ESP32-PaxCounter/src/timemanager.cpp

231 lines
6.9 KiB
C++
Raw Normal View History

2019-02-21 23:17:01 +01:00
#include "timemanager.h"
// Local logging tag
static const char TAG[] = "main";
void time_sync() {
// synchonization of systime with external time source (GPS/LORA)
2019-02-22 22:28:35 +01:00
// frequently called from cyclic.cpp
2019-02-21 23:17:01 +01:00
#ifdef TIME_SYNC_INTERVAL
time_t lastTimeSync = now() - LastSyncTime; // check if a sync is due
2019-02-22 23:17:28 +01:00
if ((lastTimeSync >= (TIME_SYNC_INTERVAL * 60000)) || !LastSyncTime) {
// is it time to sync with external source?
2019-02-21 23:17:01 +01:00
#ifdef HAS_GPS
syncTime(get_gpstime()); // attempt sync with GPS time
#endif
2019-02-22 23:17:28 +01:00
#if defined HAS_LORA && defined TIME_SYNC_LORA
if (!TimeIsSynced) // no GPS sync -> try lora sync
LMIC_requestNetworkTime(user_request_network_time_callback, &userUTCTime);
#endif
}
2019-02-21 23:17:01 +01:00
#ifdef HAS_RTC
if (TimeIsSynced) { // recalibrate RTC, if we have one
set_rtctime(now());
2019-02-22 22:28:35 +01:00
} else { // we switch to fallback time after a while
2019-02-21 23:17:01 +01:00
if ((lastTimeSync >= (TIME_SYNC_TIMEOUT * 60000)) ||
2019-02-22 22:28:35 +01:00
!LastSyncTime) { // sync is still due -> use RTC as fallback source
2019-02-21 23:17:01 +01:00
syncTime(get_rtctime()); // sync with RTC time
2019-02-22 22:28:35 +01:00
TimeIsSynced = false;
2019-02-21 23:17:01 +01:00
}
}
#endif
#endif // TIME_SYNC_INTERVAL
} // time_sync()
// helper function to sync time on start of next second
int syncTime(time_t t) {
2019-02-22 22:28:35 +01:00
if (TimeIsValid(t)) {
2019-02-21 23:17:01 +01:00
TimeIsSynced = wait_for_pulse(); // wait for next 1pps timepulse
setTime(t);
adjustTime(1); // forward time to next second
LastSyncTime = now(); // store time of this sync
2019-02-22 22:28:35 +01:00
ESP_LOGD(TAG, "Time was set to %02d:%02d:%02d", hour(t), minute(t),
2019-02-21 23:17:01 +01:00
second(t));
return 1; // success
} else {
2019-02-22 22:28:35 +01:00
ESP_LOGD(TAG, "Time sync attempt failed");
2019-02-21 23:17:01 +01:00
TimeIsSynced = false;
return 0;
}
// failure
}
2019-02-22 22:28:35 +01:00
int syncTime(uint32_t t) { // t is UTC time in seconds epoch
2019-02-21 23:17:01 +01:00
return syncTime(static_cast<time_t>(t));
}
// helper function to sync moment on timepulse
2019-02-22 22:28:35 +01:00
int wait_for_pulse(void) {
2019-02-21 23:17:01 +01:00
// sync on top of next second with 1pps timepulse
2019-02-23 18:12:43 +01:00
if (xSemaphoreTake(TimePulse, pdMS_TO_TICKS(1010)) == pdTRUE)
2019-02-22 22:28:35 +01:00
return 1; // success
2019-02-21 23:17:01 +01:00
ESP_LOGD(TAG, "Missing timepulse");
2019-02-22 22:28:35 +01:00
return 0; // failure
2019-02-21 23:17:01 +01:00
}
// helper function to setup a pulse per second for time synchronisation
int timepulse_init() {
// use time pulse from GPS as time base with fixed 1Hz frequency
#ifdef GPS_INT
// setup external interupt for active low RTC INT pin
pinMode(GPS_INT, INPUT_PULLDOWN);
// setup external rtc 1Hz clock as pulse per second clock
ESP_LOGI(TAG, "Timepulse: external (GPS)");
return 1; // success
// use pulse from on board RTC chip as time base with fixed frequency
#elif defined RTC_INT
// setup external interupt for active low RTC INT pin
pinMode(RTC_INT, INPUT_PULLUP);
// setup external rtc 1Hz clock as pulse per second clock
if (I2C_MUTEX_LOCK()) {
Rtc.SetSquareWavePinClockFrequency(DS3231SquareWaveClock_1Hz);
Rtc.SetSquareWavePin(DS3231SquareWavePin_ModeClock);
I2C_MUTEX_UNLOCK();
ESP_LOGI(TAG, "Timepulse: external (RTC)");
return 1; // success
} else {
2019-02-22 22:28:35 +01:00
ESP_LOGE(TAG, "RTC initialization error, I2C bus busy");
2019-02-21 23:17:01 +01:00
return 0; // failure
}
return 1; // success
#else
// use ESP32 hardware timer as time base with adjustable frequency
clockCycle = timerBegin(1, 8000, true); // set 80 MHz prescaler to 1/10000 sec
timerAlarmWrite(clockCycle, 10000, true); // 1000ms
ESP_LOGI(TAG, "Timepulse: internal (ESP32 hardware timer)");
return 1; // success
#endif
} // timepulse_init
void timepulse_start(void) {
#ifdef GPS_INT // start external clock gps pps line
attachInterrupt(digitalPinToInterrupt(GPS_INT), CLOCKIRQ, RISING);
#elif defined RTC_INT // start external clock rtc
attachInterrupt(digitalPinToInterrupt(RTC_INT), CLOCKIRQ, FALLING);
#else // start internal clock esp32 hardware timer
timerAttachInterrupt(clockCycle, &CLOCKIRQ, true);
timerAlarmEnable(clockCycle);
#endif
}
// interrupt service routine triggered by either pps or esp32 hardware timer
void IRAM_ATTR CLOCKIRQ(void) {
if (ClockTask != NULL)
xTaskNotifyFromISR(ClockTask, xTaskGetTickCountFromISR(), eSetBits, NULL);
#if defined GPS_INT || defined RTC_INT
xSemaphoreGiveFromISR(TimePulse, NULL);
TimePulseTick = !TimePulseTick; // flip ticker
#endif
portYIELD_FROM_ISR();
}
2019-02-22 22:28:35 +01:00
// helper function to check plausibility of a time
int TimeIsValid(time_t t) {
// is it a time in the past? we use compile date to guess
ESP_LOGD(TAG, "t=%d, tt=%d, valid: %s", t, compiledUTC(),
(t >= compiledUTC()) ? "yes" : "no");
return (t >= compiledUTC());
}
// helper function to convert compile time to UTC time
time_t compiledUTC(void) {
time_t t = RtcDateTime(__DATE__, __TIME__).Epoch32Time();
return myTZ.toUTC(t);
}
// helper function to convert gps date/time into time_t
time_t tmConvert_t(uint16_t YYYY, uint8_t MM, uint8_t DD, uint8_t hh,
uint8_t mm, uint8_t ss) {
tmElements_t tm;
2019-02-22 23:17:28 +01:00
tm.Year = CalendarYrToTm(YYYY); // year offset from 1970 in time.h
2019-02-22 22:28:35 +01:00
tm.Month = MM;
tm.Day = DD;
tm.Hour = hh;
tm.Minute = mm;
tm.Second = ss;
return makeTime(tm);
}
2019-02-21 23:17:01 +01:00
#if defined HAS_IF482 || defined HAS_DCF77
#if defined HAS_DCF77 && defined HAS_IF482
#error You must define at most one of IF482 or DCF77!
#endif
void clock_init(void) {
// setup clock output interface
#ifdef HAS_IF482
IF482.begin(HAS_IF482);
#elif defined HAS_DCF77
pinMode(HAS_DCF77, OUTPUT);
#endif
xTaskCreatePinnedToCore(clock_loop, // task function
"clockloop", // name of task
2048, // stack size of task
(void *)1, // task parameter
4, // priority of the task
&ClockTask, // task handle
0); // CPU core
assert(ClockTask); // has clock task started?
} // clock_init
void clock_loop(void *pvParameters) { // ClockTask
configASSERT(((uint32_t)pvParameters) == 1); // FreeRTOS check
TickType_t wakeTime;
time_t t;
2019-02-23 18:12:43 +01:00
uint8_t current_frame;
2019-02-21 23:17:01 +01:00
#define t1(t) (t + DCF77_FRAME_SIZE + 1) // future time for next DCF77 frame
#define t2(t) (t + 1) // future time for sync with 1pps trigger
// preload first DCF frame before start
#ifdef HAS_DCF77
2019-02-23 18:12:43 +01:00
current_frame = DCF77_Frame(t1(now()));
2019-02-21 23:17:01 +01:00
#endif
// output time telegram for second following sec beginning with timepulse
for (;;) {
xTaskNotifyWait(0x00, ULONG_MAX, &wakeTime,
portMAX_DELAY); // wait for timepulse
if (timeStatus() == timeNotSet) // do we have valid time?
continue;
t = now(); // payload to send to clock
#if defined HAS_IF482
IF482_Pulse(t2(t)); // next second
#elif defined HAS_DCF77
if (second(t) == DCF77_FRAME_SIZE - 1) // is it time to load new frame?
2019-02-23 18:12:43 +01:00
current_frame = DCF77_Frame(t1(t)); // generate next frame
2019-02-21 23:17:01 +01:00
2019-02-23 18:12:43 +01:00
if (current_frame ==
2019-02-21 23:17:01 +01:00
minute(t1(t))) // have recent frame? (pulses could be missed!)
DCF_Pulse(t2(t)); // then output next second of this frame
#endif
} // for
} // clock_loop()
#endif // HAS_IF482 || defined HAS_DCF77