ESP32-PaxCounter/src/rcommand.cpp
2021-05-03 19:36:22 +02:00

550 lines
16 KiB
C++

// Basic Config
#include "globals.h"
#include "rcommand.h"
#include "libpax_helpers.h"
// Local logging tag
static const char TAG[] = __FILE__;
static QueueHandle_t RcmdQueue;
TaskHandle_t rcmdTask;
// set of functions that can be triggered by remote commands
void set_reset(uint8_t val[]) {
switch (val[0]) {
case 0: // restart device with cold start (clear RTC saved variables)
ESP_LOGI(TAG, "Remote command: restart device cold");
do_reset(false);
break;
case 1: // reserved
// reset MAC counter deprecated by libpax integration
break;
case 2: // reset device to factory settings
ESP_LOGI(TAG,
"Remote command: reset device to factory settings and restart");
eraseConfig();
do_reset(false);
break;
case 3: // reset send queues
ESP_LOGI(TAG, "Remote command: flush send queue");
flushQueues();
break;
case 4: // restart device with warm start (keep RTC saved variables)
ESP_LOGI(TAG, "Remote command: restart device warm");
do_reset(true);
break;
case 8: // reset and start local web server for manual software update
ESP_LOGI(TAG, "Remote command: reboot to maintenance mode");
RTC_runmode = RUNMODE_MAINTENANCE;
break;
case 9: // reset and ask OTA server via Wifi for automated software update
ESP_LOGI(TAG, "Remote command: reboot to ota update mode");
#if (USE_OTA)
// check power status before scheduling ota update
if (batt_sufficient())
RTC_runmode = RUNMODE_UPDATE;
else
ESP_LOGE(TAG, "Battery level %d%% is too low for OTA", batt_level);
#endif // USE_OTA
break;
default:
ESP_LOGW(TAG, "Remote command: reset called with invalid parameter(s)");
}
}
void set_rssi(uint8_t val[]) {
cfg.rssilimit = val[0] * -1;
#if ((WIFICOUNTER) || (BLECOUNTER))
libpax_counter_stop();
libpax_config_t current_config;
libpax_get_current_config(&current_config);
current_config.wifi_rssi_threshold = cfg.rssilimit;
libpax_update_config(&current_config);
init_libpax();
#endif
ESP_LOGI(TAG, "Remote command: set RSSI limit to %d", cfg.rssilimit);
}
void set_sendcycle(uint8_t val[]) {
if (val[0] < 5)
return;
// update send cycle interrupt [seconds / 2]
cfg.sendcycle = val[0];
ESP_LOGI(TAG, "Remote command: set send cycle to %d seconds",
cfg.sendcycle * 2);
#if ((WIFICOUNTER) || (BLECOUNTER))
libpax_counter_stop();
init_libpax();
#else
// modify senddata timer
initSendDataTimer(cfg.sendcycle * 2);
#endif
}
void set_sleepcycle(uint8_t val[]) {
// swap byte order from msb to lsb, note: this is a platform dependent hack
uint16_t t = __builtin_bswap16(*(uint16_t *)(val));
if (t == 0)
return;
cfg.sleepcycle = t;
ESP_LOGI(TAG, "Remote command: set sleep cycle to %d seconds",
cfg.sleepcycle * 10);
}
void set_wifichancycle(uint8_t val[]) {
cfg.wifichancycle = val[0];
#if (WIFICOUNTER)
libpax_counter_stop();
libpax_config_t current_config;
libpax_get_current_config(&current_config);
if (cfg.wifichancycle == 0) {
ESP_LOGI(TAG, "Remote command: set Wifi channel hopping to off");
current_config.wifi_channel_map = WIFI_CHANNEL_1;
} else {
ESP_LOGI(
TAG,
"Remote command: set Wifi channel hopping interval to %.1f seconds",
cfg.wifichancycle / float(100));
}
current_config.wifi_channel_switch_interval = cfg.wifichancycle;
libpax_update_config(&current_config);
init_libpax();
#endif
}
void set_blescantime(uint8_t val[]) {
cfg.blescantime = val[0];
#if (BLECOUNTER)
libpax_counter_stop();
libpax_config_t current_config;
libpax_get_current_config(&current_config);
current_config.blescantime = cfg.blescantime;
libpax_update_config(&current_config);
init_libpax();
#endif
}
void set_countmode(uint8_t val[]) {
switch (val[0]) {
case 0: // cyclic unconfirmed
cfg.countermode = 0;
ESP_LOGI(TAG, "Remote command: set counter mode to cyclic unconfirmed");
break;
case 1: // cumulative
cfg.countermode = 1;
ESP_LOGI(TAG, "Remote command: set counter mode to cumulative");
break;
case 2: // cyclic confirmed
cfg.countermode = 2;
ESP_LOGI(TAG, "Remote command: set counter mode to cyclic confirmed");
break;
default: // invalid parameter
ESP_LOGW(
TAG,
"Remote command: set counter mode called with invalid parameter(s)");
return;
}
}
void set_screensaver(uint8_t val[]) {
ESP_LOGI(TAG, "Remote command: set screen saver to %s ",
val[0] ? "on" : "off");
cfg.screensaver = val[0] ? 1 : 0;
}
void set_display(uint8_t val[]) {
ESP_LOGI(TAG, "Remote command: set screen to %s", val[0] ? "on" : "off");
cfg.screenon = val[0] ? 1 : 0;
}
void set_gps(uint8_t val[]) {
ESP_LOGI(TAG, "Remote command: set GPS mode to %s", val[0] ? "on" : "off");
if (val[0]) {
cfg.payloadmask |= (uint8_t)GPS_DATA; // set bit in mask
} else {
cfg.payloadmask &= (uint8_t)~GPS_DATA; // clear bit in mask
}
}
void set_bme(uint8_t val[]) {
ESP_LOGI(TAG, "Remote command: set BME mode to %s", val[0] ? "on" : "off");
if (val[0]) {
cfg.payloadmask |= (uint8_t)MEMS_DATA; // set bit in mask
} else {
cfg.payloadmask &= (uint8_t)~MEMS_DATA; // clear bit in mask
}
}
void set_batt(uint8_t val[]) {
ESP_LOGI(TAG, "Remote command: set battery mode to %s",
val[0] ? "on" : "off");
if (val[0]) {
cfg.payloadmask |= (uint8_t)BATT_DATA; // set bit in mask
} else {
cfg.payloadmask &= (uint8_t)~BATT_DATA; // clear bit in mask
}
}
void set_payloadmask(uint8_t val[]) {
ESP_LOGI(TAG, "Remote command: set payload mask to %X", val[0]);
cfg.payloadmask = val[0];
}
void set_sensor(uint8_t val[]) {
#if (HAS_SENSORS)
switch (val[0]) { // check if valid sensor number 1..3
case 1:
case 2:
case 3:
break; // valid sensor number -> continue
default:
ESP_LOGW(
TAG,
"Remote command set sensor mode called with invalid sensor number");
return; // invalid sensor number -> exit
}
ESP_LOGI(TAG, "Remote command: set sensor #%d mode to %s", val[0],
val[1] ? "on" : "off");
if (val[1])
cfg.payloadmask |= sensor_mask(val[0]); // set bit
else
cfg.payloadmask &= ~sensor_mask(val[0]); // clear bit
#endif
}
uint64_t macConvert(uint8_t *paddr) {
uint64_t *mac;
mac = (uint64_t *)paddr;
return (__builtin_bswap64(*mac) >> 16);
}
void set_beacon(uint8_t val[]) {
uint8_t id = val[0]; // use first parameter as beacon storage id
memmove(val, val + 1, 6); // strip off storage id
beacons[id] = macConvert(val); // store beacon MAC in array
ESP_LOGI(TAG, "Remote command: set beacon ID#%d", id);
// printKey("MAC", val, 6, false); // show beacon MAC
}
void set_monitor(uint8_t val[]) {
ESP_LOGI(TAG, "Remote command: set beacon monitor mode to %s",
val ? "on" : "off");
cfg.monitormode = val[0] ? 1 : 0;
}
void set_loradr(uint8_t val[]) {
#if (HAS_LORA)
if (validDR(val[0])) {
cfg.loradr = val[0];
ESP_LOGI(TAG, "Remote command: set LoRa Datarate to %d", cfg.loradr);
LMIC_setDrTxpow(assertDR(cfg.loradr), KEEP_TXPOW);
ESP_LOGI(TAG, "Radio parameters now %s / %s / %s",
getSfName(updr2rps(LMIC.datarate)),
getBwName(updr2rps(LMIC.datarate)),
getCrName(updr2rps(LMIC.datarate)));
} else
ESP_LOGI(
TAG,
"Remote command: set LoRa Datarate called with illegal datarate %d",
val[0]);
#else
ESP_LOGW(TAG, "Remote command: LoRa not implemented");
#endif // HAS_LORA
}
void set_loraadr(uint8_t val[]) {
#if (HAS_LORA)
ESP_LOGI(TAG, "Remote command: set LoRa ADR mode to %s",
val[0] ? "on" : "off");
cfg.adrmode = val[0] ? 1 : 0;
LMIC_setAdrMode(cfg.adrmode);
#else
ESP_LOGW(TAG, "Remote command: LoRa not implemented");
#endif // HAS_LORA
}
void set_blescan(uint8_t val[]) {
ESP_LOGI(TAG, "Remote command: set BLE scanner to %s", val[0] ? "on" : "off");
cfg.blescan = val[0] ? 1 : 0;
#if (BLECOUNTER)
libpax_counter_stop();
libpax_config_t current_config;
libpax_get_current_config(&current_config);
current_config.blecounter = cfg.blescan;
libpax_update_config(&current_config);
init_libpax();
#endif
}
void set_wifiscan(uint8_t val[]) {
ESP_LOGI(TAG, "Remote command: set WIFI scanner to %s",
val[0] ? "on" : "off");
cfg.wifiscan = val[0] ? 1 : 0;
#if (WIFICOUNTER)
libpax_counter_stop();
libpax_config_t current_config;
libpax_get_current_config(&current_config);
current_config.wificounter = cfg.wifiscan;
libpax_update_config(&current_config);
init_libpax();
#endif
}
void set_wifiant(uint8_t val[]) {
ESP_LOGI(TAG, "Remote command: set Wifi antenna to %s",
val[0] ? "external" : "internal");
cfg.wifiant = val[0] ? 1 : 0;
#ifdef HAS_ANTENNA_SWITCH
antenna_select(cfg.wifiant);
#endif
}
void set_rgblum(uint8_t val[]) {
// Avoid wrong parameters
cfg.rgblum = (val[0] <= 100) ? (uint8_t)val[0] : RGBLUMINOSITY;
ESP_LOGI(TAG, "Remote command: set RGB Led luminosity %d", cfg.rgblum);
};
void set_lorapower(uint8_t val[]) {
#if (HAS_LORA)
// set data rate and transmit power only if we have no ADR
if (!cfg.adrmode) {
cfg.txpower = val[0];
ESP_LOGI(TAG, "Remote command: set LoRa TXPOWER to %d", cfg.txpower);
LMIC_setDrTxpow(assertDR(cfg.loradr), cfg.txpower);
} else
ESP_LOGI(
TAG,
"Remote command: set LoRa TXPOWER, not executed because ADR is on");
#else
ESP_LOGW(TAG, "Remote command: LoRa not implemented");
#endif // HAS_LORA
};
void get_config(uint8_t val[]) {
ESP_LOGI(TAG, "Remote command: get device configuration");
payload.reset();
payload.addConfig(cfg);
SendPayload(CONFIGPORT);
};
void get_status(uint8_t val[]) {
ESP_LOGI(TAG, "Remote command: get device status");
payload.reset();
payload.addStatus(read_voltage(), (uint64_t)(uptime() / 1000ULL),
temperatureRead(), getFreeRAM(), rtc_get_reset_reason(0),
RTC_restarts);
SendPayload(STATUSPORT);
};
void get_gps(uint8_t val[]) {
ESP_LOGI(TAG, "Remote command: get gps status");
#if (HAS_GPS)
gpsStatus_t gps_status;
gps_storelocation(&gps_status);
payload.reset();
payload.addGPS(gps_status);
SendPayload(GPSPORT);
#else
ESP_LOGW(TAG, "GPS function not supported");
#endif
};
void get_bme(uint8_t val[]) {
ESP_LOGI(TAG, "Remote command: get bme680 sensor data");
#if (HAS_BME)
payload.reset();
payload.addBME(bme_status);
SendPayload(BMEPORT);
#else
ESP_LOGW(TAG, "BME sensor not supported");
#endif
};
void get_batt(uint8_t val[]) {
ESP_LOGI(TAG, "Remote command: get battery voltage");
#if (defined BAT_MEASURE_ADC || defined HAS_PMU)
payload.reset();
payload.addVoltage(read_voltage());
SendPayload(BATTPORT);
#else
ESP_LOGW(TAG, "Battery voltage not supported");
#endif
};
void get_time(uint8_t val[]) {
ESP_LOGI(TAG, "Remote command: get time");
time_t t = now();
payload.reset();
payload.addTime(t);
payload.addByte(timeStatus() << 4 | timeSource);
SendPayload(TIMEPORT);
};
void set_timesync(uint8_t val[]) {
ESP_LOGI(TAG, "Remote command: timesync requested");
setTimeSyncIRQ();
};
void set_time(uint8_t val[]) {
// swap byte order from msb to lsb, note: this is a platform dependent hack
uint32_t t = __builtin_bswap32(*(uint32_t *)(val));
ESP_LOGI(TAG, "Remote command: set time to %d", t);
setMyTime(t, 0, _set);
};
void set_flush(uint8_t val[]) {
ESP_LOGI(TAG, "Remote command: flush");
// does nothing
// used to open receive window on LoRaWAN class a nodes
};
void set_enscount(uint8_t val[]) {
ESP_LOGI(TAG, "Remote command: set ENS_COUNT to %s", val[0] ? "on" : "off");
cfg.enscount = val[0] ? 1 : 0;
if (val[0])
cfg.payloadmask |= SENSOR1_DATA;
else
cfg.payloadmask &= ~SENSOR1_DATA;
}
void set_loadconfig(uint8_t val[]) {
ESP_LOGI(TAG, "Remote command: load config from NVRAM");
loadConfig();
};
void set_saveconfig(uint8_t val[]) {
ESP_LOGI(TAG, "Remote command: save config to NVRAM");
saveConfig(false);
};
// assign previously defined functions to set of numeric remote commands
// format: {opcode, function, number of function arguments}
static const cmd_t table[] = {
{0x01, set_rssi, 1}, {0x02, set_countmode, 1},
{0x03, set_gps, 1}, {0x04, set_display, 1},
{0x05, set_loradr, 1}, {0x06, set_lorapower, 1},
{0x07, set_loraadr, 1}, {0x08, set_screensaver, 1},
{0x09, set_reset, 1}, {0x0a, set_sendcycle, 1},
{0x0b, set_wifichancycle, 1}, {0x0c, set_blescantime, 1},
{0x0e, set_blescan, 1}, {0x0f, set_wifiant, 1},
{0x10, set_rgblum, 1}, {0x11, set_monitor, 1},
{0x12, set_beacon, 7}, {0x13, set_sensor, 2},
{0x14, set_payloadmask, 1}, {0x15, set_bme, 1},
{0x16, set_batt, 1}, {0x17, set_wifiscan, 1},
{0x18, set_enscount, 1}, {0x19, set_sleepcycle, 2},
{0x20, set_loadconfig, 0}, {0x21, set_saveconfig, 0},
{0x80, get_config, 0}, {0x81, get_status, 0},
{0x83, get_batt, 0}, {0x84, get_gps, 0},
{0x85, get_bme, 0}, {0x86, get_time, 0},
{0x87, set_timesync, 0}, {0x88, set_time, 4},
{0x99, set_flush, 0}};
static const uint8_t cmdtablesize =
sizeof(table) / sizeof(table[0]); // number of commands in command table
// check and execute remote command
void rcmd_execute(const uint8_t cmd[], const uint8_t cmdlength) {
if (cmdlength == 0)
return;
uint8_t foundcmd[cmdlength], cursor = 0;
while (cursor < cmdlength) {
int i = cmdtablesize;
while (i--) {
if (cmd[cursor] == table[i].opcode) { // lookup command in opcode table
cursor++; // strip 1 byte opcode
if ((cursor + table[i].params) <= cmdlength) {
memmove(foundcmd, cmd + cursor,
table[i].params); // strip opcode from cmd array
cursor += table[i].params;
table[i].func(
foundcmd); // execute assigned function with given parameters
} else
ESP_LOGI(TAG,
"Remote command x%02X called with missing parameter(s), "
"skipped",
table[i].opcode);
break; // command found -> exit table lookup loop
} // end of command validation
} // end of command table lookup loop
if (i < 0) { // command not found -> exit parser
ESP_LOGI(TAG, "Unknown remote command x%02X, ignored", cmd[cursor]);
break;
}
} // command parsing loop
} // rcmd_execute()
// remote command processing task
void rcmd_process(void *pvParameters) {
_ASSERT((uint32_t)pvParameters == 1); // FreeRTOS check
RcmdBuffer_t RcmdBuffer;
while (1) {
// fetch next or wait for incoming rcommand from queue
if (xQueueReceive(RcmdQueue, &RcmdBuffer, portMAX_DELAY) != pdTRUE) {
ESP_LOGE(TAG, "Premature return from xQueueReceive() with no data!");
continue;
}
rcmd_execute(RcmdBuffer.cmd, RcmdBuffer.cmdLen);
}
delay(2); // yield to CPU
} // rcmd_process()
// enqueue remote command
void IRAM_ATTR rcommand(const uint8_t *cmd, const size_t cmdlength) {
RcmdBuffer_t rcmd = {0};
rcmd.cmdLen = cmdlength;
memcpy(rcmd.cmd, cmd, cmdlength);
if (xQueueSendToBack(RcmdQueue, (void *)&rcmd, (TickType_t)0) != pdTRUE)
ESP_LOGW(TAG, "Remote command queue is full");
} // rcommand()
void rcmd_queuereset(void) { xQueueReset(RcmdQueue); }
uint32_t rcmd_queuewaiting(void) { return uxQueueMessagesWaiting(RcmdQueue); }
void rcmd_deinit(void) {
rcmd_queuereset();
vTaskDelete(rcmdTask);
}
esp_err_t rcmd_init(void) {
_ASSERT(RCMD_QUEUE_SIZE > 0);
RcmdQueue = xQueueCreate(RCMD_QUEUE_SIZE, sizeof(RcmdBuffer_t));
if (RcmdQueue == 0) {
ESP_LOGE(TAG, "Could not create rcommand send queue. Aborting.");
return ESP_FAIL;
}
ESP_LOGI(TAG, "Rcommand send queue created, size %d Bytes",
RCMD_QUEUE_SIZE * sizeof(RcmdBuffer_t));
xTaskCreatePinnedToCore(rcmd_process, // task function
"rcmdloop", // name of task
3072, // stack size of task
(void *)1, // parameter of the task
1, // priority of the task
&rcmdTask, // task handle
1); // CPU core
return ESP_OK;
} // rcmd_init()