ESP32-PaxCounter/src/lmic_config.h
Klaus K Wilting 9574a194fd v1.6.996
2018-12-21 00:35:21 +01:00

101 lines
3.9 KiB
C

// COUNTRY AND PROJECT SPECIFIC DEFINITIONS FOR LMIC STACK
// COUNTRY SETTINGS
// --> please check with you local regulations for ISM band frequency use!
//
// CFG_eu868 EU 863-870 MHz
// CFG_us915 US 902-928 MHz
// CFG_au921 Australia 915-928 MHz
// CFG_as923 Asia 923 MHz
// CFG_in866 India 865-867 MHz
#define CFG_eu868 1
//#define CFG_us915 1
//#define CFG_in866 1
//#define CFG_au921 1
//#define CFG_as923 1
//#define LMIC_COUNTRY_CODE LMIC_COUNTRY_CODE_JP /* for as923-JP */
// LMIC LORAWAN STACK SETTINGS
// --> adapt to your device only if necessary
//#define LMIC_USE_INTERRUPTS
//time sync via LoRaWAN network, is not yet supported by TTN (LoRaWAN spec v1.0.3)
//#define LMIC_ENABLE_DeviceTimeReq 1
// 16 μs per tick
// LMIC requires ticks to be 15.5μs - 100 μs long
#define US_PER_OSTICK_EXPONENT 4
#define US_PER_OSTICK (1 << US_PER_OSTICK_EXPONENT)
#define OSTICKS_PER_SEC (1000000 / US_PER_OSTICK)
// This tells LMIC to make the receive windows bigger, in case your clock is
// faster or slower. This causes the transceiver to be earlier switched on,
// so consuming more power. You may sharpen (reduce) this value if you are
// limited on battery.
#define CLOCK_ERROR_PROCENTAGE 3
// Set this to 1 to enable some basic debug output (using printf) about
// RF settings used during transmission and reception. Set to 2 to
// enable more verbose output. Make sure that printf is actually
// configured (e.g. on AVR it is not by default), otherwise using it can
// cause crashing.
#define LMIC_DEBUG_LEVEL 0
// Enable this to allow using printf() to print to the given serial port
// (or any other Print object). This can be easy for debugging. The
// current implementation only works on AVR, though.
//#define LMIC_PRINTF_TO Serial
// Any runtime assertion failures are printed to this serial port (or
// any other Print object). If this is unset, any failures just silently
// halt execution.
#define LMIC_FAILURE_TO Serial
// Uncomment this to disable all code related to joining
//#define DISABLE_JOIN
// Uncomment this to disable all code related to ping
#define DISABLE_PING
// Uncomment this to disable all code related to beacon tracking.
// Requires ping to be disabled too
#define DISABLE_BEACONS
// Uncomment these to disable the corresponding MAC commands.
// Class A
//#define DISABLE_MCMD_DCAP_REQ // duty cycle cap
//#define DISABLE_MCMD_DN2P_SET // 2nd DN window param
//#define DISABLE_MCMD_SNCH_REQ // set new channel
// Class B
//#define DISABLE_MCMD_PING_SET // set ping freq, automatically disabled by
// DISABLE_PING #define DISABLE_MCMD_BCNI_ANS // next beacon start, automatical
// disabled by DISABLE_BEACON
// In LoRaWAN, a gateway applies I/Q inversion on TX, and nodes do the
// same on RX. This ensures that gateways can talk to nodes and vice
// versa, but gateways will not hear other gateways and nodes will not
// hear other nodes. By uncommenting this macro, this inversion is
// disabled and this node can hear other nodes. If two nodes both have
// this macro set, they can talk to each other (but they can no longer
// hear gateways). This should probably only be used when debugging
// and/or when talking to the radio directly (e.g. like in the "raw"
// example).
//#define DISABLE_INVERT_IQ_ON_RX
// This allows choosing between multiple included AES implementations.
// Make sure exactly one of these is uncommented.
//
// This selects the original AES implementation included LMIC. This
// implementation is optimized for speed on 32-bit processors using
// fairly big lookup tables, but it takes up big amounts of flash on the
// AVR architecture.
//#define USE_ORIGINAL_AES
//
// This selects the AES implementation written by Ideetroon for their
// own LoRaWAN library. It also uses lookup tables, but smaller
// byte-oriented ones, making it use a lot less flash space (but it is
// also about twice as slow as the original).
// #define USE_IDEETRON_AES
//
#define USE_MBEDTLS_AES