ESP32-PaxCounter/src/main.cpp

428 lines
14 KiB
C++
Raw Normal View History

2018-03-18 19:45:17 +01:00
/*
*
* Oliver Brandmueller <ob@sysadm.in> 2017/2018
* Klaus Wilting <verkehrsrot@arcor.de> 2018
*
* some lines of code taken from:
*
* Copyright (c) 2017, Łukasz Marcin Podkalicki <lpodkalicki@gmail.com>
* ESP32/016 WiFi Sniffer.
* https://github.com/lpodkalicki/blog/tree/master/esp32/016_wifi_sniffer
*
* Arduino-LMIC Library
* TTN OTAA Example
* https://github.com/matthijskooijman/arduino-lmic/blob/master/examples/ttn-otaa/
*
* nkolban esp32 snippets
* BLE Scan
* https://github.com/nkolban/esp32-snippets/tree/master/cpp_utils/tests/BLETests/Arduino/BLE_scan
*
* parts of code in lorawan.cpp has been grabbed from RadioHead Library
*/
// First things first
#include "main.h"
// std::set for unified array functions
#include <set>
// OLED driver
#include <U8x8lib.h>
#ifdef HAS_DISPLAY
U8X8_SSD1306_128X64_NONAME_HW_I2C u8x8(OLED_RST, OLED_SCL, OLED_SDA);
#else
U8X8_NULL u8x8;
#endif
// LMIC-Arduino LoRaWAN Stack
#include <lmic.h>
#include <hal/hal.h>
// Basic Config
#include "loraconf.h"
#include "configmanager.h"
// WiFi Functions
#include <esp_wifi.h>
#include <esp_wifi_types.h>
#include <esp_system.h>
#include <esp_event.h>
#include <esp_event_loop.h>
#include <esp_spi_flash.h>
configData_t cfg; // struct holds current device configuration
osjob_t sendjob, initjob; // LMIC
// Initialize global variables
int macnum = 0, blenum = 0;
uint32_t uptimecounter = 0;
bool joinstate = false;
extern uint8_t mydata[];
std::set<uint64_t, std::greater <uint64_t> > macs; // storage holds MAC frames
// this variable will be changed in the ISR, and read in main loop
static volatile bool ButtonTriggered = false;
// local Tag for logging
static const char *TAG = "paxcnt";
// Note: Log level control seems working during runtime, so we need to switch loglevel
// by compiler build option in platformio.ini
#ifndef VERBOSE
int redirect_log(const char * fmt, va_list args) {
//do nothing
return 0;
}
#endif
// defined in configmanager.cpp
void eraseConfig(void);
void saveConfig(void);
void loadConfig(void);
/* begin LMIC specific parts ------------------------------------------------------------ */
// defined in lorawan.cpp
void gen_lora_deveui(uint8_t * pdeveui);
#ifdef VERBOSE
void printKeys(void);
#endif // VERBOSE
// LMIC callback functions
void os_getArtEui (u1_t *buf) { memcpy(buf, APPEUI, 8);}
void os_getDevKey (u1_t *buf) { memcpy(buf, APPKEY, 16);}
#ifdef DEVEUI // if DEVEUI defined in loraconf.h use that and hardwire it in code ...
void os_getDevEui (u1_t *buf) { memcpy(buf, DEVEUI, 8);}
#else // ... otherwise generate DEVEUI at runtime from devices's MAC
void os_getDevEui (u1_t *buf) { gen_lora_deveui(buf);}
#endif
// LMIC enhanced Pin mapping
const lmic_pinmap lmic_pins = {
.mosi = PIN_SPI_MOSI,
.miso = PIN_SPI_MISO,
.sck = PIN_SPI_SCK,
.nss = PIN_SPI_SS,
.rxtx = LMIC_UNUSED_PIN,
.rst = RST,
.dio = {DIO0, DIO1, DIO2}
};
// LMIC functions
void onEvent(ev_t ev);
void do_send(osjob_t* j);
// LoRaWAN Initjob
static void lora_init (osjob_t* j) {
// reset MAC state
LMIC_reset();
// This tells LMIC to make the receive windows bigger, in case your clock is 1% faster or slower.
LMIC_setClockError(MAX_CLOCK_ERROR * 1 / 100);
// start joining
LMIC_startJoining();
}
// LMIC Task
void lorawan_loop(void * pvParameters) {
configASSERT( ( ( uint32_t ) pvParameters ) == 1 ); // FreeRTOS check
while(1) {
os_runloop_once();
vTaskDelay(10/portTICK_PERIOD_MS);
yield();
}
}
/* end LMIC specific parts --------------------------------------------------------------- */
/* beginn hardware specific parts -------------------------------------------------------- */
#ifdef LOPY
// defined in antenna.cpp
void antenna_init (void);
void antenna_select (antenna_type_t antenna_type);
#endif
#if defined BLECOUNTER
void BLECount(void);
#else
btStop();
#endif
void set_onboard_led(int st){
#ifdef HAS_LED
switch (st) {
case 1: digitalWrite(LED_BUILTIN, HIGH); break;
case 0: digitalWrite(LED_BUILTIN, LOW); break;
}
#endif
};
#ifdef HAS_BUTTON
// Button Handling, board dependent -> perhaps to be moved to new hal.cpp
// IRAM_ATTR necessary here, see https://github.com/espressif/arduino-esp32/issues/855
void IRAM_ATTR isr_button_pressed(void) {
ButtonTriggered++; }
#endif
/* end hardware specific parts -------------------------------------------------------- */
/* begin wifi specific parts ---------------------------------------------------------- */
// defined in wifisniffer.cpp
void wifi_sniffer_init(void);
void wifi_sniffer_set_channel(uint8_t channel);
void wifi_sniffer_packet_handler(void *buff, wifi_promiscuous_pkt_type_t type);
//WiFi Sniffer Task
void wifi_sniffer_loop(void * pvParameters) {
configASSERT( ( ( uint32_t ) pvParameters ) == 1 ); // FreeRTOS check
uint8_t channel = 1;
int nloop=0, lorawait=0;
while (true) {
nloop++;
vTaskDelay(cfg.wifichancycle*10 / portTICK_PERIOD_MS);
yield();
wifi_sniffer_set_channel(channel);
channel = (channel % WIFI_CHANNEL_MAX) + 1;
// duration of one wifi scan loop reached? then send data and begin new scan cycle
if( nloop >= ((100 / cfg.wifichancycle) * (cfg.wifiscancycle * 2)) ) {
u8x8.setPowerSave(!cfg.screenon); // set display on if enabled
nloop = 0; // reset wlan sniffing loop counter
// execute BLE count if BLE function is enabled
#ifdef BLECOUNTER
if ( cfg.blescan )
BLECount();
#endif
// Prepare and execute LoRaWAN data upload
u8x8.setCursor(0,4);
u8x8.printf("MAC#: %4i", macnum);
do_send(&sendjob); // send payload
vTaskDelay(500/portTICK_PERIOD_MS);
yield();
// clear counter if not in cumulative counter mode
if ( cfg.countermode != 1 ) {
macs.erase(macs.begin(), macs.end()); // clear RAM
macnum = 0;
u8x8.clearLine(0); u8x8.clearLine(1); // clear Display counter
}
// wait until payload is sent, while wifi scanning and mac counting task continues
lorawait = 0;
while(LMIC.opmode & OP_TXRXPEND) {
if(!lorawait) u8x8.drawString(0,6,"LoRa wait ");
lorawait++;
// in case sending really fails: reset and rejoin network
if( (lorawait % MAXLORARETRY ) == 0) {
ESP_LOGI(TAG, "Payload not sent, trying reset and rejoin");
esp_restart();
};
vTaskDelay(1000/portTICK_PERIOD_MS);
yield();
}
u8x8.clearLine(6);
if (cfg.screenon && cfg.screensaver) vTaskDelay(2000/portTICK_PERIOD_MS); // pause for displaying results
yield();
u8x8.setPowerSave(1 && cfg.screensaver); // set display off if screensaver is enabled
}
}
}
/* end wifi specific parts ------------------------------------------------------------ */
// uptime counter 64bit to prevent millis() rollover after 49 days
uint64_t uptime() {
static uint32_t low32, high32;
uint32_t new_low32 = millis();
if (new_low32 < low32) high32++;
low32 = new_low32;
return (uint64_t) high32 << 32 | low32;
}
// Print a key on display
void DisplayKey(const uint8_t * key, uint8_t len, bool lsb) {
uint8_t start=lsb?len:0;
uint8_t end = lsb?0:len;
const uint8_t * p ;
for (uint8_t i=0; i<len ; i++) {
p = lsb ? key+len-i-1 : key+i;
u8x8.printf("%02X", *p);
}
u8x8.printf("\n");
}
void init_display(const char *Productname, const char *Version) {
u8x8.begin();
u8x8.setFont(u8x8_font_chroma48medium8_r);
#ifdef HAS_DISPLAY
uint8_t buf[32];
u8x8.clear();
u8x8.setFlipMode(0);
u8x8.setInverseFont(1);
u8x8.draw2x2String(0, 0, Productname);
u8x8.setInverseFont(0);
u8x8.draw2x2String(2, 2, Productname);
delay(1500);
u8x8.clear();
u8x8.setFlipMode(1);
u8x8.setInverseFont(1);
u8x8.draw2x2String(0, 0, Productname);
u8x8.setInverseFont(0);
u8x8.draw2x2String(2, 2, Productname);
delay(1500);
u8x8.setFlipMode(0);
u8x8.clear();
// Display chip information
#ifdef VERBOSE
esp_chip_info_t chip_info;
esp_chip_info(&chip_info);
u8x8.printf("ESP32 %d cores\nWiFi%s%s\n",
chip_info.cores,
(chip_info.features & CHIP_FEATURE_BT) ? "/BT" : "",
(chip_info.features & CHIP_FEATURE_BLE) ? "/BLE" : "");
u8x8.printf("ESP Rev.%d\n", chip_info.revision);
u8x8.printf("%dMB %s Flash\n", spi_flash_get_chip_size() / (1024 * 1024),
(chip_info.features & CHIP_FEATURE_EMB_FLASH) ? "int." : "ext.");
#endif // VERBOSE
u8x8.print(Productname);
u8x8.print(" v");
u8x8.println(PROGVERSION);
u8x8.println("DEVEUI:");
os_getDevEui((u1_t*) buf);
DisplayKey(buf, 8, true);
delay(5000);
u8x8.clear();
#endif // HAS_DISPLAY
}
/* begin Aruino SETUP ------------------------------------------------------------ */
void setup() {
// setup debug output or silence device
#ifdef VERBOSE
Serial.begin(115200);
esp_log_level_set("*", ESP_LOG_VERBOSE);
#else
// mute logs completely by redirecting them to silence function
esp_log_level_set("*", ESP_LOG_NONE);
esp_log_set_vprintf(redirect_log);
#endif
ESP_LOGI(TAG, "Starting %s %s", PROGNAME, PROGVERSION);
/*
2018-03-20 21:38:41 +01:00
tcpip_adapter_init(); // not sure if necessary, but seems needed for TTGOv1
2018-03-18 19:45:17 +01:00
// ESP Event Loop
2018-03-20 21:38:41 +01:00
esp_event_loop_init(NULL, NULL); // not sure if necessary -> to be checked
*/
2018-03-18 19:45:17 +01:00
// Print chip information on startup
#ifdef VERBOSE
esp_chip_info_t chip_info;
esp_chip_info(&chip_info);
ESP_LOGI(TAG, "This is ESP32 chip with %d CPU cores, WiFi%s%s, silicon revision %d, %dMB %s Flash",
chip_info.cores,
(chip_info.features & CHIP_FEATURE_BT) ? "/BT" : "",
(chip_info.features & CHIP_FEATURE_BLE) ? "/BLE" : "",
chip_info.revision, spi_flash_get_chip_size() / (1024 * 1024),
(chip_info.features & CHIP_FEATURE_EMB_FLASH) ? "embedded" : "external");
#endif // VERBOSE
// Read settings from NVRAM
loadConfig(); // includes initialize if necessary
// initialize hardware -> perhaps to be moved to new hal.cpp
#ifdef HAS_LED
// initialize LED
pinMode(LED_BUILTIN, OUTPUT); // white LED on Heltec board
digitalWrite(LED_BUILTIN, LOW);
#endif
#ifdef HAS_BUTTON
// install button interrupt
pinMode(GPIO_NUM_0, INPUT_PULLDOWN); // button "PROG" on Heltec board
attachInterrupt(digitalPinToInterrupt(GPIO_NUM_0), isr_button_pressed, FALLING);
#endif
// initialize wifi antenna
#ifdef LOPY
antenna_init();
antenna_select(WIFI_LOPY_ANTENNA);
#endif
// initialize display
init_display(PROGNAME, PROGVERSION);
u8x8.setPowerSave(!cfg.screenon); // set display off if disabled
u8x8.setCursor(0,5);
u8x8.printf(!cfg.rssilimit ? "RLIM: off" : "RLIM: %4i", cfg.rssilimit);
u8x8.drawString(0,6,"Join Wait ");
// output LoRaWAN keys to console
#ifdef VERBOSE
printKeys();
#endif // VERBOSE
os_init(); // setup LMIC
os_setCallback(&initjob, lora_init); // setup initial job & join network
wifi_sniffer_init(); // setup wifi in monitor mode and start MAC counting
// Start FreeRTOS tasks
#if CONFIG_FREERTOS_UNICORE // run all tasks on core 0 and switch off core 1
ESP_LOGI(TAG, "Starting Lora task on core 0");
xTaskCreatePinnedToCore(lorawan_loop, "loratask", 2048, ( void * ) 1, ( 5 | portPRIVILEGE_BIT ), NULL, 0);
ESP_LOGI(TAG, "Starting Wifi task on core 0");
xTaskCreatePinnedToCore(wifi_sniffer_loop, "wifisniffer", 4096, ( void * ) 1, 1, NULL, 0);
// to come here: code for switching off core 1
#else // run wifi task on core 0 and lora task on core 1
ESP_LOGI(TAG, "Starting Lora task on core 1");
xTaskCreatePinnedToCore(lorawan_loop, "loratask", 2048, ( void * ) 1, ( 5 | portPRIVILEGE_BIT ), NULL, 1);
ESP_LOGI(TAG, "Starting Wifi task on core 0");
xTaskCreatePinnedToCore(wifi_sniffer_loop, "wifisniffer", 4096, ( void * ) 1, 1, NULL, 0);
#endif
// Kickoff first sendjob, use payload "0000"
uint8_t mydata[] = "0000";
do_send(&sendjob);
}
/* end Aruino SETUP ------------------------------------------------------------ */
/* begin Aruino LOOP ------------------------------------------------------------ */
// Arduino main moop, runs on core 1
// https://techtutorialsx.com/2017/05/09/esp32-get-task-execution-core/
void loop() {
while(1) {
if (ButtonTriggered) {
ButtonTriggered = false;
ESP_LOGI(TAG, "Button pressed, resetting device to factory defaults");
eraseConfig();
esp_restart();
}
else {
vTaskDelay(1000/portTICK_PERIOD_MS);
uptimecounter = uptime() / 1000; // count uptime seconds
}
}
}
/* end Aruino LOOP ------------------------------------------------------------ */