305 lines
9.0 KiB
C++
305 lines
9.0 KiB
C++
// Basic config
|
|
#include "globals.h"
|
|
#include "power.h"
|
|
|
|
// Local logging tag
|
|
static const char TAG[] = __FILE__;
|
|
|
|
#ifdef BAT_MEASURE_ADC
|
|
esp_adc_cal_characteristics_t *adc_characs =
|
|
(esp_adc_cal_characteristics_t *)calloc(
|
|
1, sizeof(esp_adc_cal_characteristics_t));
|
|
|
|
#ifndef BAT_MEASURE_ADC_UNIT // ADC1
|
|
static const adc1_channel_t adc_channel = BAT_MEASURE_ADC;
|
|
#else // ADC2
|
|
static const adc2_channel_t adc_channel = BAT_MEASURE_ADC;
|
|
#endif
|
|
static const adc_atten_t atten = ADC_ATTEN_DB_11;
|
|
static const adc_unit_t unit = ADC_UNIT_1;
|
|
#endif // BAT_MEASURE_ADC
|
|
|
|
#ifdef HAS_PMU
|
|
AXP20X_Class pmu;
|
|
|
|
void AXP192_powerevent_IRQ(void) {
|
|
|
|
pmu.readIRQ();
|
|
|
|
if (pmu.isVbusOverVoltageIRQ())
|
|
ESP_LOGI(TAG, "USB voltage %.2fV too high.", pmu.getVbusVoltage() / 1000);
|
|
if (pmu.isVbusPlugInIRQ())
|
|
ESP_LOGI(TAG, "USB plugged, %.2fV @ %.0mA", pmu.getVbusVoltage() / 1000,
|
|
pmu.getVbusCurrent());
|
|
if (pmu.isVbusRemoveIRQ())
|
|
ESP_LOGI(TAG, "USB unplugged.");
|
|
|
|
if (pmu.isBattPlugInIRQ())
|
|
ESP_LOGI(TAG, "Battery is connected.");
|
|
if (pmu.isBattRemoveIRQ())
|
|
ESP_LOGI(TAG, "Battery was removed.");
|
|
if (pmu.isChargingIRQ())
|
|
ESP_LOGI(TAG, "Battery charging.");
|
|
if (pmu.isChargingDoneIRQ())
|
|
ESP_LOGI(TAG, "Battery charging done.");
|
|
if (pmu.isBattTempLowIRQ())
|
|
ESP_LOGI(TAG, "Battery high temperature.");
|
|
if (pmu.isBattTempHighIRQ())
|
|
ESP_LOGI(TAG, "Battery low temperature.");
|
|
|
|
// short press -> esp32 deep sleep mode, can be exited by pressing user button
|
|
#ifdef HAS_BUTTON
|
|
if (pmu.isPEKShortPressIRQ() && (RTC_runmode == RUNMODE_NORMAL)) {
|
|
enter_deepsleep(0, HAS_BUTTON);
|
|
}
|
|
#endif
|
|
|
|
// long press -> shutdown power, can be exited by another longpress
|
|
if (pmu.isPEKLongtPressIRQ()) {
|
|
AXP192_power(pmu_power_off); // switch off Lora, GPS, display
|
|
pmu.shutdown(); // switch off device
|
|
}
|
|
|
|
pmu.clearIRQ();
|
|
|
|
// refresh stored voltage value
|
|
read_battlevel();
|
|
}
|
|
|
|
void AXP192_power(pmu_power_t powerlevel) {
|
|
|
|
switch (powerlevel) {
|
|
|
|
case pmu_power_off:
|
|
pmu.setChgLEDMode(AXP20X_LED_OFF);
|
|
pmu.setPowerOutPut(AXP192_DCDC1, AXP202_OFF);
|
|
pmu.setPowerOutPut(AXP192_LDO3, AXP202_OFF);
|
|
pmu.setPowerOutPut(AXP192_LDO2, AXP202_OFF);
|
|
// pmu.setPowerOutPut(AXP192_DCDC3, AXP202_OFF);
|
|
break;
|
|
|
|
case pmu_power_sleep:
|
|
pmu.setChgLEDMode(AXP20X_LED_BLINK_1HZ);
|
|
// we don't cut off DCDC1, because then display blocks i2c bus
|
|
pmu.setPowerOutPut(AXP192_LDO3, AXP202_OFF); // gps off
|
|
pmu.setPowerOutPut(AXP192_LDO2, AXP202_OFF); // lora off
|
|
break;
|
|
|
|
default: // all rails power on
|
|
pmu.setPowerOutPut(AXP192_LDO2, AXP202_ON); // Lora on T-Beam V1.0
|
|
pmu.setPowerOutPut(AXP192_LDO3, AXP202_ON); // Gps on T-Beam V1.0
|
|
pmu.setPowerOutPut(AXP192_DCDC1, AXP202_ON); // OLED on T-Beam v1.0
|
|
pmu.setChgLEDMode(AXP20X_LED_LOW_LEVEL);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void AXP192_showstatus(void) {
|
|
|
|
if (pmu.isBatteryConnect())
|
|
if (pmu.isChargeing())
|
|
ESP_LOGI(TAG, "Battery charging, %.2fV @ %.0fmAh",
|
|
pmu.getBattVoltage() / 1000, pmu.getBattChargeCurrent());
|
|
else
|
|
ESP_LOGI(TAG, "Battery not charging");
|
|
else
|
|
ESP_LOGI(TAG, "No Battery");
|
|
|
|
if (pmu.isVBUSPlug())
|
|
ESP_LOGI(TAG, "USB powered, %.0fmW",
|
|
pmu.getVbusVoltage() / 1000 * pmu.getVbusCurrent());
|
|
else
|
|
ESP_LOGI(TAG, "USB not present");
|
|
}
|
|
|
|
void AXP192_init(void) {
|
|
|
|
if (pmu.begin(i2c_readBytes, i2c_writeBytes, AXP192_PRIMARY_ADDRESS) ==
|
|
AXP_FAIL)
|
|
ESP_LOGI(TAG, "AXP192 PMU initialization failed");
|
|
else {
|
|
|
|
// configure AXP192
|
|
pmu.setDCDC1Voltage(3300); // for external OLED display
|
|
pmu.setTimeOutShutdown(false); // no automatic shutdown
|
|
pmu.setTSmode(AXP_TS_PIN_MODE_DISABLE); // TS pin mode off to save power
|
|
|
|
// switch ADCs on
|
|
pmu.adc1Enable(AXP202_BATT_VOL_ADC1, true);
|
|
pmu.adc1Enable(AXP202_BATT_CUR_ADC1, true);
|
|
pmu.adc1Enable(AXP202_VBUS_VOL_ADC1, true);
|
|
pmu.adc1Enable(AXP202_VBUS_CUR_ADC1, true);
|
|
|
|
// switch power rails on
|
|
AXP192_power(pmu_power_on);
|
|
|
|
#ifdef PMU_INT
|
|
pinMode(PMU_INT, INPUT_PULLUP);
|
|
attachInterrupt(digitalPinToInterrupt(PMU_INT), PMUIRQ, FALLING);
|
|
pmu.enableIRQ(AXP202_VBUS_REMOVED_IRQ | AXP202_VBUS_CONNECT_IRQ |
|
|
AXP202_BATT_REMOVED_IRQ | AXP202_BATT_CONNECT_IRQ |
|
|
AXP202_CHARGING_FINISHED_IRQ,
|
|
1);
|
|
pmu.clearIRQ();
|
|
#endif // PMU_INT
|
|
|
|
ESP_LOGI(TAG, "AXP192 PMU initialized");
|
|
}
|
|
}
|
|
|
|
#endif // HAS_PMU
|
|
|
|
void calibrate_voltage(void) {
|
|
#ifdef BAT_MEASURE_ADC
|
|
// configure ADC
|
|
#ifndef BAT_MEASURE_ADC_UNIT // ADC1
|
|
ESP_ERROR_CHECK(adc1_config_width(ADC_WIDTH_BIT_12));
|
|
ESP_ERROR_CHECK(adc1_config_channel_atten(adc_channel, atten));
|
|
#else // ADC2
|
|
// ESP_ERROR_CHECK(adc2_config_width(ADC_WIDTH_BIT_12));
|
|
ESP_ERROR_CHECK(adc2_config_channel_atten(adc_channel, atten));
|
|
#endif
|
|
// calibrate ADC
|
|
esp_adc_cal_value_t val_type = esp_adc_cal_characterize(
|
|
unit, atten, ADC_WIDTH_BIT_12, DEFAULT_VREF, adc_characs);
|
|
// show ADC characterization base
|
|
if (val_type == ESP_ADC_CAL_VAL_EFUSE_TP) {
|
|
ESP_LOGI(TAG,
|
|
"ADC characterization based on Two Point values stored in eFuse");
|
|
} else if (val_type == ESP_ADC_CAL_VAL_EFUSE_VREF) {
|
|
ESP_LOGI(TAG,
|
|
"ADC characterization based on reference voltage stored in eFuse");
|
|
} else {
|
|
ESP_LOGI(TAG, "ADC characterization based on default reference voltage");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
uint16_t read_voltage(void) {
|
|
uint16_t voltage = 0;
|
|
|
|
#ifdef HAS_PMU
|
|
voltage = pmu.getBattVoltage();
|
|
#else
|
|
|
|
#ifdef BAT_MEASURE_ADC
|
|
// multisample ADC
|
|
uint32_t adc_reading = 0;
|
|
#ifndef BAT_MEASURE_ADC_UNIT // ADC1
|
|
for (int i = 0; i < NO_OF_SAMPLES; i++) {
|
|
adc_reading += adc1_get_raw(adc_channel);
|
|
}
|
|
#else // ADC2
|
|
int adc_buf = 0;
|
|
for (int i = 0; i < NO_OF_SAMPLES; i++) {
|
|
ESP_ERROR_CHECK(adc2_get_raw(adc_channel, ADC_WIDTH_BIT_12, &adc_buf));
|
|
adc_reading += adc_buf;
|
|
}
|
|
#endif // BAT_MEASURE_ADC_UNIT
|
|
adc_reading /= NO_OF_SAMPLES;
|
|
// Convert ADC reading to voltage in mV
|
|
voltage = esp_adc_cal_raw_to_voltage(adc_reading, adc_characs);
|
|
#endif // BAT_MEASURE_ADC
|
|
|
|
#ifdef BAT_VOLTAGE_DIVIDER
|
|
voltage *= BAT_VOLTAGE_DIVIDER;
|
|
#endif // BAT_VOLTAGE_DIVIDER
|
|
|
|
#endif // HAS_PMU
|
|
|
|
return voltage;
|
|
}
|
|
|
|
uint8_t read_battlevel(mapFn_t mapFunction) {
|
|
// returns the estimated battery level in values 0 ... 100 [percent]
|
|
#ifdef HAS_IP5306
|
|
return IP5306_GetBatteryLevel();
|
|
#else
|
|
const uint16_t batt_voltage = read_voltage();
|
|
if (batt_voltage <= BAT_MIN_VOLTAGE)
|
|
return 0;
|
|
else if (batt_voltage >= BAT_MAX_VOLTAGE)
|
|
return 100;
|
|
else
|
|
return (*mapFunction)(batt_voltage, BAT_MIN_VOLTAGE, BAT_MAX_VOLTAGE);
|
|
#endif
|
|
}
|
|
|
|
bool batt_sufficient() {
|
|
#if (defined HAS_PMU || defined BAT_MEASURE_ADC || defined HAS_IP5306)
|
|
return (batt_level > OTA_MIN_BATT);
|
|
#else
|
|
return true; // we don't know batt level
|
|
#endif
|
|
}
|
|
|
|
#ifdef HAS_IP5306
|
|
|
|
// IP5306 code snippet was taken from
|
|
// https://gist.github.com/me-no-dev/7702f08dd578de5efa47caf322250b57
|
|
|
|
#define IP5306_REG_SYS_0 0x00
|
|
#define IP5306_REG_SYS_1 0x01
|
|
#define IP5306_REG_SYS_2 0x02
|
|
#define IP5306_REG_CHG_0 0x20
|
|
#define IP5306_REG_CHG_1 0x21
|
|
#define IP5306_REG_CHG_2 0x22
|
|
#define IP5306_REG_CHG_3 0x23
|
|
#define IP5306_REG_CHG_4 0x24
|
|
#define IP5306_REG_READ_0 0x70
|
|
#define IP5306_REG_READ_1 0x71
|
|
#define IP5306_REG_READ_2 0x72
|
|
#define IP5306_REG_READ_3 0x77
|
|
#define IP5306_REG_READ_4 0x78
|
|
|
|
#define IP5306_LEDS2PCT(byte) \
|
|
((byte & 0x01 ? 25 : 0) + (byte & 0x02 ? 25 : 0) + (byte & 0x04 ? 25 : 0) + \
|
|
(byte & 0x08 ? 25 : 0))
|
|
|
|
uint8_t ip5306_get_bits(uint8_t reg, uint8_t index, uint8_t bits) {
|
|
uint8_t value;
|
|
if (i2c_readBytes(IP5306_PRIMARY_ADDRESS, reg, &value, 1) == 0xff) {
|
|
ESP_LOGW(TAG, "IP5306 get bits fail: 0x%02x", reg);
|
|
return 0;
|
|
}
|
|
return (value >> index) & ((1 << bits) - 1);
|
|
}
|
|
|
|
void ip5306_set_bits(uint8_t reg, uint8_t index, uint8_t bits, uint8_t value) {
|
|
uint8_t mask = (1 << bits) - 1, v;
|
|
if (i2c_readBytes(IP5306_PRIMARY_ADDRESS, reg, &v, 1) == 0xff) {
|
|
ESP_LOGW(TAG, "IP5306 register read fail: 0x%02x", reg);
|
|
return;
|
|
}
|
|
v &= ~(mask << index);
|
|
v |= ((value & mask) << index);
|
|
|
|
if (i2c_writeBytes(IP5306_PRIMARY_ADDRESS, reg, &v, 1) == 0xff)
|
|
ESP_LOGW(TAG, "IP5306 register write fail: 0x%02x", reg);
|
|
}
|
|
|
|
uint8_t IP5306_GetPowerSource(void) {
|
|
return ip5306_get_bits(IP5306_REG_READ_0, 3, 1); // 0:BAT, 1:VIN
|
|
}
|
|
|
|
uint8_t IP5306_GetBatteryFull(void) {
|
|
return ip5306_get_bits(IP5306_REG_READ_1, 3, 1); // 0:CHG/DIS, 1:FULL
|
|
}
|
|
|
|
uint8_t IP5306_GetBatteryLevel(void) {
|
|
uint8_t state = (~ip5306_get_bits(IP5306_REG_READ_4, 4, 4)) & 0x0F;
|
|
// LED[0-4] State (inverted)
|
|
return IP5306_LEDS2PCT(state);
|
|
}
|
|
|
|
void printIP5306Stats(void) {
|
|
bool usb = IP5306_GetPowerSource();
|
|
bool full = IP5306_GetBatteryFull();
|
|
uint8_t level = IP5306_GetBatteryLevel();
|
|
ESP_LOGI(TAG,
|
|
"IP5306: Power Source: %s, Battery State: %s, Battery Level: %u%%",
|
|
usb ? "USB" : "BATTERY",
|
|
full ? "CHARGED" : (usb ? "CHARGING" : "DISCHARGING"), level);
|
|
}
|
|
|
|
#endif // HAS_IP5306
|