ESP32-PaxCounter/src/timekeeper.cpp

234 lines
6.8 KiB
C++
Raw Normal View History

2019-02-24 01:44:55 +01:00
#include "timekeeper.h"
2019-02-21 23:17:01 +01:00
// Local logging tag
2019-02-27 00:52:27 +01:00
static const char TAG[] = __FILE__;
2019-02-21 23:17:01 +01:00
2019-02-24 15:08:41 +01:00
// symbol to display current time source
const char timeSetSymbols[] = {'G', 'R', 'L', '?'};
2019-02-24 23:13:15 +01:00
getExternalTime TimeSourcePtr; // pointer to time source function
2019-02-27 00:52:27 +01:00
// syncs systime from external time source and sets/reads RTC, called by
// cyclic.cpp
void timeSync(void) {
2019-02-21 23:17:01 +01:00
2019-02-25 00:26:46 +01:00
time_t t = 0;
2019-02-21 23:17:01 +01:00
#ifdef HAS_GPS
2019-02-27 00:52:27 +01:00
// do we have a valid GPS time?
if (get_gpstime()) { // then let's sync GPS time on top of second
xSemaphoreTake(TimePulse, pdMS_TO_TICKS(1000)); // wait for pps
vTaskDelay(gpsDelay_ticks);
t = get_gpstime(); // fetch time from recent NEMA record
if (t) {
t++; // gps time concerns past second, so we add one
xSemaphoreTake(TimePulse, pdMS_TO_TICKS(1000)); // wait for pps
setTime(t);
#ifdef HAS_RTC
2019-02-27 00:52:27 +01:00
set_rtctime(t); // calibrate RTC
#endif
2019-02-27 00:52:27 +01:00
timeSource = _gps;
goto exit;
}
}
2019-02-21 23:17:01 +01:00
#endif
2019-02-23 23:39:45 +01:00
2019-02-24 13:47:18 +01:00
// no GPS -> fallback to RTC time while trying lora sync
2019-02-24 01:44:55 +01:00
#ifdef HAS_RTC
2019-02-27 00:52:27 +01:00
t = get_rtctime();
if (t) {
setTime(t);
timeSource = _rtc;
} else
ESP_LOGW(TAG, "no confident RTC time");
2019-02-22 23:17:28 +01:00
#endif
2019-02-21 23:17:01 +01:00
2019-02-24 01:44:55 +01:00
// try lora sync if we have
#if defined HAS_LORA && defined TIME_SYNC_LORA
2019-02-27 00:52:27 +01:00
LMIC_requestNetworkTime(user_request_network_time_callback, &userUTCTime);
2019-02-21 23:17:01 +01:00
#endif
exit:
2019-02-24 23:13:15 +01:00
2019-02-27 00:52:27 +01:00
if (t)
ESP_LOGD(TAG, "Time was set by %c to %02d:%02d:%02d",
timeSetSymbols[timeSource], hour(t), minute(t), second(t));
else
timeSource = _unsynced;
2019-02-24 23:13:15 +01:00
2019-02-27 00:52:27 +01:00
} // timeSync()
2019-02-21 23:17:01 +01:00
// helper function to setup a pulse per second for time synchronisation
2019-02-24 01:44:55 +01:00
uint8_t timepulse_init() {
2019-02-21 23:17:01 +01:00
// use time pulse from GPS as time base with fixed 1Hz frequency
#ifdef GPS_INT
2019-02-23 20:28:11 +01:00
// setup external interupt pin for GPS INT output
2019-02-21 23:17:01 +01:00
pinMode(GPS_INT, INPUT_PULLDOWN);
// setup external rtc 1Hz clock as pulse per second clock
ESP_LOGI(TAG, "Timepulse: external (GPS)");
return 1; // success
// use pulse from on board RTC chip as time base with fixed frequency
#elif defined RTC_INT
2019-02-23 20:28:11 +01:00
// setup external interupt pin for active low RTC INT output
2019-02-21 23:17:01 +01:00
pinMode(RTC_INT, INPUT_PULLUP);
// setup external rtc 1Hz clock as pulse per second clock
if (I2C_MUTEX_LOCK()) {
Rtc.SetSquareWavePinClockFrequency(DS3231SquareWaveClock_1Hz);
Rtc.SetSquareWavePin(DS3231SquareWavePin_ModeClock);
I2C_MUTEX_UNLOCK();
ESP_LOGI(TAG, "Timepulse: external (RTC)");
return 1; // success
} else {
2019-02-22 22:28:35 +01:00
ESP_LOGE(TAG, "RTC initialization error, I2C bus busy");
2019-02-21 23:17:01 +01:00
return 0; // failure
}
return 1; // success
#else
// use ESP32 hardware timer as time base with adjustable frequency
clockCycle = timerBegin(1, 8000, true); // set 80 MHz prescaler to 1/10000 sec
timerAlarmWrite(clockCycle, 10000, true); // 1000ms
ESP_LOGI(TAG, "Timepulse: internal (ESP32 hardware timer)");
return 1; // success
#endif
} // timepulse_init
void timepulse_start(void) {
#ifdef GPS_INT // start external clock gps pps line
attachInterrupt(digitalPinToInterrupt(GPS_INT), CLOCKIRQ, RISING);
#elif defined RTC_INT // start external clock rtc
attachInterrupt(digitalPinToInterrupt(RTC_INT), CLOCKIRQ, FALLING);
#else // start internal clock esp32 hardware timer
timerAttachInterrupt(clockCycle, &CLOCKIRQ, true);
timerAlarmEnable(clockCycle);
#endif
}
// interrupt service routine triggered by either pps or esp32 hardware timer
void IRAM_ATTR CLOCKIRQ(void) {
if (ClockTask != NULL)
xTaskNotifyFromISR(ClockTask, xTaskGetTickCountFromISR(), eSetBits, NULL);
#if defined GPS_INT || defined RTC_INT
xSemaphoreGiveFromISR(TimePulse, NULL);
TimePulseTick = !TimePulseTick; // flip ticker
#endif
portYIELD_FROM_ISR();
}
2019-02-22 22:28:35 +01:00
// helper function to check plausibility of a time
time_t TimeIsValid(time_t const t) {
2019-02-22 22:28:35 +01:00
// is it a time in the past? we use compile date to guess
return (t >= compiledUTC() ? t : 0);
2019-02-22 22:28:35 +01:00
}
// helper function to convert compile time to UTC time
time_t compiledUTC(void) {
time_t t = RtcDateTime(__DATE__, __TIME__).Epoch32Time();
return myTZ.toUTC(t);
}
// helper function to convert gps date/time into time_t
2019-02-23 23:39:45 +01:00
time_t tmConvert(uint16_t YYYY, uint8_t MM, uint8_t DD, uint8_t hh, uint8_t mm,
uint8_t ss) {
2019-02-22 22:28:35 +01:00
tmElements_t tm;
2019-02-22 23:17:28 +01:00
tm.Year = CalendarYrToTm(YYYY); // year offset from 1970 in time.h
2019-02-22 22:28:35 +01:00
tm.Month = MM;
tm.Day = DD;
tm.Hour = hh;
tm.Minute = mm;
tm.Second = ss;
return makeTime(tm);
}
// helper function to calculate serial transmit time
TickType_t tx_Ticks(uint32_t framesize, unsigned long baud, uint32_t config,
int8_t rxPin, int8_t txPins) {
uint32_t databits = ((config & 0x0c) >> 2) + 5;
uint32_t stopbits = ((config & 0x20) >> 5) + 1;
uint32_t txTime = (databits + stopbits + 2) * framesize * 1000.0 / baud;
// +1 ms margin for the startbit +1 ms for pending processing time
return round(txTime);
}
2019-02-21 23:17:01 +01:00
#if defined HAS_IF482 || defined HAS_DCF77
#if defined HAS_DCF77 && defined HAS_IF482
#error You must define at most one of IF482 or DCF77!
#endif
void clock_init(void) {
// setup clock output interface
#ifdef HAS_IF482
IF482.begin(HAS_IF482);
#elif defined HAS_DCF77
pinMode(HAS_DCF77, OUTPUT);
#endif
xTaskCreatePinnedToCore(clock_loop, // task function
"clockloop", // name of task
2048, // stack size of task
(void *)1, // task parameter
4, // priority of the task
&ClockTask, // task handle
0); // CPU core
assert(ClockTask); // has clock task started?
} // clock_init
void clock_loop(void *pvParameters) { // ClockTask
configASSERT(((uint32_t)pvParameters) == 1); // FreeRTOS check
TickType_t wakeTime;
time_t t;
#define t1(t) (t + DCF77_FRAME_SIZE + 1) // future time for next DCF77 frame
#define t2(t) (t + 1) // future time for sync with 1pps trigger
2019-02-24 01:44:55 +01:00
// preload first DCF frame before start
2019-02-21 23:17:01 +01:00
#ifdef HAS_DCF77
2019-02-24 01:44:55 +01:00
uint8_t *DCFpulse; // pointer on array with DCF pulse bits
2019-02-23 20:28:11 +01:00
DCFpulse = DCF77_Frame(t1(now()));
2019-02-21 23:17:01 +01:00
#endif
// output time telegram for second following sec beginning with timepulse
for (;;) {
xTaskNotifyWait(0x00, ULONG_MAX, &wakeTime,
portMAX_DELAY); // wait for timepulse
2019-02-24 23:13:15 +01:00
// no confident time -> suppress clock output
if (timeStatus() == timeNotSet)
2019-02-21 23:17:01 +01:00
continue;
t = now(); // payload to send to clock
#if defined HAS_IF482
IF482_Pulse(t2(t)); // next second
#elif defined HAS_DCF77
if (second(t) == DCF77_FRAME_SIZE - 1) // is it time to load new frame?
2019-02-23 21:51:24 +01:00
DCFpulse = DCF77_Frame(t1(t)); // generate next frame
2019-02-21 23:17:01 +01:00
2019-02-23 18:31:47 +01:00
if (DCFpulse[DCF77_FRAME_SIZE] ==
2019-02-23 20:28:11 +01:00
minute(t1(t))) // have recent frame? (pulses could be missed!)
DCF77_Pulse(t2(t), DCFpulse); // then output next second of this frame
2019-02-21 23:17:01 +01:00
#endif
} // for
} // clock_loop()
#endif // HAS_IF482 || defined HAS_DCF77