ESP32-PaxCounter/src/power.cpp
2019-09-20 09:04:24 +02:00

212 lines
6.1 KiB
C++

// Basic config
#include "globals.h"
#include "power.h"
// Local logging tag
static const char TAG[] = __FILE__;
#ifdef HAS_PMU
AXP20X_Class pmu;
void pover_event_IRQ(void) {
// block i2c bus access
if (I2C_MUTEX_LOCK()) {
pmu.readIRQ();
// put your power event handler code here
if (pmu.isVbusOverVoltageIRQ())
ESP_LOGI(TAG, "USB voltage %.1fV too high.", pmu.getVbusVoltage());
if (pmu.isVbusPlugInIRQ())
ESP_LOGI(TAG, "USB plugged, %.0fmAh @ %.1fV", pmu.getVbusCurrent(),
pmu.getVbusVoltage());
if (pmu.isVbusRemoveIRQ())
ESP_LOGI(TAG, "USB unplugged.");
if (pmu.isBattPlugInIRQ())
ESP_LOGI(TAG, "Battery is connected.");
if (pmu.isBattRemoveIRQ())
ESP_LOGI(TAG, "Battery was removed.");
if (pmu.isChargingIRQ())
ESP_LOGI(TAG, "Battery charging.");
if (pmu.isChargingDoneIRQ())
ESP_LOGI(TAG, "Battery charging done.");
if (pmu.isBattTempLowIRQ())
ESP_LOGI(TAG, "Battery high temperature.");
if (pmu.isBattTempHighIRQ())
ESP_LOGI(TAG, "Battery low temperature.");
// wake up
if (pmu.isPEKShortPressIRQ()) {
ESP_LOGI(TAG, "Power Button short pressed.");
AXP192_power(true);
}
// enter sleep mode
if (pmu.isPEKLongtPressIRQ()) {
ESP_LOGI(TAG, "Power Button long pressed.");
AXP192_power(false);
delay(20);
esp_sleep_enable_ext1_wakeup(GPIO_SEL_38, ESP_EXT1_WAKEUP_ALL_LOW);
esp_deep_sleep_start();
}
pmu.clearIRQ();
I2C_MUTEX_UNLOCK(); // release i2c bus access
} else
ESP_LOGI(TAG, "Unknown PMU event.");
}
void AXP192_power(bool on) {
if (on) {
pmu.setPowerOutPut(AXP192_LDO2, AXP202_ON);
pmu.setPowerOutPut(AXP192_LDO3, AXP202_ON);
pmu.setPowerOutPut(AXP192_DCDC2, AXP202_ON);
pmu.setPowerOutPut(AXP192_EXTEN, AXP202_ON);
pmu.setPowerOutPut(AXP192_DCDC1, AXP202_ON);
pmu.setChgLEDMode(AXP20X_LED_LOW_LEVEL);
} else {
pmu.setPowerOutPut(AXP192_DCDC1, AXP202_OFF);
pmu.setPowerOutPut(AXP192_EXTEN, AXP202_OFF);
pmu.setPowerOutPut(AXP192_DCDC2, AXP202_OFF);
pmu.setPowerOutPut(AXP192_LDO3, AXP202_OFF);
pmu.setPowerOutPut(AXP192_LDO2, AXP202_OFF);
pmu.setChgLEDMode(AXP20X_LED_OFF);
}
}
void AXP192_displaypower(void) {
if (pmu.isBatteryConnect())
if (pmu.isChargeing())
ESP_LOGI(TAG, "Battery charging %.0fmAh @ Temp %.1f°C",
pmu.getBattChargeCurrent(), pmu.getTSTemp());
else
ESP_LOGI(TAG, "Battery not charging, Temp %.1f°C", pmu.getTSTemp());
else
ESP_LOGI(TAG, "No Battery");
if (pmu.isVBUSPlug())
ESP_LOGI(TAG, "USB present, %.0fmAh @ %.1fV", pmu.getVbusCurrent(),
pmu.getVbusVoltage());
else
ESP_LOGI(TAG, "USB not present");
}
void AXP192_init(void) {
// block i2c bus access
if (I2C_MUTEX_LOCK()) {
if (pmu.begin(Wire, AXP192_PRIMARY_ADDRESS))
ESP_LOGI(TAG, "AXP192 PMU initialization failed");
else {
// switch power on
pmu.setDCDC1Voltage(3300);
pmu.adc1Enable(AXP202_BATT_CUR_ADC1, 1);
AXP192_power(true);
// I2C access of AXP202X library currently is not mutexable
// so we better should disable AXP interrupts... ?
#ifdef PMU_INT
pinMode(PMU_INT, INPUT_PULLUP);
attachInterrupt(digitalPinToInterrupt(PMU_INT), PMUIRQ, FALLING);
pmu.enableIRQ(AXP202_VBUS_REMOVED_IRQ | AXP202_VBUS_CONNECT_IRQ |
AXP202_BATT_REMOVED_IRQ | AXP202_BATT_CONNECT_IRQ,
1);
pmu.clearIRQ();
#endif // PMU_INT
ESP_LOGI(TAG, "AXP192 PMU initialized, chip Temp %.1f°C", pmu.getTemp());
AXP192_displaypower();
}
I2C_MUTEX_UNLOCK(); // release i2c bus access
} else
ESP_LOGE(TAG, "I2c bus busy - PMU initialization error");
}
#endif // HAS_PMU
#ifdef BAT_MEASURE_ADC
esp_adc_cal_characteristics_t *adc_characs =
(esp_adc_cal_characteristics_t *)calloc(
1, sizeof(esp_adc_cal_characteristics_t));
#ifndef BAT_MEASURE_ADC_UNIT // ADC1
static const adc1_channel_t adc_channel = BAT_MEASURE_ADC;
#else // ADC2
static const adc2_channel_t adc_channel = BAT_MEASURE_ADC;
#endif
static const adc_atten_t atten = ADC_ATTEN_DB_11;
static const adc_unit_t unit = ADC_UNIT_1;
#endif // BAT_MEASURE_ADC
void calibrate_voltage(void) {
#ifdef BAT_MEASURE_ADC
// configure ADC
#ifndef BAT_MEASURE_ADC_UNIT // ADC1
ESP_ERROR_CHECK(adc1_config_width(ADC_WIDTH_BIT_12));
ESP_ERROR_CHECK(adc1_config_channel_atten(adc_channel, atten));
#else // ADC2
// ESP_ERROR_CHECK(adc2_config_width(ADC_WIDTH_BIT_12));
ESP_ERROR_CHECK(adc2_config_channel_atten(adc_channel, atten));
#endif
// calibrate ADC
esp_adc_cal_value_t val_type = esp_adc_cal_characterize(
unit, atten, ADC_WIDTH_BIT_12, DEFAULT_VREF, adc_characs);
// show ADC characterization base
if (val_type == ESP_ADC_CAL_VAL_EFUSE_TP) {
ESP_LOGI(TAG,
"ADC characterization based on Two Point values stored in eFuse");
} else if (val_type == ESP_ADC_CAL_VAL_EFUSE_VREF) {
ESP_LOGI(TAG,
"ADC characterization based on reference voltage stored in eFuse");
} else {
ESP_LOGI(TAG, "ADC characterization based on default reference voltage");
}
#endif
}
bool batt_sufficient() {
#if (defined HAS_PMU || defined BAT_MEASURE_ADC)
uint16_t volts = read_voltage();
return ((volts < 1000) ||
(volts > OTA_MIN_BATT)); // no battery or battery sufficient
#else
return true;
#endif
}
uint16_t read_voltage() {
uint16_t voltage = 0;
#ifdef HAS_PMU
voltage = pmu.isVBUSPlug() ? 0xffff : pmu.getBattVoltage();
#else
#ifdef BAT_MEASURE_ADC
// multisample ADC
uint32_t adc_reading = 0;
int adc_buf = 0;
for (int i = 0; i < NO_OF_SAMPLES; i++) {
#ifndef BAT_MEASURE_ADC_UNIT // ADC1
adc_reading += adc1_get_raw(adc_channel);
#else // ADC2
ESP_ERROR_CHECK(adc2_get_raw(adc_channel, ADC_WIDTH_BIT_12, &adc_buf));
adc_reading += adc_buf;
#endif
}
adc_reading /= NO_OF_SAMPLES;
// Convert ADC reading to voltage in mV
voltage = esp_adc_cal_raw_to_voltage(adc_reading, adc_characs);
#endif // BAT_MEASURE_ADC
#ifdef BAT_VOLTAGE_DIVIDER
voltage *= BAT_VOLTAGE_DIVIDER;
#endif // BAT_VOLTAGE_DIVIDER
#endif // HAS_PMU
return voltage;
}