ESP32-PaxCounter/src/main.cpp

570 lines
19 KiB
C++
Raw Normal View History

2018-03-18 19:45:17 +01:00
/*
2018-03-21 18:03:14 +01:00
Copyright 2018 Oliver Brandmueller <ob@sysadm.in>
Copyright 2018 Klaus Wilting <verkehrsrot@arcor.de>
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
NOTICE:
Parts of the source files in this repository are made available under different licenses.
Refer to LICENSE.txt file in repository for more details.
*/
// Basic Config
#include "globals.h"
2018-03-18 19:45:17 +01:00
2018-04-16 20:56:29 +02:00
// Does nothing and avoid any compilation error with I2C
#include <Wire.h>
2018-03-18 19:45:17 +01:00
// LMIC-Arduino LoRaWAN Stack
2018-03-21 18:03:14 +01:00
#include "loraconf.h"
2018-03-18 19:45:17 +01:00
#include <lmic.h>
#include <hal/hal.h>
2018-04-19 15:17:23 +02:00
// ESP32 lib Functions
#include <esp_event_loop.h> // needed for Wifi event handler
#include <esp_spi_flash.h> // needed for reading ESP32 chip attributes
#include <esp32-hal-log.h> // needed for ESP_LOGx on arduino framework
2018-03-18 19:45:17 +01:00
2018-04-19 15:17:23 +02:00
configData_t cfg; // struct holds current device configuration
osjob_t sendjob, initjob; // LMIC jobs
2018-04-19 10:55:59 +02:00
2018-03-18 19:45:17 +01:00
// Initialize global variables
2018-04-17 18:46:01 +02:00
char display_lora[16], display_lmic[16]; // display buffers
2018-04-19 10:55:59 +02:00
uint64_t uptimecounter = 0; // timer global for uptime counter
uint32_t currentMillis = 0; // timer global for state machine
uint8_t DisplayState, LEDcount = 0; // globals for state machine
uint16_t LEDBlinkduration = 0, LEDInterval = 0, color=COLOR_NONE; // state machine variables
uint16_t macs_total = 0, macs_wifi = 0, macs_ble = 0; // MAC counters globals for display
uint8_t channel = 0; // wifi channel rotation counter global for display
enum states LEDState = LED_OFF; // LED state global for state machine
bool joinstate = false; // LoRa network joined? global flag
2018-03-18 19:45:17 +01:00
2018-04-02 14:34:16 +02:00
std::set<uint16_t> macs; // associative container holds total of unique MAC adress hashes (Wifi + BLE)
2018-03-18 19:45:17 +01:00
// this variable will be changed in the ISR, and read in main loop
static volatile bool ButtonTriggered = false;
// local Tag for logging
static const char *TAG = "paxcnt";
2018-03-21 17:34:11 +01:00
// Note: Log level control seems not working during runtime,
// so we need to switch loglevel by compiler build option in platformio.ini
2018-04-19 15:17:23 +02:00
2018-03-18 19:45:17 +01:00
#ifndef VERBOSE
int redirect_log(const char * fmt, va_list args) {
//do nothing
return 0;
}
#endif
2018-04-17 22:42:06 +02:00
void set_LED (uint16_t set_color, uint16_t set_blinkduration, uint16_t set_interval, uint8_t set_count) {
color = set_color; // set color for RGB LED
LEDBlinkduration = set_blinkduration; // duration on
LEDInterval = set_interval; // duration off - on - off
2018-04-19 10:55:59 +02:00
LEDcount = set_count * 2; // number of on/off cycles before LED off
LEDState = set_count ? LED_ON : LED_OFF; // sets LED to off if 0 blinks
2018-04-17 22:42:06 +02:00
}
2018-04-19 15:17:23 +02:00
void reset_counters() {
macs.clear(); // clear all macs container
macs_total = 0; // reset all counters
macs_wifi = 0;
macs_ble = 0;
}
2018-04-02 03:00:27 +02:00
/* begin LMIC specific parts ------------------------------------------------------------ */
2018-03-30 22:10:28 +02:00
2018-03-18 19:45:17 +01:00
#ifdef VERBOSE
void printKeys(void);
2018-04-02 03:00:27 +02:00
#endif // VERBOSE
2018-03-18 19:45:17 +01:00
// LMIC callback functions
2018-03-23 11:57:19 +01:00
void os_getDevKey (u1_t *buf) {
memcpy(buf, APPKEY, 16);
}
2018-03-21 22:50:49 +01:00
void os_getArtEui (u1_t *buf) {
memcpy(buf, APPEUI, 8);
RevBytes(buf, 8); // TTN requires it in LSB First order, so we swap bytes
}
2018-03-23 11:57:19 +01:00
2018-03-21 22:32:59 +01:00
void os_getDevEui (u1_t* buf) {
2018-03-23 11:57:19 +01:00
int i=0, k=0;
memcpy(buf, DEVEUI, 8); // get fixed DEVEUI from loraconf.h
for (i=0; i<8 ; i++) {
2018-03-23 11:57:19 +01:00
k += buf[i];
}
if (k) {
2018-03-23 11:57:19 +01:00
RevBytes(buf, 8); // use fixed DEVEUI and swap bytes to LSB format
} else {
2018-03-23 11:57:19 +01:00
gen_lora_deveui(buf); // generate DEVEUI from device's MAC
}
// Get MCP 24AA02E64 hardware DEVEUI (override default settings if found)
#ifdef MCP_24AA02E64_I2C_ADDRESS
get_hard_deveui(buf);
RevBytes(buf, 8); // swap bytes to LSB format
#endif
2018-03-21 22:32:59 +01:00
}
2018-03-18 19:45:17 +01:00
2018-04-02 03:00:27 +02:00
// LMIC enhanced Pin mapping
const lmic_pinmap lmic_pins = {
.mosi = PIN_SPI_MOSI,
.miso = PIN_SPI_MISO,
.sck = PIN_SPI_SCK,
.nss = PIN_SPI_SS,
.rxtx = LMIC_UNUSED_PIN,
.rst = RST,
.dio = {DIO0, DIO1, DIO2}
};
2018-03-18 19:45:17 +01:00
// LoRaWAN Initjob
static void lora_init (osjob_t* j) {
// reset MAC state
LMIC_reset();
// This tells LMIC to make the receive windows bigger, in case your clock is 1% faster or slower.
LMIC_setClockError(MAX_CLOCK_ERROR * 1 / 100);
// start joining
LMIC_startJoining();
}
2018-04-02 23:27:38 +02:00
// LMIC FreeRTos Task
2018-03-18 19:45:17 +01:00
void lorawan_loop(void * pvParameters) {
2018-04-19 15:17:23 +02:00
2018-03-18 19:45:17 +01:00
configASSERT( ( ( uint32_t ) pvParameters ) == 1 ); // FreeRTOS check
2018-04-02 03:00:27 +02:00
2018-03-18 19:45:17 +01:00
while(1) {
2018-04-17 18:08:47 +02:00
2018-03-18 19:45:17 +01:00
os_runloop_once();
2018-04-02 03:00:27 +02:00
2018-04-17 18:46:01 +02:00
// LED indicators for viusalizing LoRaWAN state
2018-04-02 03:00:27 +02:00
if ( LMIC.opmode & (OP_JOINING | OP_REJOIN) ) {
2018-04-17 22:42:06 +02:00
// 5 quick blinks 20ms on each 1/5 second while joining
set_LED(COLOR_YELLOW, 20, 200, 5);
2018-04-02 23:27:38 +02:00
// TX data pending
2018-04-02 03:00:27 +02:00
} else if (LMIC.opmode & (OP_TXDATA | OP_TXRXPEND)) {
2018-04-17 22:42:06 +02:00
// 3 small blink 10ms on each 1/2sec (not when joining)
set_LED(COLOR_BLUE, 10, 500, 3);
2018-04-02 23:27:38 +02:00
// This should not happen so indicate a problem
2018-04-02 03:13:01 +02:00
} else if ( LMIC.opmode & (OP_TXDATA | OP_TXRXPEND | OP_JOINING | OP_REJOIN) == 0 ) {
2018-04-17 22:42:06 +02:00
// 5 heartbeat long blink 200ms on each 2 seconds
set_LED(COLOR_RED, 200, 2000, 5);
2018-04-02 03:13:01 +02:00
} else {
2018-04-02 23:27:38 +02:00
// led off
2018-04-17 18:46:01 +02:00
set_LED(COLOR_NONE, 0, 0, 0);
2018-04-02 03:00:27 +02:00
}
2018-04-17 18:08:47 +02:00
2018-03-18 19:45:17 +01:00
vTaskDelay(10/portTICK_PERIOD_MS);
yield();
}
}
/* end LMIC specific parts --------------------------------------------------------------- */
/* beginn hardware specific parts -------------------------------------------------------- */
2018-03-21 17:34:11 +01:00
#ifdef HAS_DISPLAY
HAS_DISPLAY u8x8(OLED_RST, OLED_SCL, OLED_SDA);
#endif
#ifdef HAS_ANTENNA_SWITCH
2018-03-18 19:45:17 +01:00
// defined in antenna.cpp
void antenna_init();
void antenna_select(const int8_t _ant);
2018-03-18 19:45:17 +01:00
#endif
2018-04-14 20:22:58 +02:00
#ifndef BLECOUNTER
2018-04-07 12:02:13 +02:00
bool btstop = btStop();
2018-03-18 19:45:17 +01:00
#endif
#ifdef HAS_BUTTON
2018-03-25 23:38:54 +02:00
// Button Handling, board dependent -> perhaps to be moved to hal/<$board.h>
2018-03-18 19:45:17 +01:00
// IRAM_ATTR necessary here, see https://github.com/espressif/arduino-esp32/issues/855
void IRAM_ATTR isr_button_pressed(void) {
2018-03-25 23:38:54 +02:00
ButtonTriggered = true; }
2018-03-18 19:45:17 +01:00
#endif
/* end hardware specific parts -------------------------------------------------------- */
/* begin wifi specific parts ---------------------------------------------------------- */
2018-04-05 08:48:24 +02:00
// Sniffer Task
void sniffer_loop(void * pvParameters) {
2018-03-18 19:45:17 +01:00
configASSERT( ( ( uint32_t ) pvParameters ) == 1 ); // FreeRTOS check
2018-04-19 15:17:23 +02:00
2018-04-05 08:48:24 +02:00
char buff[16];
2018-03-31 23:22:43 +02:00
int nloop=0, lorawait=0;
2018-04-05 08:48:24 +02:00
2018-04-19 15:17:23 +02:00
while (1) {
2018-04-02 19:04:10 +02:00
2018-04-05 21:47:43 +02:00
nloop++; // actual number of wifi loops, controls cycle when data is sent
2018-04-02 19:04:10 +02:00
channel = (channel % WIFI_CHANNEL_MAX) + 1; // rotates variable channel 1..WIFI_CHANNEL_MAX
2018-04-02 01:36:14 +02:00
wifi_sniffer_set_channel(channel);
2018-04-15 12:12:06 +02:00
ESP_LOGD(TAG, "Wifi set channel %d", channel);
2018-04-15 22:31:19 +02:00
2018-03-18 19:45:17 +01:00
// duration of one wifi scan loop reached? then send data and begin new scan cycle
2018-04-07 12:02:13 +02:00
if ( nloop >= ( (100 / cfg.wifichancycle) * (cfg.wifiscancycle * 2)) +1 ) {
2018-04-19 15:17:23 +02:00
nloop=0; channel=0; // reset wifi scan + channel loop counter
2018-04-02 19:04:10 +02:00
do_send(&sendjob); // Prepare and execute LoRaWAN data upload
2018-04-19 15:17:23 +02:00
//vTaskDelay(500/portTICK_PERIOD_MS); // tbd - is this delay really needed here?
//yield();
2018-03-18 19:45:17 +01:00
// clear counter if not in cumulative counter mode
2018-03-30 20:41:08 +02:00
if (cfg.countermode != 1) {
2018-04-19 15:17:23 +02:00
reset_counters(); // clear macs container and reset all counters
reset_salt(); // get new salt for salting hashes
2018-03-18 19:45:17 +01:00
}
2018-04-16 00:05:11 +02:00
// check if payload is sent
2018-03-18 19:45:17 +01:00
lorawait = 0;
while(LMIC.opmode & OP_TXRXPEND) {
2018-04-03 18:03:05 +02:00
if(!lorawait)
2018-04-15 23:50:53 +02:00
sprintf(display_lora, "LoRa wait");
2018-03-18 19:45:17 +01:00
lorawait++;
// in case sending really fails: reset and rejoin network
if( (lorawait % MAXLORARETRY ) == 0) {
ESP_LOGI(TAG, "Payload not sent, trying reset and rejoin");
esp_restart();
};
vTaskDelay(1000/portTICK_PERIOD_MS);
yield();
}
2018-04-17 22:42:06 +02:00
sprintf(display_lora, ""); // clear LoRa wait message fromd display
2018-04-16 11:03:12 +02:00
2018-04-02 19:04:10 +02:00
} // end of send data cycle
2018-04-03 18:13:39 +02:00
2018-04-19 15:17:23 +02:00
vTaskDelay(cfg.wifichancycle*10 / portTICK_PERIOD_MS);
yield();
2018-04-14 20:33:33 +02:00
} // end of infinite wifi channel rotation loop
2018-03-18 19:45:17 +01:00
}
/* end wifi specific parts ------------------------------------------------------------ */
// uptime counter 64bit to prevent millis() rollover after 49 days
uint64_t uptime() {
static uint32_t low32, high32;
uint32_t new_low32 = millis();
if (new_low32 < low32) high32++;
low32 = new_low32;
return (uint64_t) high32 << 32 | low32;
}
2018-04-16 20:56:29 +02:00
#ifdef HAS_DISPLAY
2018-03-18 19:45:17 +01:00
2018-04-17 18:08:47 +02:00
// Print a key on display
void DisplayKey(const uint8_t * key, uint8_t len, bool lsb) {
uint8_t start=lsb?len:0;
uint8_t end = lsb?0:len;
const uint8_t * p ;
for (uint8_t i=0; i<len ; i++) {
p = lsb ? key+len-i-1 : key+i;
u8x8.printf("%02X", *p);
}
u8x8.printf("\n");
}
void init_display(const char *Productname, const char *Version) {
uint8_t buf[32];
u8x8.begin();
u8x8.setFont(u8x8_font_chroma48medium8_r);
u8x8.clear();
u8x8.setFlipMode(0);
u8x8.setInverseFont(1);
u8x8.draw2x2String(0, 0, Productname);
u8x8.setInverseFont(0);
u8x8.draw2x2String(2, 2, Productname);
delay(1500);
u8x8.clear();
2018-04-03 23:42:43 +02:00
u8x8.setFlipMode(1);
2018-04-17 18:08:47 +02:00
u8x8.setInverseFont(1);
u8x8.draw2x2String(0, 0, Productname);
u8x8.setInverseFont(0);
u8x8.draw2x2String(2, 2, Productname);
delay(1500);
u8x8.setFlipMode(0);
u8x8.clear();
#ifdef DISPLAY_FLIP
u8x8.setFlipMode(1);
#endif
// Display chip information
#ifdef VERBOSE
esp_chip_info_t chip_info;
esp_chip_info(&chip_info);
u8x8.printf("ESP32 %d cores\nWiFi%s%s\n",
chip_info.cores,
(chip_info.features & CHIP_FEATURE_BT) ? "/BT" : "",
(chip_info.features & CHIP_FEATURE_BLE) ? "/BLE" : "");
u8x8.printf("ESP Rev.%d\n", chip_info.revision);
u8x8.printf("%dMB %s Flash\n", spi_flash_get_chip_size() / (1024 * 1024),
(chip_info.features & CHIP_FEATURE_EMB_FLASH) ? "int." : "ext.");
#endif // VERBOSE
u8x8.print(Productname);
u8x8.print(" v");
u8x8.println(PROGVERSION);
u8x8.println("DEVEUI:");
os_getDevEui((u1_t*) buf);
DisplayKey(buf, 8, true);
delay(5000);
u8x8.clear();
}
void refreshDisplay() {
// update counter display (lines 0-4)
char buff[16];
snprintf(buff, sizeof(buff), "PAX:%-4d", (int) macs.size()); // convert 16-bit MAC counter to decimal counter value
u8x8.draw2x2String(0, 0, buff); // display number on unique macs total Wifi + BLE
u8x8.setCursor(0,4);
2018-04-19 10:55:59 +02:00
u8x8.printf("WIFI: %-4d", macs_wifi);
2018-04-17 18:08:47 +02:00
#ifdef BLECOUNTER
u8x8.setCursor(0,3);
if (cfg.blescan)
2018-04-19 10:55:59 +02:00
u8x8.printf("BLTH: %-4d", macs_ble);
2018-04-17 18:08:47 +02:00
else
u8x8.printf("%-16s", "BLTH: off");
#endif
// update wifi channel display (line 4)
u8x8.setCursor(11,4);
u8x8.printf("ch:%02i", channel);
// update RSSI limiter status display (line 5)
u8x8.setCursor(0,5);
u8x8.printf(!cfg.rssilimit ? "RLIM: off" : "RLIM: %-4d", cfg.rssilimit);
// update LoRa status display (line 6)
u8x8.setCursor(0,6);
u8x8.printf("%-16s", display_lora);
// update LMiC event display (line 7)
u8x8.setCursor(0,7);
u8x8.printf("%-16s", display_lmic);
}
void updateDisplay() {
2018-04-17 19:28:58 +02:00
// timed display refresh according to refresh cycle setting
2018-04-19 10:55:59 +02:00
uint32_t previousDisplaymillis = currentMillis;
2018-04-17 18:46:01 +02:00
if (currentMillis - previousDisplaymillis >= DISPLAYREFRESH_MS) {
2018-04-17 18:08:47 +02:00
refreshDisplay();
2018-04-17 18:46:01 +02:00
previousDisplaymillis += DISPLAYREFRESH_MS;
2018-04-17 18:08:47 +02:00
}
// set display on/off according to current device configuration
if (DisplayState != cfg.screenon) {
DisplayState = cfg.screenon;
u8x8.setPowerSave(!cfg.screenon);
}
} // updateDisplay()
2018-04-03 23:42:43 +02:00
2018-04-16 20:56:29 +02:00
#endif // HAS_DISPLAY
2018-03-18 19:45:17 +01:00
2018-04-17 18:08:47 +02:00
#ifdef HAS_BUTTON
void readButton() {
if (ButtonTriggered) {
ButtonTriggered = false;
ESP_LOGI(TAG, "Button pressed, resetting device to factory defaults");
eraseConfig();
esp_restart();
}
}
#endif
#ifdef HAS_LED
2018-04-17 22:42:06 +02:00
void switchLED() {
2018-04-19 10:55:59 +02:00
enum states previousLEDState;
2018-04-17 18:08:47 +02:00
// led need to change state? avoid digitalWrite() for nothing
if (LEDState != previousLEDState) {
#ifdef LED_ACTIVE_LOW
digitalWrite(HAS_LED, !LEDState);
2018-04-17 22:42:06 +02:00
#else
digitalWrite(HAS_LED, LEDState);
2018-04-17 18:08:47 +02:00
#endif
#ifdef HAS_RGB_LED
2018-04-17 23:14:01 +02:00
rgb_set_color(LEDState ? color : COLOR_NONE);
2018-04-17 18:08:47 +02:00
#endif
2018-04-17 23:14:01 +02:00
2018-04-17 18:08:47 +02:00
previousLEDState = LEDState;
2018-04-17 22:42:06 +02:00
LEDcount--; // decrement blink counter
2018-04-17 18:08:47 +02:00
}
2018-04-17 22:42:06 +02:00
}; // switchLED()
void switchLEDstate() {
if (!LEDcount) // no more blinks? -> switch off LED
2018-04-19 10:55:59 +02:00
LEDState = LED_OFF;
2018-04-17 22:42:06 +02:00
else if (LEDInterval) // blinks left? -> toggle LED and decrement blinks
2018-04-19 10:55:59 +02:00
LEDState = ((currentMillis % LEDInterval) < LEDBlinkduration) ? LED_ON : LED_OFF;
2018-04-17 22:42:06 +02:00
} // switchLEDstate()
2018-04-17 18:08:47 +02:00
#endif
2018-03-18 19:45:17 +01:00
/* begin Aruino SETUP ------------------------------------------------------------ */
void setup() {
2018-04-03 17:47:11 +02:00
// disable brownout detection
#ifdef DISABLE_BROWNOUT
2018-04-03 17:47:11 +02:00
// register with brownout is at address DR_REG_RTCCNTL_BASE + 0xd4
(*((volatile uint32_t *)ETS_UNCACHED_ADDR((DR_REG_RTCCNTL_BASE+0xd4)))) = 0;
#endif
2018-03-18 19:45:17 +01:00
// setup debug output or silence device
#ifdef VERBOSE
Serial.begin(115200);
esp_log_level_set("*", ESP_LOG_VERBOSE);
#else
// mute logs completely by redirecting them to silence function
esp_log_level_set("*", ESP_LOG_NONE);
esp_log_set_vprintf(redirect_log);
#endif
ESP_LOGI(TAG, "Starting %s %s", PROGNAME, PROGVERSION);
2018-04-03 17:47:11 +02:00
// initialize system event handler for wifi task, needed for wifi_sniffer_init()
2018-03-21 17:34:11 +01:00
esp_event_loop_init(NULL, NULL);
2018-03-18 19:45:17 +01:00
2018-04-03 17:47:11 +02:00
// print chip information on startup if in verbose mode
2018-03-18 19:45:17 +01:00
#ifdef VERBOSE
esp_chip_info_t chip_info;
esp_chip_info(&chip_info);
ESP_LOGI(TAG, "This is ESP32 chip with %d CPU cores, WiFi%s%s, silicon revision %d, %dMB %s Flash",
chip_info.cores,
(chip_info.features & CHIP_FEATURE_BT) ? "/BT" : "",
(chip_info.features & CHIP_FEATURE_BLE) ? "/BLE" : "",
chip_info.revision, spi_flash_get_chip_size() / (1024 * 1024),
(chip_info.features & CHIP_FEATURE_EMB_FLASH) ? "embedded" : "external");
2018-03-21 14:33:55 +01:00
ESP_LOGI(TAG, "ESP32 SDK: %s", ESP.getSdkVersion());
2018-03-25 23:38:54 +02:00
#endif
2018-03-18 19:45:17 +01:00
2018-04-03 17:47:11 +02:00
// read settings from NVRAM
2018-03-18 19:45:17 +01:00
loadConfig(); // includes initialize if necessary
2018-04-02 03:00:27 +02:00
2018-04-03 17:47:11 +02:00
// initialize led if needed
2018-03-18 19:45:17 +01:00
#ifdef HAS_LED
2018-03-21 17:34:11 +01:00
pinMode(HAS_LED, OUTPUT);
2018-04-17 22:42:06 +02:00
set_LED(COLOR_NONE, 0, 0, 0); // LED off
2018-03-18 19:45:17 +01:00
#endif
2018-04-03 17:47:11 +02:00
// initialize button handling if needed
2018-03-25 23:38:54 +02:00
#ifdef HAS_BUTTON
2018-03-27 12:45:09 +02:00
#ifdef BUTTON_PULLUP
// install button interrupt (pullup mode)
pinMode(HAS_BUTTON, INPUT_PULLUP);
attachInterrupt(digitalPinToInterrupt(HAS_BUTTON), isr_button_pressed, RISING);
#else
// install button interrupt (pulldown mode)
pinMode(HAS_BUTTON, INPUT_PULLDOWN);
attachInterrupt(digitalPinToInterrupt(HAS_BUTTON), isr_button_pressed, FALLING);
#endif
2018-03-18 19:45:17 +01:00
#endif
2018-04-03 17:47:11 +02:00
// initialize wifi antenna if needed
#ifdef HAS_ANTENNA_SWITCH
2018-03-18 19:45:17 +01:00
antenna_init();
#endif
2018-04-16 20:56:29 +02:00
#ifdef HAS_DISPLAY
2018-04-03 18:03:05 +02:00
// initialize display
2018-04-17 18:08:47 +02:00
init_display(PROGNAME, PROGVERSION);
DisplayState = cfg.screenon;
2018-04-03 17:47:11 +02:00
u8x8.setPowerSave(!cfg.screenon); // set display off if disabled
2018-04-14 20:22:58 +02:00
u8x8.draw2x2String(0, 0, "PAX:0");
u8x8.setCursor(0,4);
u8x8.printf("WIFI: 0");
#ifdef BLECOUNTER
u8x8.setCursor(0,3);
2018-04-15 12:12:06 +02:00
u8x8.printf("BLTH: 0");
2018-04-14 20:22:58 +02:00
#endif
2018-04-03 17:47:11 +02:00
u8x8.setCursor(0,5);
2018-04-04 14:22:15 +02:00
u8x8.printf(!cfg.rssilimit ? "RLIM: off" : "RLIM: %d", cfg.rssilimit);
2018-04-15 23:50:53 +02:00
sprintf(display_lora, "Join wait");
2018-04-16 20:56:29 +02:00
#endif
2018-04-03 17:47:11 +02:00
// output LoRaWAN keys to console
2018-03-18 19:45:17 +01:00
#ifdef VERBOSE
printKeys();
2018-04-03 17:47:11 +02:00
#endif
os_init(); // setup LMIC
os_setCallback(&initjob, lora_init); // setup initial job & join network
wifi_sniffer_init(); // setup wifi in monitor mode and start MAC counting
2018-03-18 19:45:17 +01:00
2018-04-03 17:47:11 +02:00
// initialize salt value using esp_random() called by random() in arduino-esp32 core
// note: do this *after* wifi has started, since gets it's seed from RF noise
2018-04-19 15:17:23 +02:00
reset_salt(); // get new 16bit for salting hashes
2018-03-18 19:45:17 +01:00
2018-04-15 14:32:26 +02:00
// run wifi task on core 0 and lora task on core 1 and bt task on core 0
ESP_LOGI(TAG, "Starting Lora task on core 1");
xTaskCreatePinnedToCore(lorawan_loop, "loratask", 2048, ( void * ) 1, ( 5 | portPRIVILEGE_BIT ), NULL, 1);
ESP_LOGI(TAG, "Starting Wifi task on core 0");
2018-04-15 22:21:30 +02:00
xTaskCreatePinnedToCore(sniffer_loop, "wifisniffer", 16384, ( void * ) 1, 1, NULL, 0);
2018-04-15 14:32:26 +02:00
#ifdef BLECOUNTER
if (cfg.blescan) { // start BLE task only if BLE function is enabled in NVRAM configuration
ESP_LOGI(TAG, "Starting Bluetooth task on core 0");
2018-04-15 22:21:30 +02:00
xTaskCreatePinnedToCore(bt_loop, "btscan", 16384, NULL, 5, NULL, 0);
2018-04-15 14:32:26 +02:00
}
2018-03-18 19:45:17 +01:00
#endif
2018-04-03 17:47:11 +02:00
// Finally: kickoff first sendjob and join, then send initial payload "0000"
uint8_t mydata[] = "0000";
do_send(&sendjob);
2018-03-18 19:45:17 +01:00
}
/* end Aruino SETUP ------------------------------------------------------------ */
/* begin Aruino LOOP ------------------------------------------------------------ */
// Arduino main moop, runs on core 1
// https://techtutorialsx.com/2017/05/09/esp32-get-task-execution-core/
void loop() {
2018-04-16 00:28:55 +02:00
2018-04-17 19:20:54 +02:00
uptimecounter = uptime() / 1000; // counts uptime in seconds (64bit)
currentMillis = millis(); // timebase for state machine in milliseconds (32bit)
2018-04-17 19:28:58 +02:00
// simple state machine for controlling display, LED, button, etc.
2018-04-15 18:54:23 +02:00
2018-04-17 18:08:47 +02:00
#ifdef HAS_BUTTON
readButton();
2018-04-15 22:21:30 +02:00
#endif
2018-04-15 23:50:53 +02:00
2018-04-17 18:08:47 +02:00
#ifdef HAS_DISPLAY
updateDisplay();
#endif
2018-04-15 23:50:53 +02:00
2018-04-17 18:08:47 +02:00
#ifdef HAS_LED
2018-04-17 22:42:06 +02:00
switchLEDstate();
switchLED();
2018-04-15 22:21:30 +02:00
#endif
2018-04-17 19:28:58 +02:00
//sendPayload();
2018-04-15 18:54:23 +02:00
2018-03-18 19:45:17 +01:00
}
/* end Aruino LOOP ------------------------------------------------------------ */