0,0,225,68,0,168,19,73,64,49,119,76,0,0,0,0,0,80,5,95,0,0,0,0,0,0,0,0,28,0,2,0,0,244,1,225,0,25,0,0,128,64,0,0,32,65,144,1,0,0,112,65,0,0,0,63,16,0,3,0,10,215,163,60,10,215,35,59,10,215,35,59,9,0,5,0,0,0,0,0,1,88,0,9,0,229,208,34,62,0,0,0,0,0,0,0,0,218,27,156,62,225,11,67,64,0,0,160,64,0,0,0,0,0,0,0,0,94,75,72,189,93,254,159,64,66,62,160,191,0,0,0,0,0,0,0,0,33,31,180,190,138,176,97,64,65,241,99,190,0,0,0,0,0,0,0,0,167,121,71,61,165,189,41,192,184,30,189,64,12,0,10,0,0,0,0,0,0,0,0,0,229,0,254,0,2,1,5,48,117,100,0,44,1,112,23,151,7,132,3,197,0,92,4,144,1,64,1,64,1,144,1,48,117,48,117,48,117,48,117,100,0,100,0,100,0,48,117,48,117,48,117,100,0,100,0,48,117,48,117,100,0,100,0,100,0,100,0,48,117,48,117,48,117,100,0,100,0,100,0,48,117,48,117,100,0,100,0,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,255,255,255,255,255,255,255,255,220,5,220,5,220,5,255,255,255,255,255,255,220,5,220,5,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,48,117,0,0,0,0,160,82,0,0};
|
||||
|
@ -1,4 +0,0 @@
|
||||
#include <stdint.h>
|
||||
|
||||
extern const uint8_t bsec_config_iaq[454];
|
||||
|
Binary file not shown.
@ -1 +0,0 @@
|
||||
454,1,7,4,1,61,0,0,0,0,0,0,0,174,1,0,0,48,0,1,0,137,65,0,63,205,204,204,62,0,0,64,63,205,204,204,62,0,0,225,68,0,192,168,71,64,49,119,76,0,0,0,0,0,80,5,95,0,0,0,0,0,0,0,0,28,0,2,0,0,244,1,225,0,25,0,0,128,64,0,0,32,65,144,1,0,0,112,65,0,0,0,63,16,0,3,0,10,215,163,60,10,215,35,59,10,215,35,59,9,0,5,0,0,0,0,0,1,88,0,9,0,229,208,34,62,0,0,0,0,0,0,0,0,218,27,156,62,225,11,67,64,0,0,160,64,0,0,0,0,0,0,0,0,94,75,72,189,93,254,159,64,66,62,160,191,0,0,0,0,0,0,0,0,33,31,180,190,138,176,97,64,65,241,99,190,0,0,0,0,0,0,0,0,167,121,71,61,165,189,41,192,184,30,189,64,12,0,10,0,0,0,0,0,0,0,0,0,229,0,254,0,2,1,5,48,117,100,0,44,1,112,23,151,7,132,3,197,0,92,4,144,1,64,1,64,1,144,1,48,117,48,117,48,117,48,117,100,0,100,0,100,0,48,117,48,117,48,117,100,0,100,0,48,117,48,117,100,0,100,0,100,0,100,0,48,117,48,117,48,117,100,0,100,0,100,0,48,117,48,117,100,0,100,0,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,255,255,255,255,255,255,255,255,220,5,220,5,220,5,255,255,255,255,255,255,220,5,220,5,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,48,117,0,0,0,0,125,70,0,0
|
|
@ -1,5 +0,0 @@
|
||||
#include "bsec_serialized_configurations_iaq.h"
|
||||
|
||||
const uint8_t bsec_config_iaq[454] =
|
||||
{1,7,4,1,61,0,0,0,0,0,0,0,174,1,0,0,48,0,1,0,137,65,0,63,205,204,204,62,0,0,64,63,205,204,204,62,0,0,225,68,0,192,168,71,64,49,119,76,0,0,0,0,0,80,5,95,0,0,0,0,0,0,0,0,28,0,2,0,0,244,1,225,0,25,0,0,128,64,0,0,32,65,144,1,0,0,112,65,0,0,0,63,16,0,3,0,10,215,163,60,10,215,35,59,10,215,35,59,9,0,5,0,0,0,0,0,1,88,0,9,0,229,208,34,62,0,0,0,0,0,0,0,0,218,27,156,62,225,11,67,64,0,0,160,64,0,0,0,0,0,0,0,0,94,75,72,189,93,254,159,64,66,62,160,191,0,0,0,0,0,0,0,0,33,31,180,190,138,176,97,64,65,241,99,190,0,0,0,0,0,0,0,0,167,121,71,61,165,189,41,192,184,30,189,64,12,0,10,0,0,0,0,0,0,0,0,0,229,0,254,0,2,1,5,48,117,100,0,44,1,112,23,151,7,132,3,197,0,92,4,144,1,64,1,64,1,144,1,48,117,48,117,48,117,48,117,100,0,100,0,100,0,48,117,48,117,48,117,100,0,100,0,48,117,48,117,100,0,100,0,100,0,100,0,48,117,48,117,48,117,100,0,100,0,100,0,48,117,48,117,100,0,100,0,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,255,255,255,255,255,255,255,255,220,5,220,5,220,5,255,255,255,255,255,255,220,5,220,5,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,48,117,0,0,0,0,125,70,0,0};
|
||||
|
@ -1,4 +0,0 @@
|
||||
#include <stdint.h>
|
||||
|
||||
extern const uint8_t bsec_config_iaq[454];
|
||||
|
Binary file not shown.
@ -1 +0,0 @@
|
||||
454,1,7,4,1,61,0,0,0,0,0,0,0,174,1,0,0,48,0,1,0,137,65,0,63,205,204,204,62,0,0,64,63,205,204,204,62,0,0,225,68,0,168,19,73,64,49,119,76,0,0,0,0,0,80,5,95,0,0,0,0,0,0,0,0,28,0,2,0,0,244,1,225,0,25,0,0,128,64,0,0,32,65,144,1,0,0,112,65,0,0,0,63,16,0,3,0,10,215,163,60,10,215,35,59,10,215,35,59,9,0,5,0,0,0,0,0,1,88,0,9,0,229,208,34,62,0,0,0,0,0,0,0,0,218,27,156,62,225,11,67,64,0,0,160,64,0,0,0,0,0,0,0,0,94,75,72,189,93,254,159,64,66,62,160,191,0,0,0,0,0,0,0,0,33,31,180,190,138,176,97,64,65,241,99,190,0,0,0,0,0,0,0,0,167,121,71,61,165,189,41,192,184,30,189,64,12,0,10,0,0,0,0,0,0,0,0,0,229,0,254,0,2,1,5,48,117,100,0,44,1,112,23,151,7,132,3,197,0,92,4,144,1,64,1,64,1,144,1,48,117,48,117,48,117,48,117,100,0,100,0,100,0,48,117,48,117,48,117,100,0,100,0,48,117,48,117,100,0,100,0,100,0,100,0,48,117,48,117,48,117,100,0,100,0,100,0,48,117,48,117,100,0,100,0,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,255,255,255,255,255,255,255,255,220,5,220,5,220,5,255,255,255,255,255,255,220,5,220,5,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,44,1,0,0,0,0,50,91,0,0
|
|
@ -1,5 +0,0 @@
|
||||
#include "bsec_serialized_configurations_iaq.h"
|
||||
|
||||
const uint8_t bsec_config_iaq[454] =
|
||||
{1,7,4,1,61,0,0,0,0,0,0,0,174,1,0,0,48,0,1,0,137,65,0,63,205,204,204,62,0,0,64,63,205,204,204,62,0,0,225,68,0,168,19,73,64,49,119,76,0,0,0,0,0,80,5,95,0,0,0,0,0,0,0,0,28,0,2,0,0,244,1,225,0,25,0,0,128,64,0,0,32,65,144,1,0,0,112,65,0,0,0,63,16,0,3,0,10,215,163,60,10,215,35,59,10,215,35,59,9,0,5,0,0,0,0,0,1,88,0,9,0,229,208,34,62,0,0,0,0,0,0,0,0,218,27,156,62,225,11,67,64,0,0,160,64,0,0,0,0,0,0,0,0,94,75,72,189,93,254,159,64,66,62,160,191,0,0,0,0,0,0,0,0,33,31,180,190,138,176,97,64,65,241,99,190,0,0,0,0,0,0,0,0,167,121,71,61,165,189,41,192,184,30,189,64,12,0,10,0,0,0,0,0,0,0,0,0,229,0,254,0,2,1,5,48,117,100,0,44,1,112,23,151,7,132,3,197,0,92,4,144,1,64,1,64,1,144,1,48,117,48,117,48,117,48,117,100,0,100,0,100,0,48,117,48,117,48,117,100,0,100,0,48,117,48,117,100,0,100,0,100,0,100,0,48,117,48,117,48,117,100,0,100,0,100,0,48,117,48,117,100,0,100,0,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,255,255,255,255,255,255,255,255,220,5,220,5,220,5,255,255,255,255,255,255,220,5,220,5,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,44,1,0,0,0,0,50,91,0,0};
|
||||
|
@ -1,4 +0,0 @@
|
||||
#include <stdint.h>
|
||||
|
||||
extern const uint8_t bsec_config_iaq[454];
|
||||
|
Binary file not shown.
@ -1 +0,0 @@
|
||||
454,1,7,4,1,61,0,0,0,0,0,0,0,174,1,0,0,48,0,1,0,137,65,0,63,205,204,204,62,0,0,64,63,205,204,204,62,0,0,225,68,0,192,168,71,64,49,119,76,0,0,0,0,0,80,5,95,0,0,0,0,0,0,0,0,28,0,2,0,0,244,1,225,0,25,0,0,128,64,0,0,32,65,144,1,0,0,112,65,0,0,0,63,16,0,3,0,10,215,163,60,10,215,35,59,10,215,35,59,9,0,5,0,0,0,0,0,1,88,0,9,0,229,208,34,62,0,0,0,0,0,0,0,0,218,27,156,62,225,11,67,64,0,0,160,64,0,0,0,0,0,0,0,0,94,75,72,189,93,254,159,64,66,62,160,191,0,0,0,0,0,0,0,0,33,31,180,190,138,176,97,64,65,241,99,190,0,0,0,0,0,0,0,0,167,121,71,61,165,189,41,192,184,30,189,64,12,0,10,0,0,0,0,0,0,0,0,0,229,0,254,0,2,1,5,48,117,100,0,44,1,112,23,151,7,132,3,197,0,92,4,144,1,64,1,64,1,144,1,48,117,48,117,48,117,48,117,100,0,100,0,100,0,48,117,48,117,48,117,100,0,100,0,48,117,48,117,100,0,100,0,100,0,100,0,48,117,48,117,48,117,100,0,100,0,100,0,48,117,48,117,100,0,100,0,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,255,255,255,255,255,255,255,255,220,5,220,5,220,5,255,255,255,255,255,255,220,5,220,5,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,44,1,0,0,0,0,239,79,0,0
|
|
@ -1,5 +0,0 @@
|
||||
#include "bsec_serialized_configurations_iaq.h"
|
||||
|
||||
const uint8_t bsec_config_iaq[454] =
|
||||
{1,7,4,1,61,0,0,0,0,0,0,0,174,1,0,0,48,0,1,0,137,65,0,63,205,204,204,62,0,0,64,63,205,204,204,62,0,0,225,68,0,192,168,71,64,49,119,76,0,0,0,0,0,80,5,95,0,0,0,0,0,0,0,0,28,0,2,0,0,244,1,225,0,25,0,0,128,64,0,0,32,65,144,1,0,0,112,65,0,0,0,63,16,0,3,0,10,215,163,60,10,215,35,59,10,215,35,59,9,0,5,0,0,0,0,0,1,88,0,9,0,229,208,34,62,0,0,0,0,0,0,0,0,218,27,156,62,225,11,67,64,0,0,160,64,0,0,0,0,0,0,0,0,94,75,72,189,93,254,159,64,66,62,160,191,0,0,0,0,0,0,0,0,33,31,180,190,138,176,97,64,65,241,99,190,0,0,0,0,0,0,0,0,167,121,71,61,165,189,41,192,184,30,189,64,12,0,10,0,0,0,0,0,0,0,0,0,229,0,254,0,2,1,5,48,117,100,0,44,1,112,23,151,7,132,3,197,0,92,4,144,1,64,1,64,1,144,1,48,117,48,117,48,117,48,117,100,0,100,0,100,0,48,117,48,117,48,117,100,0,100,0,48,117,48,117,100,0,100,0,100,0,100,0,48,117,48,117,48,117,100,0,100,0,100,0,48,117,48,117,100,0,100,0,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,44,1,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,112,23,255,255,255,255,255,255,255,255,220,5,220,5,220,5,255,255,255,255,255,255,220,5,220,5,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,44,1,0,0,0,0,239,79,0,0};
|
||||
|
@ -1,4 +0,0 @@
|
||||
#include <stdint.h>
|
||||
|
||||
extern const uint8_t bsec_config_iaq[454];
|
||||
|
Binary file not shown.
@ -1,559 +0,0 @@
|
||||
/*
|
||||
* Copyright (C) 2017 Robert Bosch. All Rights Reserved.
|
||||
*
|
||||
* Disclaimer
|
||||
*
|
||||
* Common:
|
||||
* Bosch Sensortec products are developed for the consumer goods industry. They may only be used
|
||||
* within the parameters of the respective valid product data sheet. Bosch Sensortec products are
|
||||
* provided with the express understanding that there is no warranty of fitness for a particular purpose.
|
||||
* They are not fit for use in life-sustaining, safety or security sensitive systems or any system or device
|
||||
* that may lead to bodily harm or property damage if the system or device malfunctions. In addition,
|
||||
* Bosch Sensortec products are not fit for use in products which interact with motor vehicle systems.
|
||||
* The resale and/or use of products are at the purchasers own risk and his own responsibility. The
|
||||
* examination of fitness for the intended use is the sole responsibility of the Purchaser.
|
||||
*
|
||||
* The purchaser shall indemnify Bosch Sensortec from all third party claims, including any claims for
|
||||
* incidental, or consequential damages, arising from any product use not covered by the parameters of
|
||||
* the respective valid product data sheet or not approved by Bosch Sensortec and reimburse Bosch
|
||||
* Sensortec for all costs in connection with such claims.
|
||||
*
|
||||
* The purchaser must monitor the market for the purchased products, particularly with regard to
|
||||
* product safety and inform Bosch Sensortec without delay of all security relevant incidents.
|
||||
*
|
||||
* Engineering Samples are marked with an asterisk (*) or (e). Samples may vary from the valid
|
||||
* technical specifications of the product series. They are therefore not intended or fit for resale to third
|
||||
* parties or for use in end products. Their sole purpose is internal client testing. The testing of an
|
||||
* engineering sample may in no way replace the testing of a product series. Bosch Sensortec
|
||||
* assumes no liability for the use of engineering samples. By accepting the engineering samples, the
|
||||
* Purchaser agrees to indemnify Bosch Sensortec from all claims arising from the use of engineering
|
||||
* samples.
|
||||
*
|
||||
* Special:
|
||||
* This software module (hereinafter called "Software") and any information on application-sheets
|
||||
* (hereinafter called "Information") is provided free of charge for the sole purpose to support your
|
||||
* application work. The Software and Information is subject to the following terms and conditions:
|
||||
*
|
||||
* The Software is specifically designed for the exclusive use for Bosch Sensortec products by
|
||||
* personnel who have special experience and training. Do not use this Software if you do not have the
|
||||
* proper experience or training.
|
||||
*
|
||||
* This Software package is provided `` as is `` and without any expressed or implied warranties,
|
||||
* including without limitation, the implied warranties of merchantability and fitness for a particular
|
||||
* purpose.
|
||||
*
|
||||
* Bosch Sensortec and their representatives and agents deny any liability for the functional impairment
|
||||
* of this Software in terms of fitness, performance and safety. Bosch Sensortec and their
|
||||
* representatives and agents shall not be liable for any direct or indirect damages or injury, except as
|
||||
* otherwise stipulated in mandatory applicable law.
|
||||
*
|
||||
* The Information provided is believed to be accurate and reliable. Bosch Sensortec assumes no
|
||||
* responsibility for the consequences of use of such Information nor for any infringement of patents or
|
||||
* other rights of third parties which may result from its use. No license is granted by implication or
|
||||
* otherwise under any patent or patent rights of Bosch. Specifications mentioned in the Information are
|
||||
* subject to change without notice.
|
||||
*
|
||||
* It is not allowed to deliver the source code of the Software to any third party without permission of
|
||||
* Bosch Sensortec.
|
||||
*
|
||||
*/
|
||||
|
||||
/*!
|
||||
* @file bsec_integration.c
|
||||
*
|
||||
* @brief
|
||||
* Private part of the example for using of BSEC library.
|
||||
*/
|
||||
|
||||
/*!
|
||||
* @addtogroup bsec_examples BSEC Examples
|
||||
* @brief BSEC usage examples
|
||||
* @{*/
|
||||
|
||||
/**********************************************************************************************************************/
|
||||
/* header files */
|
||||
/**********************************************************************************************************************/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#include "bsec_integration.h"
|
||||
|
||||
/**********************************************************************************************************************/
|
||||
/* local macro definitions */
|
||||
/**********************************************************************************************************************/
|
||||
|
||||
#define NUM_USED_OUTPUTS 8
|
||||
|
||||
/**********************************************************************************************************************/
|
||||
/* global variable declarations */
|
||||
/**********************************************************************************************************************/
|
||||
|
||||
/* Global sensor APIs data structure */
|
||||
static struct bme680_dev bme680_g;
|
||||
|
||||
/* Global temperature offset to be subtracted */
|
||||
static float bme680_temperature_offset_g = 0.0f;
|
||||
|
||||
/**********************************************************************************************************************/
|
||||
/* functions */
|
||||
/**********************************************************************************************************************/
|
||||
|
||||
/*!
|
||||
* @brief Virtual sensor subscription
|
||||
* Please call this function before processing of data using bsec_do_steps function
|
||||
*
|
||||
* @param[in] sample_rate mode to be used (either BSEC_SAMPLE_RATE_ULP or BSEC_SAMPLE_RATE_LP)
|
||||
*
|
||||
* @return subscription result, zero when successful
|
||||
*/
|
||||
static bsec_library_return_t bme680_bsec_update_subscription(float sample_rate)
|
||||
{
|
||||
bsec_sensor_configuration_t requested_virtual_sensors[NUM_USED_OUTPUTS];
|
||||
uint8_t n_requested_virtual_sensors = NUM_USED_OUTPUTS;
|
||||
|
||||
bsec_sensor_configuration_t required_sensor_settings[BSEC_MAX_PHYSICAL_SENSOR];
|
||||
uint8_t n_required_sensor_settings = BSEC_MAX_PHYSICAL_SENSOR;
|
||||
|
||||
bsec_library_return_t status = BSEC_OK;
|
||||
|
||||
/* note: Virtual sensors as desired to be added here */
|
||||
requested_virtual_sensors[0].sensor_id = BSEC_OUTPUT_IAQ;
|
||||
requested_virtual_sensors[0].sample_rate = sample_rate;
|
||||
requested_virtual_sensors[1].sensor_id = BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE;
|
||||
requested_virtual_sensors[1].sample_rate = sample_rate;
|
||||
requested_virtual_sensors[2].sensor_id = BSEC_OUTPUT_RAW_PRESSURE;
|
||||
requested_virtual_sensors[2].sample_rate = sample_rate;
|
||||
requested_virtual_sensors[3].sensor_id = BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_HUMIDITY;
|
||||
requested_virtual_sensors[3].sample_rate = sample_rate;
|
||||
requested_virtual_sensors[4].sensor_id = BSEC_OUTPUT_RAW_GAS;
|
||||
requested_virtual_sensors[4].sample_rate = sample_rate;
|
||||
requested_virtual_sensors[5].sensor_id = BSEC_OUTPUT_RAW_TEMPERATURE;
|
||||
requested_virtual_sensors[5].sample_rate = sample_rate;
|
||||
requested_virtual_sensors[6].sensor_id = BSEC_OUTPUT_RAW_HUMIDITY;
|
||||
requested_virtual_sensors[6].sample_rate = sample_rate;
|
||||
requested_virtual_sensors[7].sensor_id = BSEC_OUTPUT_STATIC_IAQ;
|
||||
requested_virtual_sensors[7].sample_rate = sample_rate;
|
||||
|
||||
/* Call bsec_update_subscription() to enable/disable the requested virtual sensors */
|
||||
status = bsec_update_subscription(requested_virtual_sensors, n_requested_virtual_sensors, required_sensor_settings,
|
||||
&n_required_sensor_settings);
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Initialize the BME680 sensor and the BSEC library
|
||||
*
|
||||
* @param[in] sample_rate mode to be used (either BSEC_SAMPLE_RATE_ULP or BSEC_SAMPLE_RATE_LP)
|
||||
* @param[in] temperature_offset device-specific temperature offset (due to self-heating)
|
||||
* @param[in] bus_write pointer to the bus writing function
|
||||
* @param[in] bus_read pointer to the bus reading function
|
||||
* @param[in] sleep pointer to the system specific sleep function
|
||||
* @param[in] state_load pointer to the system-specific state load function
|
||||
* @param[in] config_load pointer to the system-specific config load function
|
||||
*
|
||||
* @return zero if successful, negative otherwise
|
||||
*/
|
||||
return_values_init bsec_iot_init(float sample_rate, float temperature_offset, bme680_com_fptr_t bus_write,
|
||||
bme680_com_fptr_t bus_read, sleep_fct sleep, state_load_fct state_load, config_load_fct config_load)
|
||||
{
|
||||
return_values_init ret = {BME680_OK, BSEC_OK};
|
||||
bsec_library_return_t bsec_status = BSEC_OK;
|
||||
|
||||
uint8_t bsec_state[BSEC_MAX_PROPERTY_BLOB_SIZE] = {0};
|
||||
uint8_t bsec_config[BSEC_MAX_PROPERTY_BLOB_SIZE] = {0};
|
||||
uint8_t work_buffer[BSEC_MAX_PROPERTY_BLOB_SIZE] = {0};
|
||||
int bsec_state_len, bsec_config_len;
|
||||
|
||||
/* Fixed I2C configuration */
|
||||
bme680_g.dev_id = BME680_I2C_ADDR_PRIMARY;
|
||||
bme680_g.intf = BME680_I2C_INTF;
|
||||
/* User configurable I2C configuration */
|
||||
bme680_g.write = bus_write;
|
||||
bme680_g.read = bus_read;
|
||||
bme680_g.delay_ms = sleep;
|
||||
|
||||
/* Initialize BME680 API */
|
||||
ret.bme680_status = bme680_init(&bme680_g);
|
||||
if (ret.bme680_status != BME680_OK)
|
||||
{
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Initialize BSEC library */
|
||||
ret.bsec_status = bsec_init();
|
||||
if (ret.bsec_status != BSEC_OK)
|
||||
{
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Load library config, if available */
|
||||
bsec_config_len = config_load(bsec_config, sizeof(bsec_config));
|
||||
if (bsec_config_len != 0)
|
||||
{
|
||||
ret.bsec_status = bsec_set_configuration(bsec_config, bsec_config_len, work_buffer, sizeof(work_buffer));
|
||||
if (ret.bsec_status != BSEC_OK)
|
||||
{
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
|
||||
/* Load previous library state, if available */
|
||||
bsec_state_len = state_load(bsec_state, sizeof(bsec_state));
|
||||
if (bsec_state_len != 0)
|
||||
{
|
||||
ret.bsec_status = bsec_set_state(bsec_state, bsec_state_len, work_buffer, sizeof(work_buffer));
|
||||
if (ret.bsec_status != BSEC_OK)
|
||||
{
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
|
||||
/* Set temperature offset */
|
||||
bme680_temperature_offset_g = temperature_offset;
|
||||
|
||||
/* Call to the function which sets the library with subscription information */
|
||||
ret.bsec_status = bme680_bsec_update_subscription(sample_rate);
|
||||
if (ret.bsec_status != BSEC_OK)
|
||||
{
|
||||
return ret;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Trigger the measurement based on sensor settings
|
||||
*
|
||||
* @param[in] sensor_settings settings of the BME680 sensor adopted by sensor control function
|
||||
* @param[in] sleep pointer to the system specific sleep function
|
||||
*
|
||||
* @return none
|
||||
*/
|
||||
static void bme680_bsec_trigger_measurement(bsec_bme_settings_t *sensor_settings, sleep_fct sleep)
|
||||
{
|
||||
uint16_t meas_period;
|
||||
uint8_t set_required_settings;
|
||||
int8_t bme680_status = BME680_OK;
|
||||
|
||||
/* Check if a forced-mode measurement should be triggered now */
|
||||
if (sensor_settings->trigger_measurement)
|
||||
{
|
||||
/* Set sensor configuration */
|
||||
|
||||
bme680_g.tph_sett.os_hum = sensor_settings->humidity_oversampling;
|
||||
bme680_g.tph_sett.os_pres = sensor_settings->pressure_oversampling;
|
||||
bme680_g.tph_sett.os_temp = sensor_settings->temperature_oversampling;
|
||||
bme680_g.gas_sett.run_gas = sensor_settings->run_gas;
|
||||
bme680_g.gas_sett.heatr_temp = sensor_settings->heater_temperature; /* degree Celsius */
|
||||
bme680_g.gas_sett.heatr_dur = sensor_settings->heating_duration; /* milliseconds */
|
||||
|
||||
/* Select the power mode */
|
||||
/* Must be set before writing the sensor configuration */
|
||||
bme680_g.power_mode = BME680_FORCED_MODE;
|
||||
/* Set the required sensor settings needed */
|
||||
set_required_settings = BME680_OST_SEL | BME680_OSP_SEL | BME680_OSH_SEL | BME680_GAS_SENSOR_SEL;
|
||||
|
||||
/* Set the desired sensor configuration */
|
||||
bme680_status = bme680_set_sensor_settings(set_required_settings, &bme680_g);
|
||||
|
||||
/* Set power mode as forced mode and trigger forced mode measurement */
|
||||
bme680_status = bme680_set_sensor_mode(&bme680_g);
|
||||
|
||||
/* Get the total measurement duration so as to sleep or wait till the measurement is complete */
|
||||
bme680_get_profile_dur(&meas_period, &bme680_g);
|
||||
|
||||
/* Delay till the measurement is ready. Timestamp resolution in ms */
|
||||
sleep((uint32_t)meas_period);
|
||||
}
|
||||
|
||||
/* Call the API to get current operation mode of the sensor */
|
||||
bme680_status = bme680_get_sensor_mode(&bme680_g);
|
||||
/* When the measurement is completed and data is ready for reading, the sensor must be in BME680_SLEEP_MODE.
|
||||
* Read operation mode to check whether measurement is completely done and wait until the sensor is no more
|
||||
* in BME680_FORCED_MODE. */
|
||||
while (bme680_g.power_mode == BME680_FORCED_MODE)
|
||||
{
|
||||
/* sleep for 5 ms */
|
||||
sleep(5);
|
||||
bme680_status = bme680_get_sensor_mode(&bme680_g);
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Read the data from registers and populate the inputs structure to be passed to do_steps function
|
||||
*
|
||||
* @param[in] time_stamp_trigger settings of the sensor returned from sensor control function
|
||||
* @param[in] inputs input structure containing the information on sensors to be passed to do_steps
|
||||
* @param[in] num_bsec_inputs number of inputs to be passed to do_steps
|
||||
* @param[in] bsec_process_data process data variable returned from sensor_control
|
||||
*
|
||||
* @return none
|
||||
*/
|
||||
static void bme680_bsec_read_data(int64_t time_stamp_trigger, bsec_input_t *inputs, uint8_t *num_bsec_inputs,
|
||||
int32_t bsec_process_data)
|
||||
{
|
||||
static struct bme680_field_data data;
|
||||
int8_t bme680_status = BME680_OK;
|
||||
|
||||
/* We only have to read data if the previous call the bsec_sensor_control() actually asked for it */
|
||||
if (bsec_process_data)
|
||||
{
|
||||
bme680_status = bme680_get_sensor_data(&data, &bme680_g);
|
||||
|
||||
if (data.status & BME680_NEW_DATA_MSK)
|
||||
{
|
||||
/* Pressure to be processed by BSEC */
|
||||
if (bsec_process_data & BSEC_PROCESS_PRESSURE)
|
||||
{
|
||||
/* Place presssure sample into input struct */
|
||||
inputs[*num_bsec_inputs].sensor_id = BSEC_INPUT_PRESSURE;
|
||||
inputs[*num_bsec_inputs].signal = data.pressure;
|
||||
inputs[*num_bsec_inputs].time_stamp = time_stamp_trigger;
|
||||
(*num_bsec_inputs)++;
|
||||
}
|
||||
/* Temperature to be processed by BSEC */
|
||||
if (bsec_process_data & BSEC_PROCESS_TEMPERATURE)
|
||||
{
|
||||
/* Place temperature sample into input struct */
|
||||
inputs[*num_bsec_inputs].sensor_id = BSEC_INPUT_TEMPERATURE;
|
||||
#ifdef BME680_FLOAT_POINT_COMPENSATION
|
||||
inputs[*num_bsec_inputs].signal = data.temperature;
|
||||
#else
|
||||
inputs[*num_bsec_inputs].signal = data.temperature / 100.0f;
|
||||
#endif
|
||||
inputs[*num_bsec_inputs].time_stamp = time_stamp_trigger;
|
||||
(*num_bsec_inputs)++;
|
||||
|
||||
/* Also add optional heatsource input which will be subtracted from the temperature reading to
|
||||
* compensate for device-specific self-heating (supported in BSEC IAQ solution)*/
|
||||
inputs[*num_bsec_inputs].sensor_id = BSEC_INPUT_HEATSOURCE;
|
||||
inputs[*num_bsec_inputs].signal = bme680_temperature_offset_g;
|
||||
inputs[*num_bsec_inputs].time_stamp = time_stamp_trigger;
|
||||
(*num_bsec_inputs)++;
|
||||
}
|
||||
/* Humidity to be processed by BSEC */
|
||||
if (bsec_process_data & BSEC_PROCESS_HUMIDITY)
|
||||
{
|
||||
/* Place humidity sample into input struct */
|
||||
inputs[*num_bsec_inputs].sensor_id = BSEC_INPUT_HUMIDITY;
|
||||
#ifdef BME680_FLOAT_POINT_COMPENSATION
|
||||
inputs[*num_bsec_inputs].signal = data.humidity;
|
||||
#else
|
||||
inputs[*num_bsec_inputs].signal = data.humidity / 1000.0f;
|
||||
#endif
|
||||
inputs[*num_bsec_inputs].time_stamp = time_stamp_trigger;
|
||||
(*num_bsec_inputs)++;
|
||||
}
|
||||
/* Gas to be processed by BSEC */
|
||||
if (bsec_process_data & BSEC_PROCESS_GAS)
|
||||
{
|
||||
/* Check whether gas_valid flag is set */
|
||||
if(data.status & BME680_GASM_VALID_MSK)
|
||||
{
|
||||
/* Place sample into input struct */
|
||||
inputs[*num_bsec_inputs].sensor_id = BSEC_INPUT_GASRESISTOR;
|
||||
inputs[*num_bsec_inputs].signal = data.gas_resistance;
|
||||
inputs[*num_bsec_inputs].time_stamp = time_stamp_trigger;
|
||||
(*num_bsec_inputs)++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief This function is written to process the sensor data for the requested virtual sensors
|
||||
*
|
||||
* @param[in] bsec_inputs input structure containing the information on sensors to be passed to do_steps
|
||||
* @param[in] num_bsec_inputs number of inputs to be passed to do_steps
|
||||
* @param[in] output_ready pointer to the function processing obtained BSEC outputs
|
||||
*
|
||||
* @return none
|
||||
*/
|
||||
static void bme680_bsec_process_data(bsec_input_t *bsec_inputs, uint8_t num_bsec_inputs, output_ready_fct output_ready)
|
||||
{
|
||||
/* Output buffer set to the maximum virtual sensor outputs supported */
|
||||
bsec_output_t bsec_outputs[BSEC_NUMBER_OUTPUTS];
|
||||
uint8_t num_bsec_outputs = 0;
|
||||
uint8_t index = 0;
|
||||
|
||||
bsec_library_return_t bsec_status = BSEC_OK;
|
||||
|
||||
int64_t timestamp = 0;
|
||||
float iaq = 0.0f;
|
||||
uint8_t iaq_accuracy = 0;
|
||||
float temp = 0.0f;
|
||||
float raw_temp = 0.0f;
|
||||
float raw_pressure = 0.0f;
|
||||
float humidity = 0.0f;
|
||||
float raw_humidity = 0.0f;
|
||||
float raw_gas = 0.0f;
|
||||
float static_iaq = 0.0f;
|
||||
uint8_t static_iaq_accuracy = 0;
|
||||
float co2_equivalent = 0.0f;
|
||||
uint8_t co2_accuracy = 0;
|
||||
float breath_voc_equivalent = 0.0f;
|
||||
uint8_t breath_voc_accuracy = 0;
|
||||
float comp_gas_value = 0.0f;
|
||||
uint8_t comp_gas_accuracy = 0;
|
||||
float gas_percentage = 0.0f;
|
||||
uint8_t gas_percentage_acccuracy = 0;
|
||||
|
||||
/* Check if something should be processed by BSEC */
|
||||
if (num_bsec_inputs > 0)
|
||||
{
|
||||
/* Set number of outputs to the size of the allocated buffer */
|
||||
/* BSEC_NUMBER_OUTPUTS to be defined */
|
||||
num_bsec_outputs = BSEC_NUMBER_OUTPUTS;
|
||||
|
||||
/* Perform processing of the data by BSEC
|
||||
Note:
|
||||
* The number of outputs you get depends on what you asked for during bsec_update_subscription(). This is
|
||||
handled under bme680_bsec_update_subscription() function in this example file.
|
||||
* The number of actual outputs that are returned is written to num_bsec_outputs. */
|
||||
bsec_status = bsec_do_steps(bsec_inputs, num_bsec_inputs, bsec_outputs, &num_bsec_outputs);
|
||||
|
||||
/* Iterate through the outputs and extract the relevant ones. */
|
||||
for (index = 0; index < num_bsec_outputs; index++)
|
||||
{
|
||||
switch (bsec_outputs[index].sensor_id)
|
||||
{
|
||||
case BSEC_OUTPUT_IAQ:
|
||||
iaq = bsec_outputs[index].signal;
|
||||
iaq_accuracy = bsec_outputs[index].accuracy;
|
||||
break;
|
||||
case BSEC_OUTPUT_STATIC_IAQ:
|
||||
static_iaq = bsec_outputs[index].signal;
|
||||
static_iaq_accuracy = bsec_outputs[index].accuracy;
|
||||
break;
|
||||
case BSEC_OUTPUT_CO2_EQUIVALENT:
|
||||
co2_equivalent = bsec_outputs[index].signal;
|
||||
co2_accuracy = bsec_outputs[index].accuracy;
|
||||
break;
|
||||
case BSEC_OUTPUT_BREATH_VOC_EQUIVALENT:
|
||||
breath_voc_equivalent = bsec_outputs[index].signal;
|
||||
breath_voc_accuracy = bsec_outputs[index].accuracy;
|
||||
break;
|
||||
case BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE:
|
||||
temp = bsec_outputs[index].signal;
|
||||
break;
|
||||
case BSEC_OUTPUT_RAW_PRESSURE:
|
||||
raw_pressure = bsec_outputs[index].signal;
|
||||
break;
|
||||
case BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_HUMIDITY:
|
||||
humidity = bsec_outputs[index].signal;
|
||||
break;
|
||||
case BSEC_OUTPUT_RAW_GAS:
|
||||
raw_gas = bsec_outputs[index].signal;
|
||||
break;
|
||||
case BSEC_OUTPUT_RAW_TEMPERATURE:
|
||||
raw_temp = bsec_outputs[index].signal;
|
||||
break;
|
||||
case BSEC_OUTPUT_RAW_HUMIDITY:
|
||||
raw_humidity = bsec_outputs[index].signal;
|
||||
break;
|
||||
case BSEC_OUTPUT_COMPENSATED_GAS:
|
||||
comp_gas_value = bsec_outputs[index].signal;
|
||||
comp_gas_accuracy = bsec_outputs[index].accuracy;
|
||||
break;
|
||||
case BSEC_OUTPUT_GAS_PERCENTAGE:
|
||||
gas_percentage = bsec_outputs[index].signal;
|
||||
gas_percentage_acccuracy = bsec_outputs[index].accuracy;
|
||||
break;
|
||||
default:
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Assume that all the returned timestamps are the same */
|
||||
timestamp = bsec_outputs[index].time_stamp;
|
||||
}
|
||||
|
||||
/* Pass the extracted outputs to the user provided output_ready() function. */
|
||||
output_ready(timestamp, iaq, iaq_accuracy, temp, humidity, raw_pressure, raw_temp,
|
||||
raw_humidity, raw_gas, bsec_status, static_iaq, co2_equivalent, breath_voc_equivalent);
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Runs the main (endless) loop that queries sensor settings, applies them, and processes the measured data
|
||||
*
|
||||
* @param[in] sleep pointer to the system specific sleep function
|
||||
* @param[in] get_timestamp_us pointer to the system specific timestamp derivation function
|
||||
* @param[in] output_ready pointer to the function processing obtained BSEC outputs
|
||||
* @param[in] state_save pointer to the system-specific state save function
|
||||
* @param[in] save_intvl interval at which BSEC state should be saved (in samples)
|
||||
*
|
||||
* @return none
|
||||
*/
|
||||
void bsec_iot_loop(sleep_fct sleep, get_timestamp_us_fct get_timestamp_us, output_ready_fct output_ready,
|
||||
state_save_fct state_save, uint32_t save_intvl)
|
||||
{
|
||||
/* Timestamp variables */
|
||||
int64_t time_stamp = 0;
|
||||
int64_t time_stamp_interval_ms = 0;
|
||||
|
||||
/* Allocate enough memory for up to BSEC_MAX_PHYSICAL_SENSOR physical inputs*/
|
||||
bsec_input_t bsec_inputs[BSEC_MAX_PHYSICAL_SENSOR];
|
||||
|
||||
/* Number of inputs to BSEC */
|
||||
uint8_t num_bsec_inputs = 0;
|
||||
|
||||
/* BSEC sensor settings struct */
|
||||
bsec_bme_settings_t sensor_settings;
|
||||
|
||||
/* Save state variables */
|
||||
uint8_t bsec_state[BSEC_MAX_STATE_BLOB_SIZE];
|
||||
uint8_t work_buffer[BSEC_MAX_STATE_BLOB_SIZE];
|
||||
uint32_t bsec_state_len = 0;
|
||||
uint32_t n_samples = 0;
|
||||
|
||||
bsec_library_return_t bsec_status = BSEC_OK;
|
||||
|
||||
while (1)
|
||||
{
|
||||
/* get the timestamp in nanoseconds before calling bsec_sensor_control() */
|
||||
time_stamp = get_timestamp_us() * 1000;
|
||||
|
||||
/* Retrieve sensor settings to be used in this time instant by calling bsec_sensor_control */
|
||||
bsec_sensor_control(time_stamp, &sensor_settings);
|
||||
|
||||
/* Trigger a measurement if necessary */
|
||||
bme680_bsec_trigger_measurement(&sensor_settings, sleep);
|
||||
|
||||
/* Read data from last measurement */
|
||||
num_bsec_inputs = 0;
|
||||
bme680_bsec_read_data(time_stamp, bsec_inputs, &num_bsec_inputs, sensor_settings.process_data);
|
||||
|
||||
/* Time to invoke BSEC to perform the actual processing */
|
||||
bme680_bsec_process_data(bsec_inputs, num_bsec_inputs, output_ready);
|
||||
|
||||
/* Increment sample counter */
|
||||
n_samples++;
|
||||
|
||||
/* Retrieve and store state if the passed save_intvl */
|
||||
if (n_samples >= save_intvl)
|
||||
{
|
||||
bsec_status = bsec_get_state(0, bsec_state, sizeof(bsec_state), work_buffer, sizeof(work_buffer), &bsec_state_len);
|
||||
if (bsec_status == BSEC_OK)
|
||||
{
|
||||
state_save(bsec_state, bsec_state_len);
|
||||
}
|
||||
n_samples = 0;
|
||||
}
|
||||
|
||||
|
||||
/* Compute how long we can sleep until we need to call bsec_sensor_control() next */
|
||||
/* Time_stamp is converted from microseconds to nanoseconds first and then the difference to milliseconds */
|
||||
time_stamp_interval_ms = (sensor_settings.next_call - get_timestamp_us() * 1000) / 1000000;
|
||||
if (time_stamp_interval_ms > 0)
|
||||
{
|
||||
sleep((uint32_t)time_stamp_interval_ms);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*! @}*/
|
||||
|
@ -1,165 +0,0 @@
|
||||
/*
|
||||
* Copyright (C) 2017 Robert Bosch. All Rights Reserved.
|
||||
*
|
||||
* Disclaimer
|
||||
*
|
||||
* Common:
|
||||
* Bosch Sensortec products are developed for the consumer goods industry. They may only be used
|
||||
* within the parameters of the respective valid product data sheet. Bosch Sensortec products are
|
||||
* provided with the express understanding that there is no warranty of fitness for a particular purpose.
|
||||
* They are not fit for use in life-sustaining, safety or security sensitive systems or any system or device
|
||||
* that may lead to bodily harm or property damage if the system or device malfunctions. In addition,
|
||||
* Bosch Sensortec products are not fit for use in products which interact with motor vehicle systems.
|
||||
* The resale and/or use of products are at the purchasers own risk and his own responsibility. The
|
||||
* examination of fitness for the intended use is the sole responsibility of the Purchaser.
|
||||
*
|
||||
* The purchaser shall indemnify Bosch Sensortec from all third party claims, including any claims for
|
||||
* incidental, or consequential damages, arising from any product use not covered by the parameters of
|
||||
* the respective valid product data sheet or not approved by Bosch Sensortec and reimburse Bosch
|
||||
* Sensortec for all costs in connection with such claims.
|
||||
*
|
||||
* The purchaser must monitor the market for the purchased products, particularly with regard to
|
||||
* product safety and inform Bosch Sensortec without delay of all security relevant incidents.
|
||||
*
|
||||
* Engineering Samples are marked with an asterisk (*) or (e). Samples may vary from the valid
|
||||
* technical specifications of the product series. They are therefore not intended or fit for resale to third
|
||||
* parties or for use in end products. Their sole purpose is internal client testing. The testing of an
|
||||
* engineering sample may in no way replace the testing of a product series. Bosch Sensortec
|
||||
* assumes no liability for the use of engineering samples. By accepting the engineering samples, the
|
||||
* Purchaser agrees to indemnify Bosch Sensortec from all claims arising from the use of engineering
|
||||
* samples.
|
||||
*
|
||||
* Special:
|
||||
* This software module (hereinafter called "Software") and any information on application-sheets
|
||||
* (hereinafter called "Information") is provided free of charge for the sole purpose to support your
|
||||
* application work. The Software and Information is subject to the following terms and conditions:
|
||||
*
|
||||
* The Software is specifically designed for the exclusive use for Bosch Sensortec products by
|
||||
* personnel who have special experience and training. Do not use this Software if you do not have the
|
||||
* proper experience or training.
|
||||
*
|
||||
* This Software package is provided `` as is `` and without any expressed or implied warranties,
|
||||
* including without limitation, the implied warranties of merchantability and fitness for a particular
|
||||
* purpose.
|
||||
*
|
||||
* Bosch Sensortec and their representatives and agents deny any liability for the functional impairment
|
||||
* of this Software in terms of fitness, performance and safety. Bosch Sensortec and their
|
||||
* representatives and agents shall not be liable for any direct or indirect damages or injury, except as
|
||||
* otherwise stipulated in mandatory applicable law.
|
||||
*
|
||||
* The Information provided is believed to be accurate and reliable. Bosch Sensortec assumes no
|
||||
* responsibility for the consequences of use of such Information nor for any infringement of patents or
|
||||
* other rights of third parties which may result from its use. No license is granted by implication or
|
||||
* otherwise under any patent or patent rights of Bosch. Specifications mentioned in the Information are
|
||||
* subject to change without notice.
|
||||
*
|
||||
* It is not allowed to deliver the source code of the Software to any third party without permission of
|
||||
* Bosch Sensortec.
|
||||
*
|
||||
*/
|
||||
|
||||
/*!
|
||||
* @file bsec_integration.h
|
||||
*
|
||||
* @brief
|
||||
* Contains BSEC integration API
|
||||
*/
|
||||
|
||||
/*!
|
||||
* @addtogroup bsec_examples BSEC Examples
|
||||
* @brief BSEC usage examples
|
||||
* @{*/
|
||||
|
||||
#ifndef __BSEC_INTEGRATION_H__
|
||||
#define __BSEC_INTEGRATION_H__
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
/**********************************************************************************************************************/
|
||||
/* header files */
|
||||
/**********************************************************************************************************************/
|
||||
|
||||
/* Use the following bme680 driver: https://github.com/BoschSensortec/BME680_driver/releases/tag/bme680_v3.5.1 */
|
||||
#include "bme680.h"
|
||||
/* BSEC header files are available in the inc/ folder of the release package */
|
||||
#include "bsec_interface.h"
|
||||
#include "bsec_datatypes.h"
|
||||
|
||||
|
||||
/**********************************************************************************************************************/
|
||||
/* type definitions */
|
||||
/**********************************************************************************************************************/
|
||||
|
||||
/* function pointer to the system specific sleep function */
|
||||
typedef void (*sleep_fct)(uint32_t t_ms);
|
||||
|
||||
/* function pointer to the system specific timestamp derivation function */
|
||||
typedef int64_t (*get_timestamp_us_fct)();
|
||||
|
||||
/* function pointer to the function processing obtained BSEC outputs */
|
||||
typedef void (*output_ready_fct)(int64_t timestamp, float iaq, uint8_t iaq_accuracy, float temperature, float humidity,
|
||||
float pressure, float raw_temperature, float raw_humidity, float gas, bsec_library_return_t bsec_status,
|
||||
float static_iaq, float co2_equivalent, float breath_voc_equivalent);
|
||||
|
||||
/* function pointer to the function loading a previous BSEC state from NVM */
|
||||
typedef uint32_t (*state_load_fct)(uint8_t *state_buffer, uint32_t n_buffer);
|
||||
|
||||
/* function pointer to the function saving BSEC state to NVM */
|
||||
typedef void (*state_save_fct)(const uint8_t *state_buffer, uint32_t length);
|
||||
|
||||
/* function pointer to the function loading the BSEC configuration string from NVM */
|
||||
typedef uint32_t (*config_load_fct)(uint8_t *state_buffer, uint32_t n_buffer);
|
||||
|
||||
/* structure definitions */
|
||||
|
||||
/* Structure with the return value from bsec_iot_init() */
|
||||
typedef struct{
|
||||
/*! Result of API execution status */
|
||||
int8_t bme680_status;
|
||||
/*! Result of BSEC library */
|
||||
bsec_library_return_t bsec_status;
|
||||
}return_values_init;
|
||||
/**********************************************************************************************************************/
|
||||
/* function declarations */
|
||||
/**********************************************************************************************************************/
|
||||
|
||||
/*!
|
||||
* @brief Initialize the BME680 sensor and the BSEC library
|
||||
*
|
||||
* @param[in] sample_rate mode to be used (either BSEC_SAMPLE_RATE_ULP or BSEC_SAMPLE_RATE_LP)
|
||||
* @param[in] temperature_offset device-specific temperature offset (due to self-heating)
|
||||
* @param[in] bus_write pointer to the bus writing function
|
||||
* @param[in] bus_read pointer to the bus reading function
|
||||
* @param[in] sleep pointer to the system-specific sleep function
|
||||
* @param[in] state_load pointer to the system-specific state load function
|
||||
*
|
||||
* @return zero if successful, negative otherwise
|
||||
*/
|
||||
return_values_init bsec_iot_init(float sample_rate, float temperature_offset, bme680_com_fptr_t bus_write, bme680_com_fptr_t bus_read,
|
||||
sleep_fct sleep, state_load_fct state_load, config_load_fct config_load);
|
||||
|
||||
/*!
|
||||
* @brief Runs the main (endless) loop that queries sensor settings, applies them, and processes the measured data
|
||||
*
|
||||
* @param[in] sleep pointer to the system-specific sleep function
|
||||
* @param[in] get_timestamp_us pointer to the system-specific timestamp derivation function
|
||||
* @param[in] output_ready pointer to the function processing obtained BSEC outputs
|
||||
* @param[in] state_save pointer to the system-specific state save function
|
||||
* @param[in] save_intvl interval at which BSEC state should be saved (in samples)
|
||||
*
|
||||
* @return return_values_init struct with the result of the API and the BSEC library
|
||||
*/
|
||||
void bsec_iot_loop(sleep_fct sleep, get_timestamp_us_fct get_timestamp_us, output_ready_fct output_ready,
|
||||
state_save_fct state_save, uint32_t save_intvl);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* __BSEC_INTEGRATION_H__ */
|
||||
|
||||
/*! @}*/
|
||||
|
@ -1,258 +0,0 @@
|
||||
/*
|
||||
* Copyright (C) 2017 Robert Bosch. All Rights Reserved.
|
||||
*
|
||||
* Disclaimer
|
||||
*
|
||||
* Common:
|
||||
* Bosch Sensortec products are developed for the consumer goods industry. They may only be used
|
||||
* within the parameters of the respective valid product data sheet. Bosch Sensortec products are
|
||||
* provided with the express understanding that there is no warranty of fitness for a particular purpose.
|
||||
* They are not fit for use in life-sustaining, safety or security sensitive systems or any system or device
|
||||
* that may lead to bodily harm or property damage if the system or device malfunctions. In addition,
|
||||
* Bosch Sensortec products are not fit for use in products which interact with motor vehicle systems.
|
||||
* The resale and/or use of products are at the purchasers own risk and his own responsibility. The
|
||||
* examination of fitness for the intended use is the sole responsibility of the Purchaser.
|
||||
*
|
||||
* The purchaser shall indemnify Bosch Sensortec from all third party claims, including any claims for
|
||||
* incidental, or consequential damages, arising from any product use not covered by the parameters of
|
||||
* the respective valid product data sheet or not approved by Bosch Sensortec and reimburse Bosch
|
||||
* Sensortec for all costs in connection with such claims.
|
||||
*
|
||||
* The purchaser must monitor the market for the purchased products, particularly with regard to
|
||||
* product safety and inform Bosch Sensortec without delay of all security relevant incidents.
|
||||
*
|
||||
* Engineering Samples are marked with an asterisk (*) or (e). Samples may vary from the valid
|
||||
* technical specifications of the product series. They are therefore not intended or fit for resale to third
|
||||
* parties or for use in end products. Their sole purpose is internal client testing. The testing of an
|
||||
* engineering sample may in no way replace the testing of a product series. Bosch Sensortec
|
||||
* assumes no liability for the use of engineering samples. By accepting the engineering samples, the
|
||||
* Purchaser agrees to indemnify Bosch Sensortec from all claims arising from the use of engineering
|
||||
* samples.
|
||||
*
|
||||
* Special:
|
||||
* This software module (hereinafter called "Software") and any information on application-sheets
|
||||
* (hereinafter called "Information") is provided free of charge for the sole purpose to support your
|
||||
* application work. The Software and Information is subject to the following terms and conditions:
|
||||
*
|
||||
* The Software is specifically designed for the exclusive use for Bosch Sensortec products by
|
||||
* personnel who have special experience and training. Do not use this Software if you do not have the
|
||||
* proper experience or training.
|
||||
*
|
||||
* This Software package is provided `` as is `` and without any expressed or implied warranties,
|
||||
* including without limitation, the implied warranties of merchantability and fitness for a particular
|
||||
* purpose.
|
||||
*
|
||||
* Bosch Sensortec and their representatives and agents deny any liability for the functional impairment
|
||||
* of this Software in terms of fitness, performance and safety. Bosch Sensortec and their
|
||||
* representatives and agents shall not be liable for any direct or indirect damages or injury, except as
|
||||
* otherwise stipulated in mandatory applicable law.
|
||||
*
|
||||
* The Information provided is believed to be accurate and reliable. Bosch Sensortec assumes no
|
||||
* responsibility for the consequences of use of such Information nor for any infringement of patents or
|
||||
* other rights of third parties which may result from its use. No license is granted by implication or
|
||||
* otherwise under any patent or patent rights of Bosch. Specifications mentioned in the Information are
|
||||
* subject to change without notice.
|
||||
*
|
||||
* It is not allowed to deliver the source code of the Software to any third party without permission of
|
||||
* Bosch Sensortec.
|
||||
*
|
||||
*/
|
||||
|
||||
/*!
|
||||
* @file bsec_iot_example.c
|
||||
*
|
||||
* @brief
|
||||
* Example for using of BSEC library in a fixed configuration with the BME680 sensor.
|
||||
* This works by running an endless loop in the bsec_iot_loop() function.
|
||||
*/
|
||||
|
||||
/*!
|
||||
* @addtogroup bsec_examples BSEC Examples
|
||||
* @brief BSEC usage examples
|
||||
* @{*/
|
||||
|
||||
/**********************************************************************************************************************/
|
||||
/* header files */
|
||||
/**********************************************************************************************************************/
|
||||
|
||||
#include "bsec_integration.h"
|
||||
|
||||
/**********************************************************************************************************************/
|
||||
/* functions */
|
||||
/**********************************************************************************************************************/
|
||||
|
||||
/*!
|
||||
* @brief Write operation in either I2C or SPI
|
||||
*
|
||||
* param[in] dev_addr I2C or SPI device address
|
||||
* param[in] reg_addr register address
|
||||
* param[in] reg_data_ptr pointer to the data to be written
|
||||
* param[in] data_len number of bytes to be written
|
||||
*
|
||||
* @return result of the bus communication function
|
||||
*/
|
||||
int8_t bus_write(uint8_t dev_addr, uint8_t reg_addr, uint8_t *reg_data_ptr, uint16_t data_len)
|
||||
{
|
||||
// ...
|
||||
// Please insert system specific function to write to the bus where BME680 is connected
|
||||
// ...
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Read operation in either I2C or SPI
|
||||
*
|
||||
* param[in] dev_addr I2C or SPI device address
|
||||
* param[in] reg_addr register address
|
||||
* param[out] reg_data_ptr pointer to the memory to be used to store the read data
|
||||
* param[in] data_len number of bytes to be read
|
||||
*
|
||||
* @return result of the bus communication function
|
||||
*/
|
||||
int8_t bus_read(uint8_t dev_addr, uint8_t reg_addr, uint8_t *reg_data_ptr, uint16_t data_len)
|
||||
{
|
||||
// ...
|
||||
// Please insert system specific function to read from bus where BME680 is connected
|
||||
// ...
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief System specific implementation of sleep function
|
||||
*
|
||||
* @param[in] t_ms time in milliseconds
|
||||
*
|
||||
* @return none
|
||||
*/
|
||||
void sleep(uint32_t t_ms)
|
||||
{
|
||||
// ...
|
||||
// Please insert system specific function sleep or delay for t_ms milliseconds
|
||||
// ...
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Capture the system time in microseconds
|
||||
*
|
||||
* @return system_current_time current system timestamp in microseconds
|
||||
*/
|
||||
int64_t get_timestamp_us()
|
||||
{
|
||||
int64_t system_current_time = 0;
|
||||
// ...
|
||||
// Please insert system specific function to retrieve a timestamp (in microseconds)
|
||||
// ...
|
||||
return system_current_time;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Handling of the ready outputs
|
||||
*
|
||||
* @param[in] timestamp time in nanoseconds
|
||||
* @param[in] iaq IAQ signal
|
||||
* @param[in] iaq_accuracy accuracy of IAQ signal
|
||||
* @param[in] temperature temperature signal
|
||||
* @param[in] humidity humidity signal
|
||||
* @param[in] pressure pressure signal
|
||||
* @param[in] raw_temperature raw temperature signal
|
||||
* @param[in] raw_humidity raw humidity signal
|
||||
* @param[in] gas raw gas sensor signal
|
||||
* @param[in] bsec_status value returned by the bsec_do_steps() call
|
||||
*
|
||||
* @return none
|
||||
*/
|
||||
void output_ready(int64_t timestamp, float iaq, uint8_t iaq_accuracy, float temperature, float humidity,
|
||||
float pressure, float raw_temperature, float raw_humidity, float gas, bsec_library_return_t bsec_status,
|
||||
float static_iaq, float co2_equivalent, float breath_voc_equivalent)
|
||||
{
|
||||
// ...
|
||||
// Please insert system specific code to further process or display the BSEC outputs
|
||||
// ...
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Load previous library state from non-volatile memory
|
||||
*
|
||||
* @param[in,out] state_buffer buffer to hold the loaded state string
|
||||
* @param[in] n_buffer size of the allocated state buffer
|
||||
*
|
||||
* @return number of bytes copied to state_buffer
|
||||
*/
|
||||
uint32_t state_load(uint8_t *state_buffer, uint32_t n_buffer)
|
||||
{
|
||||
// ...
|
||||
// Load a previous library state from non-volatile memory, if available.
|
||||
//
|
||||
// Return zero if loading was unsuccessful or no state was available,
|
||||
// otherwise return length of loaded state string.
|
||||
// ...
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Save library state to non-volatile memory
|
||||
*
|
||||
* @param[in] state_buffer buffer holding the state to be stored
|
||||
* @param[in] length length of the state string to be stored
|
||||
*
|
||||
* @return none
|
||||
*/
|
||||
void state_save(const uint8_t *state_buffer, uint32_t length)
|
||||
{
|
||||
// ...
|
||||
// Save the string some form of non-volatile memory, if possible.
|
||||
// ...
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Load library config from non-volatile memory
|
||||
*
|
||||
* @param[in,out] config_buffer buffer to hold the loaded state string
|
||||
* @param[in] n_buffer size of the allocated state buffer
|
||||
*
|
||||
* @return number of bytes copied to config_buffer
|
||||
*/
|
||||
uint32_t config_load(uint8_t *config_buffer, uint32_t n_buffer)
|
||||
{
|
||||
// ...
|
||||
// Load a library config from non-volatile memory, if available.
|
||||
//
|
||||
// Return zero if loading was unsuccessful or no config was available,
|
||||
// otherwise return length of loaded config string.
|
||||
// ...
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Main function which configures BSEC library and then reads and processes the data from sensor based
|
||||
* on timer ticks
|
||||
*
|
||||
* @return result of the processing
|
||||
*/
|
||||
int main()
|
||||
{
|
||||
return_values_init ret;
|
||||
|
||||
/* Call to the function which initializes the BSEC library
|
||||
* Switch on low-power mode and provide no temperature offset */
|
||||
ret = bsec_iot_init(BSEC_SAMPLE_RATE_LP, 0.0f, bus_write, bus_read, sleep, state_load, config_load);
|
||||
if (ret.bme680_status)
|
||||
{
|
||||
/* Could not intialize BME680 */
|
||||
return (int)ret.bme680_status;
|
||||
}
|
||||
else if (ret.bsec_status)
|
||||
{
|
||||
/* Could not intialize BSEC library */
|
||||
return (int)ret.bsec_status;
|
||||
}
|
||||
|
||||
/* Call to endless loop function which reads and processes data based on sensor settings */
|
||||
/* State is saved every 10.000 samples, which means every 10.000 * 3 secs = 500 minutes */
|
||||
bsec_iot_loop(sleep, get_timestamp_us, output_ready, state_save, 10000);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*! @}*/
|
||||
|
@ -1,291 +0,0 @@
|
||||
/*
|
||||
* Copyright (C) 2017 Robert Bosch. All Rights Reserved.
|
||||
*
|
||||
* Disclaimer
|
||||
*
|
||||
* Common:
|
||||
* Bosch Sensortec products are developed for the consumer goods industry. They may only be used
|
||||
* within the parameters of the respective valid product data sheet. Bosch Sensortec products are
|
||||
* provided with the express understanding that there is no warranty of fitness for a particular purpose.
|
||||
* They are not fit for use in life-sustaining, safety or security sensitive systems or any system or device
|
||||
* that may lead to bodily harm or property damage if the system or device malfunctions. In addition,
|
||||
* Bosch Sensortec products are not fit for use in products which interact with motor vehicle systems.
|
||||
* The resale and/or use of products are at the purchasers own risk and his own responsibility. The
|
||||
* examination of fitness for the intended use is the sole responsibility of the Purchaser.
|
||||
*
|
||||
* The purchaser shall indemnify Bosch Sensortec from all third party claims, including any claims for
|
||||
* incidental, or consequential damages, arising from any product use not covered by the parameters of
|
||||
* the respective valid product data sheet or not approved by Bosch Sensortec and reimburse Bosch
|
||||
* Sensortec for all costs in connection with such claims.
|
||||
*
|
||||
* The purchaser must monitor the market for the purchased products, particularly with regard to
|
||||
* product safety and inform Bosch Sensortec without delay of all security relevant incidents.
|
||||
*
|
||||
* Engineering Samples are marked with an asterisk (*) or (e). Samples may vary from the valid
|
||||
* technical specifications of the product series. They are therefore not intended or fit for resale to third
|
||||
* parties or for use in end products. Their sole purpose is internal client testing. The testing of an
|
||||
* engineering sample may in no way replace the testing of a product series. Bosch Sensortec
|
||||
* assumes no liability for the use of engineering samples. By accepting the engineering samples, the
|
||||
* Purchaser agrees to indemnify Bosch Sensortec from all claims arising from the use of engineering
|
||||
* samples.
|
||||
*
|
||||
* Special:
|
||||
* This software module (hereinafter called "Software") and any information on application-sheets
|
||||
* (hereinafter called "Information") is provided free of charge for the sole purpose to support your
|
||||
* application work. The Software and Information is subject to the following terms and conditions:
|
||||
*
|
||||
* The Software is specifically designed for the exclusive use for Bosch Sensortec products by
|
||||
* personnel who have special experience and training. Do not use this Software if you do not have the
|
||||
* proper experience or training.
|
||||
*
|
||||
* This Software package is provided `` as is `` and without any expressed or implied warranties,
|
||||
* including without limitation, the implied warranties of merchantability and fitness for a particular
|
||||
* purpose.
|
||||
*
|
||||
* Bosch Sensortec and their representatives and agents deny any liability for the functional impairment
|
||||
* of this Software in terms of fitness, performance and safety. Bosch Sensortec and their
|
||||
* representatives and agents shall not be liable for any direct or indirect damages or injury, except as
|
||||
* otherwise stipulated in mandatory applicable law.
|
||||
*
|
||||
* The Information provided is believed to be accurate and reliable. Bosch Sensortec assumes no
|
||||
* responsibility for the consequences of use of such Information nor for any infringement of patents or
|
||||
* other rights of third parties which may result from its use. No license is granted by implication or
|
||||
* otherwise under any patent or patent rights of Bosch. Specifications mentioned in the Information are
|
||||
* subject to change without notice.
|
||||
*
|
||||
* It is not allowed to deliver the source code of the Software to any third party without permission of
|
||||
* Bosch Sensortec.
|
||||
*
|
||||
*/
|
||||
|
||||
/*!
|
||||
* @file bsec_iot_example.ino
|
||||
*
|
||||
* @brief
|
||||
* Example for using of BSEC library in a fixed configuration with the BME680 sensor.
|
||||
* This works by running an endless loop in the bsec_iot_loop() function.
|
||||
*/
|
||||
|
||||
/*!
|
||||
* @addtogroup bsec_examples BSEC Examples
|
||||
* @brief BSEC usage examples
|
||||
* @{*/
|
||||
|
||||
/**********************************************************************************************************************/
|
||||
/* header files */
|
||||
/**********************************************************************************************************************/
|
||||
|
||||
#include "bsec_integration.h"
|
||||
#include <Wire.h>
|
||||
|
||||
/**********************************************************************************************************************/
|
||||
/* functions */
|
||||
/**********************************************************************************************************************/
|
||||
|
||||
/*!
|
||||
* @brief Write operation in either Wire or SPI
|
||||
*
|
||||
* param[in] dev_addr Wire or SPI device address
|
||||
* param[in] reg_addr register address
|
||||
* param[in] reg_data_ptr pointer to the data to be written
|
||||
* param[in] data_len number of bytes to be written
|
||||
*
|
||||
* @return result of the bus communication function
|
||||
*/
|
||||
int8_t bus_write(uint8_t dev_addr, uint8_t reg_addr, uint8_t *reg_data_ptr, uint16_t data_len)
|
||||
{
|
||||
Wire.beginTransmission(dev_addr);
|
||||
Wire.write(reg_addr); /* Set register address to start writing to */
|
||||
|
||||
/* Write the data */
|
||||
for (int index = 0; index < data_len; index++) {
|
||||
Wire.write(reg_data_ptr[index]);
|
||||
}
|
||||
|
||||
return (int8_t)Wire.endTransmission();
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Read operation in either Wire or SPI
|
||||
*
|
||||
* param[in] dev_addr Wire or SPI device address
|
||||
* param[in] reg_addr register address
|
||||
* param[out] reg_data_ptr pointer to the memory to be used to store the read data
|
||||
* param[in] data_len number of bytes to be read
|
||||
*
|
||||
* @return result of the bus communication function
|
||||
*/
|
||||
int8_t bus_read(uint8_t dev_addr, uint8_t reg_addr, uint8_t *reg_data_ptr, uint16_t data_len)
|
||||
{
|
||||
int8_t comResult = 0;
|
||||
Wire.beginTransmission(dev_addr);
|
||||
Wire.write(reg_addr); /* Set register address to start reading from */
|
||||
comResult = Wire.endTransmission();
|
||||
|
||||
delayMicroseconds(150); /* Precautionary response delay */
|
||||
Wire.requestFrom(dev_addr, (uint8_t)data_len); /* Request data */
|
||||
|
||||
int index = 0;
|
||||
while (Wire.available()) /* The slave device may send less than requested (burst read) */
|
||||
{
|
||||
reg_data_ptr[index] = Wire.read();
|
||||
index++;
|
||||
}
|
||||
|
||||
return comResult;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief System specific implementation of sleep function
|
||||
*
|
||||
* @param[in] t_ms time in milliseconds
|
||||
*
|
||||
* @return none
|
||||
*/
|
||||
void sleep(uint32_t t_ms)
|
||||
{
|
||||
delay(t_ms);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Capture the system time in microseconds
|
||||
*
|
||||
* @return system_current_time current system timestamp in microseconds
|
||||
*/
|
||||
int64_t get_timestamp_us()
|
||||
{
|
||||
return (int64_t) millis() * 1000;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Handling of the ready outputs
|
||||
*
|
||||
* @param[in] timestamp time in nanoseconds
|
||||
* @param[in] iaq IAQ signal
|
||||
* @param[in] iaq_accuracy accuracy of IAQ signal
|
||||
* @param[in] temperature temperature signal
|
||||
* @param[in] humidity humidity signal
|
||||
* @param[in] pressure pressure signal
|
||||
* @param[in] raw_temperature raw temperature signal
|
||||
* @param[in] raw_humidity raw humidity signal
|
||||
* @param[in] gas raw gas sensor signal
|
||||
* @param[in] bsec_status value returned by the bsec_do_steps() call
|
||||
*
|
||||
* @return none
|
||||
*/
|
||||
void output_ready(int64_t timestamp, float iaq, uint8_t iaq_accuracy, float temperature, float humidity,
|
||||
float pressure, float raw_temperature, float raw_humidity, float gas, bsec_library_return_t bsec_status,
|
||||
float static_iaq, float co2_equivalent, float breath_voc_equivalent)
|
||||
{
|
||||
Serial.print("[");
|
||||
Serial.print(timestamp/1e6);
|
||||
Serial.print("] T: ");
|
||||
Serial.print(temperature);
|
||||
Serial.print("| rH: ");
|
||||
Serial.print(humidity);
|
||||
Serial.print("| IAQ: ");
|
||||
Serial.print(iaq);
|
||||
Serial.print(" (");
|
||||
Serial.print(iaq_accuracy);
|
||||
Serial.print("| Static IAQ: ");
|
||||
Serial.print(static_iaq);
|
||||
Serial.print("| CO2e: ");
|
||||
Serial.print(co2_equivalent);
|
||||
Serial.print("| bVOC: ");
|
||||
Serial.println(breath_voc_equivalent);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Load previous library state from non-volatile memory
|
||||
*
|
||||
* @param[in,out] state_buffer buffer to hold the loaded state string
|
||||
* @param[in] n_buffer size of the allocated state buffer
|
||||
*
|
||||
* @return number of bytes copied to state_buffer
|
||||
*/
|
||||
uint32_t state_load(uint8_t *state_buffer, uint32_t n_buffer)
|
||||
{
|
||||
// ...
|
||||
// Load a previous library state from non-volatile memory, if available.
|
||||
//
|
||||
// Return zero if loading was unsuccessful or no state was available,
|
||||
// otherwise return length of loaded state string.
|
||||
// ...
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Save library state to non-volatile memory
|
||||
*
|
||||
* @param[in] state_buffer buffer holding the state to be stored
|
||||
* @param[in] length length of the state string to be stored
|
||||
*
|
||||
* @return none
|
||||
*/
|
||||
void state_save(const uint8_t *state_buffer, uint32_t length)
|
||||
{
|
||||
// ...
|
||||
// Save the string some form of non-volatile memory, if possible.
|
||||
// ...
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Load library config from non-volatile memory
|
||||
*
|
||||
* @param[in,out] config_buffer buffer to hold the loaded state string
|
||||
* @param[in] n_buffer size of the allocated state buffer
|
||||
*
|
||||
* @return number of bytes copied to config_buffer
|
||||
*/
|
||||
uint32_t config_load(uint8_t *config_buffer, uint32_t n_buffer)
|
||||
{
|
||||
// ...
|
||||
// Load a library config from non-volatile memory, if available.
|
||||
//
|
||||
// Return zero if loading was unsuccessful or no config was available,
|
||||
// otherwise return length of loaded config string.
|
||||
// ...
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Main function which configures BSEC library and then reads and processes the data from sensor based
|
||||
* on timer ticks
|
||||
*
|
||||
* @return result of the processing
|
||||
*/
|
||||
void setup()
|
||||
{
|
||||
return_values_init ret;
|
||||
|
||||
/* Init I2C and serial communication */
|
||||
Wire.begin();
|
||||
Serial.begin(115200);
|
||||
|
||||
/* Call to the function which initializes the BSEC library
|
||||
* Switch on low-power mode and provide no temperature offset */
|
||||
ret = bsec_iot_init(BSEC_SAMPLE_RATE_LP, 5.0f, bus_write, bus_read, sleep, state_load, config_load);
|
||||
if (ret.bme680_status)
|
||||
{
|
||||
/* Could not intialize BME680 */
|
||||
Serial.println("Error while initializing BME680");
|
||||
return;
|
||||
}
|
||||
else if (ret.bsec_status)
|
||||
{
|
||||
/* Could not intialize BSEC library */
|
||||
Serial.println("Error while initializing BSEC library");
|
||||
return;
|
||||
}
|
||||
|
||||
/* Call to endless loop function which reads and processes data based on sensor settings */
|
||||
/* State is saved every 10.000 samples, which means every 10.000 * 3 secs = 500 minutes */
|
||||
bsec_iot_loop(sleep, get_timestamp_us, output_ready, state_save, 10000);
|
||||
}
|
||||
|
||||
void loop()
|
||||
{
|
||||
}
|
||||
|
||||
/*! @}*/
|
||||
|
@ -1,290 +0,0 @@
|
||||
/*
|
||||
* Copyright (C) 2017 Robert Bosch. All Rights Reserved.
|
||||
*
|
||||
* Disclaimer
|
||||
*
|
||||
* Common:
|
||||
* Bosch Sensortec products are developed for the consumer goods industry. They may only be used
|
||||
* within the parameters of the respective valid product data sheet. Bosch Sensortec products are
|
||||
* provided with the express understanding that there is no warranty of fitness for a particular purpose.
|
||||
* They are not fit for use in life-sustaining, safety or security sensitive systems or any system or device
|
||||
* that may lead to bodily harm or property damage if the system or device malfunctions. In addition,
|
||||
* Bosch Sensortec products are not fit for use in products which interact with motor vehicle systems.
|
||||
* The resale and/or use of products are at the purchasers own risk and his own responsibility. The
|
||||
* examination of fitness for the intended use is the sole responsibility of the Purchaser.
|
||||
*
|
||||
* The purchaser shall indemnify Bosch Sensortec from all third party claims, including any claims for
|
||||
* incidental, or consequential damages, arising from any product use not covered by the parameters of
|
||||
* the respective valid product data sheet or not approved by Bosch Sensortec and reimburse Bosch
|
||||
* Sensortec for all costs in connection with such claims.
|
||||
*
|
||||
* The purchaser must monitor the market for the purchased products, particularly with regard to
|
||||
* product safety and inform Bosch Sensortec without delay of all security relevant incidents.
|
||||
*
|
||||
* Engineering Samples are marked with an asterisk (*) or (e). Samples may vary from the valid
|
||||
* technical specifications of the product series. They are therefore not intended or fit for resale to third
|
||||
* parties or for use in end products. Their sole purpose is internal client testing. The testing of an
|
||||
* engineering sample may in no way replace the testing of a product series. Bosch Sensortec
|
||||
* assumes no liability for the use of engineering samples. By accepting the engineering samples, the
|
||||
* Purchaser agrees to indemnify Bosch Sensortec from all claims arising from the use of engineering
|
||||
* samples.
|
||||
*
|
||||
* Special:
|
||||
* This software module (hereinafter called "Software") and any information on application-sheets
|
||||
* (hereinafter called "Information") is provided free of charge for the sole purpose to support your
|
||||
* application work. The Software and Information is subject to the following terms and conditions:
|
||||
*
|
||||
* The Software is specifically designed for the exclusive use for Bosch Sensortec products by
|
||||
* personnel who have special experience and training. Do not use this Software if you do not have the
|
||||
* proper experience or training.
|
||||
*
|
||||
* This Software package is provided `` as is `` and without any expressed or implied warranties,
|
||||
* including without limitation, the implied warranties of merchantability and fitness for a particular
|
||||
* purpose.
|
||||
*
|
||||
* Bosch Sensortec and their representatives and agents deny any liability for the functional impairment
|
||||
* of this Software in terms of fitness, performance and safety. Bosch Sensortec and their
|
||||
* representatives and agents shall not be liable for any direct or indirect damages or injury, except as
|
||||
* otherwise stipulated in mandatory applicable law.
|
||||
*
|
||||
* The Information provided is believed to be accurate and reliable. Bosch Sensortec assumes no
|
||||
* responsibility for the consequences of use of such Information nor for any infringement of patents or
|
||||
* other rights of third parties which may result from its use. No license is granted by implication or
|
||||
* otherwise under any patent or patent rights of Bosch. Specifications mentioned in the Information are
|
||||
* subject to change without notice.
|
||||
*
|
||||
* It is not allowed to deliver the source code of the Software to any third party without permission of
|
||||
* Bosch Sensortec.
|
||||
*
|
||||
*/
|
||||
|
||||
/*!
|
||||
* @file bsec_iot_ulp_plus_example.c
|
||||
*
|
||||
* @brief
|
||||
* Example for using of BSEC library in a fixed configuration with the BME680 sensor.
|
||||
* This works by running an endless loop in the bsec_iot_loop() function.
|
||||
*/
|
||||
|
||||
/*!
|
||||
* @addtogroup bsec_examples BSEC Examples
|
||||
* @brief BSEC usage examples
|
||||
* @{*/
|
||||
|
||||
/**********************************************************************************************************************/
|
||||
/* header files */
|
||||
/**********************************************************************************************************************/
|
||||
/* BSEC configuration files are available in the config/ folder of the release package. Please chose a configuration file with 3s maximum time between `bsec_sensor_control()` calls */
|
||||
#include "bsec_integration.h"
|
||||
|
||||
/**********************************************************************************************************************/
|
||||
/* functions */
|
||||
/**********************************************************************************************************************/
|
||||
|
||||
/*!
|
||||
* @brief Write operation in either I2C or SPI
|
||||
*
|
||||
* param[in] dev_addr I2C or SPI device address
|
||||
* param[in] reg_addr register address
|
||||
* param[in] reg_data_ptr pointer to the data to be written
|
||||
* param[in] data_len number of bytes to be written
|
||||
*
|
||||
* @return result of the bus communication function
|
||||
*/
|
||||
int8_t bus_write(uint8_t dev_addr, uint8_t reg_addr, uint8_t *reg_data_ptr, uint16_t data_len)
|
||||
{
|
||||
// ...
|
||||
// Please insert system specific function to write to the bus where BME680 is connected
|
||||
// ...
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Read operation in either I2C or SPI
|
||||
*
|
||||
* param[in] dev_addr I2C or SPI device address
|
||||
* param[in] reg_addr register address
|
||||
* param[out] reg_data_ptr pointer to the memory to be used to store the read data
|
||||
* param[in] data_len number of bytes to be read
|
||||
*
|
||||
* @return result of the bus communication function
|
||||
*/
|
||||
int8_t bus_read(uint8_t dev_addr, uint8_t reg_addr, uint8_t *reg_data_ptr, uint16_t data_len)
|
||||
{
|
||||
// ...
|
||||
// Please insert system specific function to read from bus where BME680 is connected
|
||||
// ...
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief System specific implementation of sleep function
|
||||
*
|
||||
* @param[in] t_ms time in milliseconds
|
||||
*
|
||||
* @return none
|
||||
*/
|
||||
void sleep(uint32_t t_ms)
|
||||
{
|
||||
// ...
|
||||
// Please insert system specific function sleep or delay for t_ms milliseconds
|
||||
// ...
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Capture the system time in microseconds
|
||||
*
|
||||
* @return system_current_time current system timestamp in microseconds
|
||||
*/
|
||||
int64_t get_timestamp_us()
|
||||
{
|
||||
int64_t system_current_time = 0;
|
||||
// ...
|
||||
// Please insert system specific function to retrieve a timestamp (in microseconds)
|
||||
// ...
|
||||
return system_current_time;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Handling of the ready outputs
|
||||
*
|
||||
* @param[in] timestamp time in nanoseconds
|
||||
* @param[in] iaq IAQ signal
|
||||
* @param[in] iaq_accuracy accuracy of IAQ signal
|
||||
* @param[in] temperature temperature signal
|
||||
* @param[in] humidity humidity signal
|
||||
* @param[in] pressure pressure signal
|
||||
* @param[in] raw_temperature raw temperature signal
|
||||
* @param[in] raw_humidity raw humidity signal
|
||||
* @param[in] gas raw gas sensor signal
|
||||
* @param[in] bsec_status value returned by the bsec_do_steps() call
|
||||
*
|
||||
* @return none
|
||||
*/
|
||||
void output_ready(int64_t timestamp, float iaq, uint8_t iaq_accuracy, float temperature, float humidity,
|
||||
float pressure, float raw_temperature, float raw_humidity, float gas, bsec_library_return_t bsec_status,
|
||||
float static_iaq, float co2_equivalent, float breath_voc_equivalent)
|
||||
{
|
||||
// ...
|
||||
// Please insert system specific code to further process or display the BSEC outputs
|
||||
// ...
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Load previous library state from non-volatile memory
|
||||
*
|
||||
* @param[in,out] state_buffer buffer to hold the loaded state string
|
||||
* @param[in] n_buffer size of the allocated state buffer
|
||||
*
|
||||
* @return number of bytes copied to state_buffer
|
||||
*/
|
||||
uint32_t state_load(uint8_t *state_buffer, uint32_t n_buffer)
|
||||
{
|
||||
// ...
|
||||
// Load a previous library state from non-volatile memory, if available.
|
||||
//
|
||||
// Return zero if loading was unsuccessful or no state was available,
|
||||
// otherwise return length of loaded state string.
|
||||
// ...
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Save library state to non-volatile memory
|
||||
*
|
||||
* @param[in] state_buffer buffer holding the state to be stored
|
||||
* @param[in] length length of the state string to be stored
|
||||
*
|
||||
* @return none
|
||||
*/
|
||||
void state_save(const uint8_t *state_buffer, uint32_t length)
|
||||
{
|
||||
// ...
|
||||
// Save the string some form of non-volatile memory, if possible.
|
||||
// ...
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Load library config from non-volatile memory
|
||||
*
|
||||
* @param[in,out] config_buffer buffer to hold the loaded state string
|
||||
* @param[in] n_buffer size of the allocated state buffer
|
||||
*
|
||||
* @return number of bytes copied to config_buffer
|
||||
*/
|
||||
uint32_t config_load(uint8_t *config_buffer, uint32_t n_buffer)
|
||||
{
|
||||
// ...
|
||||
// Load a library config from non-volatile memory, if available.
|
||||
//
|
||||
// Return zero if loading was unsuccessful or no config was available,
|
||||
// otherwise return length of loaded config string.
|
||||
// ...
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Interrupt handler for press of a ULP plus button
|
||||
*
|
||||
* @return none
|
||||
*/
|
||||
void ulp_plus_button_press()
|
||||
{
|
||||
/* We call bsec_update_subscription() in order to instruct BSEC to perform an extra measurement at the next
|
||||
* possible time slot
|
||||
*/
|
||||
|
||||
bsec_sensor_configuration_t requested_virtual_sensors[1];
|
||||
uint8_t n_requested_virtual_sensors = 1;
|
||||
bsec_sensor_configuration_t required_sensor_settings[BSEC_MAX_PHYSICAL_SENSOR];
|
||||
uint8_t n_required_sensor_settings = BSEC_MAX_PHYSICAL_SENSOR;
|
||||
bsec_library_return_t status = BSEC_OK;
|
||||
|
||||
/* To trigger a ULP plus, we request the IAQ virtual sensor with a specific sample rate code */
|
||||
requested_virtual_sensors[0].sensor_id = BSEC_OUTPUT_IAQ;
|
||||
requested_virtual_sensors[0].sample_rate = BSEC_SAMPLE_RATE_ULP_MEASUREMENT_ON_DEMAND;
|
||||
|
||||
/* Call bsec_update_subscription() to enable/disable the requested virtual sensors */
|
||||
status = bsec_update_subscription(requested_virtual_sensors, n_requested_virtual_sensors, required_sensor_settings,
|
||||
&n_required_sensor_settings);
|
||||
|
||||
/* The status code would tell is if the request was accepted. It will be rejected if the sensor is not already in
|
||||
* ULP mode, or if the time difference between requests is too short, for example. */
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Main function which configures BSEC library and then reads and processes the data from sensor based
|
||||
* on timer ticks
|
||||
*
|
||||
* @return result of the processing
|
||||
*/
|
||||
int main()
|
||||
{
|
||||
return_values_init ret;
|
||||
// ...
|
||||
// Attach a button (or other) interrupt here to the ulp_plus_button_press() handler function to
|
||||
// enable this interrupt to trigger a ULP plus
|
||||
// ...
|
||||
|
||||
/* Call to the function which initializes the BSEC library
|
||||
* Switch on ultra_low-power mode and provide no temperature offset */
|
||||
ret = bsec_iot_init(BSEC_SAMPLE_RATE_ULP, 0.0f, bus_write, bus_read, sleep, state_load, config_load);
|
||||
if (ret.bme680_status)
|
||||
{
|
||||
/* Could not intialize BME680 or BSEC library */
|
||||
return (int)ret.bme680_status;
|
||||
}
|
||||
else if (ret.bsec_status)
|
||||
{
|
||||
/* Could not intialize BSEC library */
|
||||
return (int)ret.bsec_status;
|
||||
}
|
||||
/* Call to endless loop function which reads and processes data based on sensor settings */
|
||||
/* State is saved every 10.000 samples, which means every 100 * 300 secs = 500 minutes */
|
||||
bsec_iot_loop(sleep, get_timestamp_us, output_ready, state_save, 100);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*! @}*/
|
||||
|
@ -1,342 +0,0 @@
|
||||
/*
|
||||
* Copyright (C) 2017 Robert Bosch. All Rights Reserved.
|
||||
*
|
||||
* Disclaimer
|
||||
*
|
||||
* Common:
|
||||
* Bosch Sensortec products are developed for the consumer goods industry. They may only be used
|
||||
* within the parameters of the respective valid product data sheet. Bosch Sensortec products are
|
||||
* provided with the express understanding that there is no warranty of fitness for a particular purpose.
|
||||
* They are not fit for use in life-sustaining, safety or security sensitive systems or any system or device
|
||||
* that may lead to bodily harm or property damage if the system or device malfunctions. In addition,
|
||||
* Bosch Sensortec products are not fit for use in products which interact with motor vehicle systems.
|
||||
* The resale and/or use of products are at the purchasers own risk and his own responsibility. The
|
||||
* examination of fitness for the intended use is the sole responsibility of the Purchaser.
|
||||
*
|
||||
* The purchaser shall indemnify Bosch Sensortec from all third party claims, including any claims for
|
||||
* incidental, or consequential damages, arising from any product use not covered by the parameters of
|
||||
* the respective valid product data sheet or not approved by Bosch Sensortec and reimburse Bosch
|
||||
* Sensortec for all costs in connection with such claims.
|
||||
*
|
||||
* The purchaser must monitor the market for the purchased products, particularly with regard to
|
||||
* product safety and inform Bosch Sensortec without delay of all security relevant incidents.
|
||||
*
|
||||
* Engineering Samples are marked with an asterisk (*) or (e). Samples may vary from the valid
|
||||
* technical specifications of the product series. They are therefore not intended or fit for resale to third
|
||||
* parties or for use in end products. Their sole purpose is internal client testing. The testing of an
|
||||
* engineering sample may in no way replace the testing of a product series. Bosch Sensortec
|
||||
* assumes no liability for the use of engineering samples. By accepting the engineering samples, the
|
||||
* Purchaser agrees to indemnify Bosch Sensortec from all claims arising from the use of engineering
|
||||
* samples.
|
||||
*
|
||||
* Special:
|
||||
* This software module (hereinafter called "Software") and any information on application-sheets
|
||||
* (hereinafter called "Information") is provided free of charge for the sole purpose to support your
|
||||
* application work. The Software and Information is subject to the following terms and conditions:
|
||||
*
|
||||
* The Software is specifically designed for the exclusive use for Bosch Sensortec products by
|
||||
* personnel who have special experience and training. Do not use this Software if you do not have the
|
||||
* proper experience or training.
|
||||
*
|
||||
* This Software package is provided `` as is `` and without any expressed or implied warranties,
|
||||
* including without limitation, the implied warranties of merchantability and fitness for a particular
|
||||
* purpose.
|
||||
*
|
||||
* Bosch Sensortec and their representatives and agents deny any liability for the functional impairment
|
||||
* of this Software in terms of fitness, performance and safety. Bosch Sensortec and their
|
||||
* representatives and agents shall not be liable for any direct or indirect damages or injury, except as
|
||||
* otherwise stipulated in mandatory applicable law.
|
||||
*
|
||||
* The Information provided is believed to be accurate and reliable. Bosch Sensortec assumes no
|
||||
* responsibility for the consequences of use of such Information nor for any infringement of patents or
|
||||
* other rights of third parties which may result from its use. No license is granted by implication or
|
||||
* otherwise under any patent or patent rights of Bosch. Specifications mentioned in the Information are
|
||||
* subject to change without notice.
|
||||
*
|
||||
* It is not allowed to deliver the source code of the Software to any third party without permission of
|
||||
* Bosch Sensortec.
|
||||
*
|
||||
*/
|
||||
|
||||
/*!
|
||||
* @file bsec_iot_ulp_plus_example.ino
|
||||
*
|
||||
* @brief
|
||||
* Example for using of BSEC library in a fixed configuration with the BME680 sensor.
|
||||
* This works by running an endless loop in the bsec_iot_loop() function.
|
||||
*/
|
||||
|
||||
/*!
|
||||
* @addtogroup bsec_examples BSEC Examples
|
||||
* @brief BSEC usage examples
|
||||
* @{*/
|
||||
|
||||
/**********************************************************************************************************************/
|
||||
/* header files */
|
||||
/**********************************************************************************************************************/
|
||||
|
||||
#include "bsec_integration.h"
|
||||
#include "bsec_serialized_configurations_iaq.h"
|
||||
#include <Wire.h>
|
||||
|
||||
/**********************************************************************************************************************/
|
||||
/* functions */
|
||||
/**********************************************************************************************************************/
|
||||
|
||||
/*!
|
||||
* @brief Write operation in either Wire or SPI
|
||||
*
|
||||
* param[in] dev_addr Wire or SPI device address
|
||||
* param[in] reg_addr register address
|
||||
* param[in] reg_data_ptr pointer to the data to be written
|
||||
* param[in] data_len number of bytes to be written
|
||||
*
|
||||
* @return result of the bus communication function
|
||||
*/
|
||||
int8_t bus_write(uint8_t dev_addr, uint8_t reg_addr, uint8_t *reg_data_ptr, uint16_t data_len)
|
||||
{
|
||||
Wire.beginTransmission(dev_addr);
|
||||
Wire.write(reg_addr); /* Set register address to start writing to */
|
||||
|
||||
/* Write the data */
|
||||
for (int index = 0; index < data_len; index++) {
|
||||
Wire.write(reg_data_ptr[index]);
|
||||
}
|
||||
|
||||
return (int8_t)Wire.endTransmission();
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Read operation in either Wire or SPI
|
||||
*
|
||||
* param[in] dev_addr Wire or SPI device address
|
||||
* param[in] reg_addr register address
|
||||
* param[out] reg_data_ptr pointer to the memory to be used to store the read data
|
||||
* param[in] data_len number of bytes to be read
|
||||
*
|
||||
* @return result of the bus communication function
|
||||
*/
|
||||
int8_t bus_read(uint8_t dev_addr, uint8_t reg_addr, uint8_t *reg_data_ptr, uint16_t data_len)
|
||||
{
|
||||
int8_t comResult = 0;
|
||||
Wire.beginTransmission(dev_addr);
|
||||
Wire.write(reg_addr); /* Set register address to start reading from */
|
||||
comResult = Wire.endTransmission();
|
||||
|
||||
delayMicroseconds(150); /* Precautionary response delay */
|
||||
Wire.requestFrom(dev_addr, (uint8_t)data_len); /* Request data */
|
||||
|
||||
int index = 0;
|
||||
while (Wire.available()) /* The slave device may send less than requested (burst read) */
|
||||
{
|
||||
reg_data_ptr[index] = Wire.read();
|
||||
index++;
|
||||
}
|
||||
|
||||
return comResult;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief System specific implementation of sleep function
|
||||
*
|
||||
* @param[in] t_ms time in milliseconds
|
||||
*
|
||||
* @return none
|
||||
*/
|
||||
void sleep(uint32_t t_ms)
|
||||
{
|
||||
delay(t_ms);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Capture the system time in microseconds
|
||||
*
|
||||
* @return system_current_time current system timestamp in microseconds
|
||||
*/
|
||||
int64_t get_timestamp_us()
|
||||
{
|
||||
return (int64_t) millis() * 1000;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Handling of the ready outputs
|
||||
*
|
||||
* @param[in] timestamp time in nanoseconds
|
||||
* @param[in] iaq IAQ signal
|
||||
* @param[in] iaq_accuracy accuracy of IAQ signal
|
||||
* @param[in] temperature temperature signal
|
||||
* @param[in] humidity humidity signal
|
||||
* @param[in] pressure pressure signal
|
||||
* @param[in] raw_temperature raw temperature signal
|
||||
* @param[in] raw_humidity raw humidity signal
|
||||
* @param[in] gas raw gas sensor signal
|
||||
* @param[in] bsec_status value returned by the bsec_do_steps() call
|
||||
*
|
||||
* @return none
|
||||
*/
|
||||
void output_ready(int64_t timestamp, float iaq, uint8_t iaq_accuracy, float temperature, float humidity,
|
||||
float pressure, float raw_temperature, float raw_humidity, float gas, bsec_library_return_t bsec_status,
|
||||
float static_iaq, float co2_equivalent, float breath_voc_equivalent)
|
||||
{
|
||||
Serial.print("[");
|
||||
Serial.print(timestamp/1e6);
|
||||
Serial.print("] T: ");
|
||||
Serial.print(temperature);
|
||||
Serial.print("| rH: ");
|
||||
Serial.print(humidity);
|
||||
Serial.print("| IAQ: ");
|
||||
Serial.print(iaq);
|
||||
Serial.print(" (");
|
||||
Serial.print(iaq_accuracy);
|
||||
Serial.println(")");
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Load previous library state from non-volatile memory
|
||||
*
|
||||
* @param[in,out] state_buffer buffer to hold the loaded state string
|
||||
* @param[in] n_buffer size of the allocated state buffer
|
||||
*
|
||||
* @return number of bytes copied to state_buffer
|
||||
*/
|
||||
uint32_t state_load(uint8_t *state_buffer, uint32_t n_buffer)
|
||||
{
|
||||
// ...
|
||||
// Load a previous library state from non-volatile memory, if available.
|
||||
//
|
||||
// Return zero if loading was unsuccessful or no state was available,
|
||||
// otherwise return length of loaded state string.
|
||||
// ...
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Save library state to non-volatile memory
|
||||
*
|
||||
* @param[in] state_buffer buffer holding the state to be stored
|
||||
* @param[in] length length of the state string to be stored
|
||||
*
|
||||
* @return none
|
||||
*/
|
||||
void state_save(const uint8_t *state_buffer, uint32_t length)
|
||||
{
|
||||
// ...
|
||||
// Save the string some form of non-volatile memory, if possible.
|
||||
// ...
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Load library config from non-volatile memory
|
||||
*
|
||||
* @param[in,out] config_buffer buffer to hold the loaded state string
|
||||
* @param[in] n_buffer size of the allocated state buffer
|
||||
*
|
||||
* @return number of bytes copied to config_buffer
|
||||
*/
|
||||
uint32_t config_load(uint8_t *config_buffer, uint32_t n_buffer)
|
||||
{
|
||||
// ...
|
||||
// Load a library config from non-volatile memory, if available.
|
||||
//
|
||||
// Return zero if loading was unsuccessful or no config was available,
|
||||
// otherwise return length of loaded config string.
|
||||
// ...
|
||||
|
||||
memcpy(config_buffer, bsec_config_iaq, sizeof(bsec_config_iaq));
|
||||
return sizeof(bsec_config_iaq);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Interrupt handler for press of a ULP plus button
|
||||
*
|
||||
* @return none
|
||||
*/
|
||||
void ulp_plus_button_press()
|
||||
{
|
||||
/* We call bsec_update_subscription() in order to instruct BSEC to perform an extra measurement at the next
|
||||
* possible time slot
|
||||
*/
|
||||
|
||||
bsec_sensor_configuration_t requested_virtual_sensors[1];
|
||||
uint8_t n_requested_virtual_sensors = 1;
|
||||
bsec_sensor_configuration_t required_sensor_settings[BSEC_MAX_PHYSICAL_SENSOR];
|
||||
uint8_t n_required_sensor_settings = BSEC_MAX_PHYSICAL_SENSOR;
|
||||
bsec_library_return_t status = BSEC_OK;
|
||||
|
||||
/* To trigger a ULP plus, we request the IAQ virtual sensor with a specific sample rate code */
|
||||
requested_virtual_sensors[0].sensor_id = BSEC_OUTPUT_IAQ_ESTIMATE;
|
||||
requested_virtual_sensors[0].sample_rate = BSEC_SAMPLE_RATE_ULP_MEASUREMENT_ON_DEMAND;
|
||||
|
||||
/* Call bsec_update_subscription() to enable/disable the requested virtual sensors */
|
||||
status = bsec_update_subscription(requested_virtual_sensors, n_requested_virtual_sensors, required_sensor_settings,
|
||||
&n_required_sensor_settings);
|
||||
|
||||
/* The status code would tell is if the request was accepted. It will be rejected if the sensor is not already in
|
||||
* ULP mode, or if the time difference between requests is too short, for example. */
|
||||
if (status == BSEC_OK)
|
||||
{
|
||||
Serial.println("ULP plus triggered sucessfully.");
|
||||
}
|
||||
else
|
||||
{
|
||||
Serial.print("ULP plus request rejected. ");
|
||||
switch (status)
|
||||
{
|
||||
case BSEC_W_SC_MODEXCEEDULPTIMELIMIT:
|
||||
Serial.println("Request came within 20 s of a previous measurement.");
|
||||
break;
|
||||
case BSEC_W_SC_MODINSUFFICIENTWAITTIME:
|
||||
Serial.println("Request came within 20 s of a ULP plus.");
|
||||
break;
|
||||
case BSEC_W_SU_MODINNOULP:
|
||||
Serial.println("Sensor not in ULP mode.");
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Main function which configures BSEC library and then reads and processes the data from sensor based
|
||||
* on timer ticks
|
||||
*
|
||||
* @return result of the processing
|
||||
*/
|
||||
void setup()
|
||||
{
|
||||
return_values_init ret;
|
||||
|
||||
/* Init I2C and serial communication */
|
||||
Wire.begin();
|
||||
Serial.begin(115200);
|
||||
|
||||
/* Setup button interrupt to trigger ULP plus */
|
||||
pinMode(2, INPUT_PULLUP);
|
||||
attachInterrupt(digitalPinToInterrupt(2), ulp_plus_button_press, FALLING);
|
||||
|
||||
/* Call to the function which initializes the BSEC library
|
||||
* Switch on ultra_low-power mode and provide no temperature offset */
|
||||
ret = bsec_iot_init(BSEC_SAMPLE_RATE_ULP, 5.0f, bus_write, bus_read, sleep, state_load, config_load);
|
||||
if (ret.bme680_status)
|
||||
{
|
||||
/* Could not intialize BME680 */
|
||||
Serial.println("Error while initializing BME680");
|
||||
return;
|
||||
}
|
||||
else if (ret.bsec_status)
|
||||
{
|
||||
/* Could not intialize BSEC library */
|
||||
Serial.println("Error while initializing BSEC library");
|
||||
return;
|
||||
}
|
||||
|
||||
/* Call to endless loop function which reads and processes data based on sensor settings */
|
||||
/* State is saved every 10.000 samples, which means every 100 * 300 secs = 500 minutes */
|
||||
bsec_iot_loop(sleep, get_timestamp_us, output_ready, state_save, 100);
|
||||
}
|
||||
|
||||
void loop()
|
||||
{
|
||||
}
|
||||
|
||||
/*! @}*/
|
||||
|
@ -1,2 +0,0 @@
|
||||
text data bss dec hex filename
|
||||
23795 0 1120 24915 6153 (TOTALS)
|
@ -8,6 +8,43 @@ static const char TAG[] = "main";
|
||||
bmeStatus_t bme_status;
|
||||
TaskHandle_t BmeTask;
|
||||
|
||||
// BSEC configuration
|
||||
// 3,3V supply voltage; 3s sensor_control; 4 days calibration
|
||||
// change this const if not applicable for your application (see BME680
|
||||
// datasheet)
|
||||
const uint8_t bsec_config_iaq[454] = {
|
||||
1, 7, 4, 1, 61, 0, 0, 0, 0, 0, 0, 0, 174, 1, 0,
|
||||
0, 48, 0, 1, 0, 137, 65, 0, 63, 205, 204, 204, 62, 0, 0,
|
||||
64, 63, 205, 204, 204, 62, 0, 0, 225, 68, 0, 192, 168, 71, 64,
|
||||
49, 119, 76, 0, 0, 0, 0, 0, 80, 5, 95, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 28, 0, 2, 0, 0, 244, 1, 225, 0, 25, 0,
|
||||
0, 128, 64, 0, 0, 32, 65, 144, 1, 0, 0, 112, 65, 0, 0,
|
||||
0, 63, 16, 0, 3, 0, 10, 215, 163, 60, 10, 215, 35, 59, 10,
|
||||
215, 35, 59, 9, 0, 5, 0, 0, 0, 0, 0, 1, 88, 0, 9,
|
||||
0, 229, 208, 34, 62, 0, 0, 0, 0, 0, 0, 0, 0, 218, 27,
|
||||
156, 62, 225, 11, 67, 64, 0, 0, 160, 64, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 94, 75, 72, 189, 93, 254, 159, 64, 66, 62, 160, 191,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 33, 31, 180, 190, 138, 176, 97,
|
||||
64, 65, 241, 99, 190, 0, 0, 0, 0, 0, 0, 0, 0, 167, 121,
|
||||
71, 61, 165, 189, 41, 192, 184, 30, 189, 64, 12, 0, 10, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 229, 0, 254, 0, 2, 1, 5, 48,
|
||||
117, 100, 0, 44, 1, 112, 23, 151, 7, 132, 3, 197, 0, 92, 4,
|
||||
144, 1, 64, 1, 64, 1, 144, 1, 48, 117, 48, 117, 48, 117, 48,
|
||||
117, 100, 0, 100, 0, 100, 0, 48, 117, 48, 117, 48, 117, 100, 0,
|
||||
100, 0, 48, 117, 48, 117, 100, 0, 100, 0, 100, 0, 100, 0, 48,
|
||||
117, 48, 117, 48, 117, 100, 0, 100, 0, 100, 0, 48, 117, 48, 117,
|
||||
100, 0, 100, 0, 44, 1, 44, 1, 44, 1, 44, 1, 44, 1, 44,
|
||||
1, 44, 1, 44, 1, 44, 1, 44, 1, 44, 1, 44, 1, 44, 1,
|
||||
44, 1, 8, 7, 8, 7, 8, 7, 8, 7, 8, 7, 8, 7, 8,
|
||||
7, 8, 7, 8, 7, 8, 7, 8, 7, 8, 7, 8, 7, 8, 7,
|
||||
112, 23, 112, 23, 112, 23, 112, 23, 112, 23, 112, 23, 112, 23, 112,
|
||||
23, 112, 23, 112, 23, 112, 23, 112, 23, 112, 23, 112, 23, 255, 255,
|
||||
255, 255, 255, 255, 255, 255, 220, 5, 220, 5, 220, 5, 255, 255, 255,
|
||||
255, 255, 255, 220, 5, 220, 5, 255, 255, 255, 255, 255, 255, 255, 255,
|
||||
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
|
||||
255, 255, 255, 255, 255, 255, 255, 255, 255, 44, 1, 0, 0, 0, 0,
|
||||
239, 79, 0, 0};
|
||||
|
||||
// initialize BME680 sensor
|
||||
int bme_init(void) {
|
||||
|
||||
@ -22,9 +59,11 @@ int bme_init(void) {
|
||||
user_delay_ms, state_load, config_load);
|
||||
|
||||
if ((int)ret.bme680_status) {
|
||||
ESP_LOGE(TAG, "Could not initialize BME680, error %d", (int)ret.bme680_status);
|
||||
ESP_LOGE(TAG, "Could not initialize BME680, error %d",
|
||||
(int)ret.bme680_status);
|
||||
} else if ((int)ret.bsec_status) {
|
||||
ESP_LOGE(TAG, "Could not initialize BSEC library, error %d", (int)ret.bsec_status);
|
||||
ESP_LOGE(TAG, "Could not initialize BSEC library, error %d",
|
||||
(int)ret.bsec_status);
|
||||
} else {
|
||||
ESP_LOGI(TAG, "BME680 sensor found and initialized");
|
||||
return 1;
|
||||
@ -131,13 +170,13 @@ void state_save(const uint8_t *state_buffer, uint32_t length) {
|
||||
* @return number of bytes copied to config_buffer
|
||||
*/
|
||||
uint32_t config_load(uint8_t *config_buffer, uint32_t n_buffer) {
|
||||
// ...
|
||||
|
||||
// Load a library config from non-volatile memory, if available.
|
||||
//
|
||||
// Return zero if loading was unsuccessful or no config was available,
|
||||
// otherwise return length of loaded config string.
|
||||
// ...
|
||||
return 0;
|
||||
|
||||
memcpy(config_buffer, bsec_config_iaq, sizeof(bsec_config_iaq));
|
||||
return sizeof(bsec_config_iaq);
|
||||
}
|
||||
|
||||
/*!
|
||||
|
@ -164,7 +164,7 @@ void onEvent(ev_t ev) {
|
||||
switch (ev) {
|
||||
|
||||
case EV_SCAN_TIMEOUT:
|
||||
strcpy_P(buff, PSTR("SCAN TIMEOUT"));
|
||||
strcpy_P(buff, PSTR("SCAN_TIMEOUT"));
|
||||
break;
|
||||
|
||||
case EV_BEACON_FOUND:
|
||||
@ -210,8 +210,8 @@ void onEvent(ev_t ev) {
|
||||
break;
|
||||
|
||||
case EV_TXCOMPLETE:
|
||||
strcpy_P(buff, (LMIC.txrxFlags & TXRX_ACK) ? PSTR("RECEIVED ACK")
|
||||
: PSTR("TX COMPLETE"));
|
||||
strcpy_P(buff, (LMIC.txrxFlags & TXRX_ACK) ? PSTR("RECEIVED_ACK")
|
||||
: PSTR("TX_COMPLETE"));
|
||||
sprintf(display_line6, " "); // clear previous lmic status
|
||||
|
||||
if (LMIC.dataLen) {
|
||||
@ -237,20 +237,20 @@ void onEvent(ev_t ev) {
|
||||
|
||||
case EV_RXCOMPLETE:
|
||||
// data received in ping slot
|
||||
strcpy_P(buff, PSTR("RX COMPLETE"));
|
||||
strcpy_P(buff, PSTR("RX_COMPLETE"));
|
||||
break;
|
||||
|
||||
case EV_LINK_DEAD:
|
||||
strcpy_P(buff, PSTR("LINK DEAD"));
|
||||
strcpy_P(buff, PSTR("LINK_DEAD"));
|
||||
break;
|
||||
|
||||
case EV_LINK_ALIVE:
|
||||
strcpy_P(buff, PSTR("LINK ALIVE"));
|
||||
strcpy_P(buff, PSTR("LINK_ALIVE"));
|
||||
break;
|
||||
|
||||
case EV_TXSTART:
|
||||
if (!(LMIC.opmode & OP_JOINING))
|
||||
strcpy_P(buff, PSTR("TX START"));
|
||||
strcpy_P(buff, PSTR("TX_START"));
|
||||
break;
|
||||
|
||||
case EV_SCAN_FOUND:
|
||||
@ -262,7 +262,7 @@ void onEvent(ev_t ev) {
|
||||
break;
|
||||
|
||||
default:
|
||||
sprintf_P(buff, PSTR("UNKNOWN EVENT %d"), ev);
|
||||
sprintf_P(buff, PSTR("UNKNOWN_EVENT_%d"), ev);
|
||||
break;
|
||||
}
|
||||
|
||||
|
@ -11,7 +11,7 @@
|
||||
|
||||
// Payload send cycle and encoding
|
||||
#define SEND_SECS 30 // payload send cycle [seconds/2] -> 60 sec.
|
||||
#define PAYLOAD_ENCODER 3 // payload encoder: 1=Plain, 2=Packed, 3=CayenneLPP dynamic, 4=CayenneLPP packed
|
||||
#define PAYLOAD_ENCODER 2 // payload encoder: 1=Plain, 2=Packed, 3=CayenneLPP dynamic, 4=CayenneLPP packed
|
||||
|
||||
// Set this to include BLE counting and vendor filter functions
|
||||
#define VENDORFILTER 1 // comment out if you want to count things, not people
|
||||
|
@ -4,25 +4,33 @@
|
||||
// Local logging tag
|
||||
static const char TAG[] = "main";
|
||||
|
||||
#define SENSORBUFFER 10 // max. size of user sensor data buffer in bytes [default=20]
|
||||
#define SENSORBUFFER \
|
||||
10 // max. size of user sensor data buffer in bytes [default=20]
|
||||
|
||||
void sensor_init(void) {
|
||||
|
||||
// this function is called dureing device startup
|
||||
// put your sensor initialization routines here
|
||||
// this function is called during device startup
|
||||
// put your user sensor initialization routines here
|
||||
}
|
||||
|
||||
uint8_t sensor_mask(uint8_t sensor_no) {
|
||||
switch (sensor_no) {
|
||||
case 0:
|
||||
return (uint8_t)COUNT_DATA;
|
||||
case 1:
|
||||
return (uint8_t)SENSOR1_DATA;
|
||||
case 2:
|
||||
return (uint8_t)SENSOR2_DATA;
|
||||
break;
|
||||
case 3:
|
||||
return (uint8_t)SENSOR3_DATA;
|
||||
case 4:
|
||||
return (uint8_t)SENSOR4_DATA;
|
||||
case 5:
|
||||
return (uint8_t)GPS_DATA;
|
||||
case 6:
|
||||
return (uint8_t)MEMS_DATA;
|
||||
case 7:
|
||||
return (uint8_t)ALARM_DATA;
|
||||
}
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user