ESP32-PaxCounter/src/lorawan.cpp
2022-12-31 19:35:30 +01:00

554 lines
17 KiB
C++

// Basic Config
#if (HAS_LORA)
#include "lorawan.h"
#if CLOCK_ERROR_PROCENTAGE > 7
#warning CLOCK_ERROR_PROCENTAGE value in lmic_config.h is too high; values > 7 will cause side effects
#endif
#if (TIME_SYNC_LORAWAN)
#ifndef LMIC_ENABLE_DeviceTimeReq
#define LMIC_ENABLE_DeviceTimeReq 1
#endif
#endif
static QueueHandle_t LoraSendQueue;
TaskHandle_t lmicTask = NULL, lorasendTask = NULL;
char lmic_event_msg[LMIC_EVENTMSG_LEN]; // display buffer for LMIC event message
class MyHalConfig_t : public Arduino_LMIC::HalConfiguration_t {
public:
MyHalConfig_t(){};
// set SPI pins to board configuration, pins may come from pins_arduino.h
void begin(void) override {
SPI.begin(LORA_SCK, LORA_MISO, LORA_MOSI, LORA_CS);
}
// void end(void) override
// ostime_t setModuleActive(bool state) override
};
static MyHalConfig_t myHalConfig{};
// LMIC pin mapping for Hope RFM95 / HPDtek HPD13A transceivers
static const lmic_pinmap myPinmap = {
.nss = LORA_CS,
.rxtx = LMIC_UNUSED_PIN,
.rst = LORA_RST == NOT_A_PIN ? LMIC_UNUSED_PIN : LORA_RST,
.dio = {LORA_IRQ, LORA_IO1,
LORA_IO2 == NOT_A_PIN ? LMIC_UNUSED_PIN : LORA_IO2},
.rxtx_rx_active = LMIC_UNUSED_PIN,
.rssi_cal = 10,
.spi_freq = 8000000, // 8MHz
.pConfig = &myHalConfig};
void lora_setupForNetwork(bool preJoin) {
if (preJoin) {
#if CFG_LMIC_US_like
// in the US, with TTN, it saves join time if we start on subband 1
// (channels 8-15). This will get overridden after the join by
// parameters from the network. If working with other networks or in
// other regions, this will need to be changed.
LMIC_selectSubBand(1);
#elif CFG_LMIC_EU_like
// settings for TheThingsNetwork
// Enable link check validation
LMIC_setLinkCheckMode(1);
#endif
} else {
// set data rate adaptation according to saved setting
LMIC_setAdrMode(cfg.adrmode);
// set data rate and transmit power to stored device values if no ADR
if (!cfg.adrmode)
LMIC_setDrTxpow(assertDR(cfg.loradr), cfg.txpower);
// show current devaddr
ESP_LOGI(TAG, "DEVaddr: 0x%08X | Network ID: 0x%06X | Network Type: %d",
LMIC.devaddr, LMIC.netid & 0x001FFFFF, LMIC.netid & 0x00E00000);
ESP_LOGI(TAG, "RSSI: %d | SNR: %d", LMIC.rssi, (LMIC.snr + 2) / 4);
ESP_LOGI(TAG, "Radio parameters: %s | %s | %s",
getSfName(updr2rps(LMIC.datarate)),
getBwName(updr2rps(LMIC.datarate)),
getCrName(updr2rps(LMIC.datarate)));
}
}
// DevEUI generator using devices's MAC address
void gen_lora_deveui(uint8_t *pdeveui) {
uint8_t *p = pdeveui, dmac[6];
int i = 0;
esp_efuse_mac_get_default(dmac);
// deveui is LSB, we reverse it so TTN DEVEUI display
// will remain the same as MAC address
// MAC is 6 bytes, devEUI 8, set first 2 ones
// with an arbitrary value
*p++ = 0xFF;
*p++ = 0xFE;
// Then next 6 bytes are mac address reversed
for (i = 0; i < 6; i++) {
*p++ = dmac[5 - i];
}
}
/* new version, does it with well formed mac according IEEE spec, but is
breaking change
// DevEUI generator using devices's MAC address
void gen_lora_deveui(uint8_t *pdeveui) {
uint8_t *p = pdeveui, dmac[6];
esp_efuse_mac_get_default(dmac);
// deveui is LSB, we reverse it so TTN DEVEUI display
// will remain the same as MAC address
// MAC is 6 bytes, devEUI 8, set middle 2 ones
// to an arbitrary value
*p++ = dmac[5];
*p++ = dmac[4];
*p++ = dmac[3];
*p++ = 0xfe;
*p++ = 0xff;
*p++ = dmac[2];
*p++ = dmac[1];
*p++ = dmac[0];
}
*/
// Function to do a byte swap in a byte array
void RevBytes(unsigned char *b, size_t c) {
u1_t i;
for (i = 0; i < c / 2; i++) {
unsigned char t = b[i];
b[i] = b[c - 1 - i];
b[c - 1 - i] = t;
}
}
// LMIC callback functions
void os_getDevKey(u1_t *buf) {
#ifndef LORA_ABP
memcpy(buf, APPKEY, 16);
#endif
}
void os_getArtEui(u1_t *buf) {
#ifndef LORA_ABP
memcpy(buf, APPEUI, 8);
RevBytes(buf, 8); // TTN requires it in LSB First order, so we swap bytes
#endif
}
void os_getDevEui(u1_t *buf) {
#ifndef LORA_ABP
int i = 0, k = 0;
memcpy(buf, DEVEUI, 8); // get fixed DEVEUI from loraconf.h
for (i = 0; i < 8; i++) {
k += buf[i];
}
if (k) {
RevBytes(buf, 8); // use fixed DEVEUI and swap bytes to LSB format
} else {
gen_lora_deveui(buf); // generate DEVEUI from device's MAC
}
#endif
}
#if (VERBOSE)
// Display a key
void printKey(const char *name, const uint8_t *key, uint8_t len, bool lsb) {
const uint8_t *p;
char keystring[len + 1] = "", keybyte[3];
for (uint8_t i = 0; i < len; i++) {
p = lsb ? key + len - i - 1 : key + i;
snprintf(keybyte, 3, "%02X", *p);
strncat(keystring, keybyte, 2);
}
ESP_LOGI(TAG, "%s: %s", name, keystring);
}
// Display OTAA keys
void showLoraKeys(void) {
// LMIC may not have used callback to fill
// all EUI buffer so we do it here to a temp
// buffer to be able to display them
uint8_t buf[32];
os_getArtEui((u1_t *)buf);
printKey("AppEUI", buf, 8, true);
os_getDevEui((u1_t *)buf);
printKey("DevEUI", buf, 8, true);
os_getDevKey((u1_t *)buf);
printKey("AppKey", buf, 16, false);
}
#endif // VERBOSE
// LMIC send task
void lora_send(void *pvParameters) {
_ASSERT((uint32_t)pvParameters == 1); // FreeRTOS check
MessageBuffer_t SendBuffer;
while (1) {
// postpone until we are joined if we are not
while (!LMIC.devaddr) {
vTaskDelay(pdMS_TO_TICKS(500));
}
// fetch next or wait for payload to send from queue
// do not delete item from queue until it is transmitted
if (xQueuePeek(LoraSendQueue, &SendBuffer, portMAX_DELAY) != pdTRUE) {
ESP_LOGE(TAG, "Premature return from xQueueReceive() with no data!");
continue;
}
// attempt to transmit payload
switch (LMIC_setTxData2_strict(SendBuffer.MessagePort, SendBuffer.Message,
SendBuffer.MessageSize,
(cfg.countermode & 0x02))) {
case LMIC_ERROR_SUCCESS:
#if (TIME_SYNC_LORASERVER)
// if last packet sent was a timesync request, store TX timestamp
if (SendBuffer.MessagePort == TIMEPORT)
// store LMIC time when we started transmit of timesync request
timesync_store(osticks2ms(os_getTime()), timesync_tx);
#endif
ESP_LOGI(TAG, "%d byte(s) sent to LORA", SendBuffer.MessageSize);
// delete sent item from queue
xQueueReceive(LoraSendQueue, &SendBuffer, (TickType_t)0);
break;
case LMIC_ERROR_TX_BUSY: // LMIC already has a tx message pending
case LMIC_ERROR_TX_FAILED: // message was not sent
vTaskDelay(pdMS_TO_TICKS(500 + random(400))); // wait a while
break;
case LMIC_ERROR_TX_TOO_LARGE: // message size exceeds LMIC buffer size
case LMIC_ERROR_TX_NOT_FEASIBLE: // message too large for current
// datarate
ESP_LOGI(TAG, "Message too large to send, message not sent and deleted");
// we need some kind of error handling here -> to be done
break;
default: // other LMIC return code
ESP_LOGE(TAG, "LMIC error, message not sent and deleted");
} // switch
delay(2); // yield to CPU
} // while(1)
}
esp_err_t lmic_init(void) {
_ASSERT(SEND_QUEUE_SIZE > 0);
LoraSendQueue = xQueueCreate(SEND_QUEUE_SIZE, sizeof(MessageBuffer_t));
if (LoraSendQueue == 0) {
ESP_LOGE(TAG, "Could not create LORA send queue. Aborting.");
return ESP_FAIL;
}
ESP_LOGI(TAG, "LORA send queue created, size %d Bytes",
SEND_QUEUE_SIZE * sizeof(MessageBuffer_t));
// setup LMIC stack
os_init_ex(&myPinmap); // initialize lmic run-time environment
// register a callback for downlink messages and lmic events.
// We aren't trying to write reentrant code, so pUserData is NULL.
// LMIC_reset() doesn't affect callbacks, so we can do this first.
LMIC_registerRxMessageCb(myRxCallback, NULL);
LMIC_registerEventCb(myEventCallback, NULL);
// to come with future LMIC version
// Reset the MAC state. Session and pending data transfers will be
// discarded.
LMIC_reset();
// This tells LMIC to make the receive windows bigger, in case your clock is
// faster or slower. This causes the transceiver to be earlier switched on,
// so consuming more power. You may sharpen (reduce) CLOCK_ERROR_PERCENTAGE
// in src/lmic_config.h if you are limited on battery.
#ifdef CLOCK_ERROR_PROCENTAGE
LMIC_setClockError(CLOCK_ERROR_PROCENTAGE * MAX_CLOCK_ERROR / 1000);
#endif
// Pass ABP parameters to LMIC_setSession
#ifdef LORA_ABP
setABPParameters(); // These parameters are defined as macro in loraconf.h
// load saved session from RTC, if we have one
if (RTC_runmode == RUNMODE_WAKEUP) {
LoadLMICFromRTC();
} else {
uint8_t appskey[sizeof(APPSKEY)];
uint8_t nwkskey[sizeof(NWKSKEY)];
memcpy_P(appskey, APPSKEY, sizeof(APPSKEY));
memcpy_P(nwkskey, NWKSKEY, sizeof(NWKSKEY));
LMIC_setSession(NETID, DEVADDR, nwkskey, appskey);
}
// Pass OTA parameters to LMIC_setSession
#else
// load saved session from RTC, if we have one
if (RTC_runmode == RUNMODE_WAKEUP)
LoadLMICFromRTC();
if (!LMIC_startJoining())
ESP_LOGI(TAG, "Already joined");
#endif
// start lmic loop task
ESP_LOGI(TAG, "Starting LMIC...");
xTaskCreatePinnedToCore(lmictask, // task function
"lmictask", // name of task
4096, // stack size of task
(void *)1, // parameter of the task
2, // priority of the task
&lmicTask, // task handle
1); // CPU core
// start lora send task
xTaskCreatePinnedToCore(lora_send, // task function
"lorasendtask", // name of task
3072, // stack size of task
(void *)1, // parameter of the task
2, // priority of the task
&lorasendTask, // task handle
1); // CPU core
return ESP_OK;
}
void lora_enqueuedata(MessageBuffer_t *message) {
// enqueue message in LORA send queue
if (xQueueSendToBack(LoraSendQueue, (void *)message, (TickType_t)0) !=
pdTRUE) {
snprintf(lmic_event_msg + 14, LMIC_EVENTMSG_LEN - 14, "<>");
ESP_LOGW(TAG, "LORA sendqueue is full");
} else {
// add Lora send queue length to display
snprintf(lmic_event_msg + 14, LMIC_EVENTMSG_LEN - 14, "%2u",
uxQueueMessagesWaiting(LoraSendQueue));
}
}
void lora_queuereset(void) { xQueueReset(LoraSendQueue); }
uint32_t lora_queuewaiting(void) {
return uxQueueMessagesWaiting(LoraSendQueue);
}
// blocking wait until LMIC is idle
void lora_waitforidle(uint16_t timeout_sec) {
ESP_LOGI(TAG, "Waiting until LMIC is idle...");
for (int i = timeout_sec; i > 0; i--) {
if ((LMIC.opmode & (OP_JOINING | OP_TXDATA | OP_POLL | OP_TXRXPEND)) ||
os_queryTimeCriticalJobs(sec2osticks(timeout_sec)))
vTaskDelay(pdMS_TO_TICKS(1000));
else
break;
}
}
// LMIC loop task
void lmictask(void *pvParameters) {
_ASSERT((uint32_t)pvParameters == 1);
while (1) {
os_runloop_once(); // execute lmic scheduled jobs and events
delay(2); // yield to CPU
}
}
// lmic event handler
void myEventCallback(void *pUserData, ev_t ev) {
// using message descriptors from LMIC library
static const char *const evNames[] = {LMIC_EVENT_NAME_TABLE__INIT};
// get current length of lora send queue
uint8_t const msgWaiting = uxQueueMessagesWaiting(LoraSendQueue);
// get current event message
if (ev < sizeof(evNames) / sizeof(evNames[0]))
snprintf(lmic_event_msg, LMIC_EVENTMSG_LEN, "%-16s",
evNames[ev] + 3); // +3 to strip "EV_"
else
snprintf(lmic_event_msg, LMIC_EVENTMSG_LEN, "LMIC event %-4u ", ev);
// process current event message
switch (ev) {
case EV_TXCOMPLETE:
// -> processed in lora_send()
break;
case EV_RXCOMPLETE:
// -> processed in myRxCallback()
break;
case EV_JOINING:
// do the network-specific setup prior to join.
lora_setupForNetwork(true);
break;
case EV_JOINED:
// do the after join network-specific setup.
lora_setupForNetwork(false);
break;
case EV_JOIN_FAILED:
// must call LMIC_reset() to stop joining
// otherwise join procedure continues.
LMIC_reset();
break;
case EV_JOIN_TXCOMPLETE:
// replace descriptor from library with more descriptive term
snprintf(lmic_event_msg, LMIC_EVENTMSG_LEN, "%-16s", "JOIN_WAIT");
break;
default:
break;
}
// add Lora send queue length to display
if (msgWaiting)
snprintf(lmic_event_msg + 14, LMIC_EVENTMSG_LEN - 14, "%2u", msgWaiting);
// print event
ESP_LOGD(TAG, "%s", lmic_event_msg);
}
// event EV_RXCOMPLETE message handler
void myRxCallback(void *pUserData, uint8_t port, const uint8_t *pMsg,
size_t nMsg) {
// display amount of received data
if (nMsg)
ESP_LOGI(TAG, "Received %u byte(s) of payload on port %u", nMsg, port);
else if (port)
ESP_LOGI(TAG, "Received empty message on port %u", port);
switch (port) {
// rcommand received -> call interpreter
case RCMDPORT:
rcommand(pMsg, nMsg);
break;
// timeserver answer -> call timesync processor
#if (TIME_SYNC_LORASERVER)
case TIMEPORT:
// get and store gwtime from payload
timesync_serverAnswer(const_cast<uint8_t *>(pMsg), nMsg);
break;
#endif
} // switch
}
const char *getSfName(rps_t rps) {
const char *const t[] = {"FSK", "SF7", "SF8", "SF9",
"SF10", "SF11", "SF12", "SF?"};
return t[getSf(rps)];
}
const char *getBwName(rps_t rps) {
const char *const t[] = {"BW125", "BW250", "BW500", "BW?"};
return t[getBw(rps)];
}
const char *getCrName(rps_t rps) {
const char *const t[] = {"CR 4/5", "CR 4/6", "CR 4/7", "CR 4/8"};
return t[getCr(rps)];
}
/*******************************************************************************
*
* ttn-esp32 - The Things Network device library for ESP-IDF / SX127x
*
* Copyright (c) 2018-2021 Manuel Bleichenbacher
*
* Licensed under MIT License
* https://opensource.org/licenses/MIT
*
* Functions for storing and retrieving TTN communication state from RTC memory.
*******************************************************************************/
#define LMIC_OFFSET(field) __builtin_offsetof(struct lmic_t, field)
#define LMIC_DIST(field1, field2) (LMIC_OFFSET(field2) - LMIC_OFFSET(field1))
#define TTN_RTC_MEM_SIZE \
(sizeof(struct lmic_t) - LMIC_OFFSET(radio) - MAX_LEN_PAYLOAD - MAX_LEN_FRAME)
#define TTN_RTC_FLAG_VALUE 0xf8025b8a
RTC_DATA_ATTR uint8_t ttn_rtc_mem_buf[TTN_RTC_MEM_SIZE];
RTC_DATA_ATTR uint32_t ttn_rtc_flag;
void ttn_rtc_save() {
// Copy LMIC struct except client, osjob, pendTxData and frame
size_t len1 = LMIC_DIST(radio, pendTxData);
memcpy(ttn_rtc_mem_buf, &LMIC.radio, len1);
size_t len2 = LMIC_DIST(pendTxData, frame) - MAX_LEN_PAYLOAD;
memcpy(ttn_rtc_mem_buf + len1, (u1_t *)&LMIC.pendTxData + MAX_LEN_PAYLOAD,
len2);
size_t len3 = sizeof(struct lmic_t) - LMIC_OFFSET(frame) - MAX_LEN_FRAME;
memcpy(ttn_rtc_mem_buf + len1 + len2, (u1_t *)&LMIC.frame + MAX_LEN_FRAME,
len3);
ttn_rtc_flag = TTN_RTC_FLAG_VALUE;
}
bool ttn_rtc_restore() {
if (ttn_rtc_flag != TTN_RTC_FLAG_VALUE)
return false;
// Restore data
size_t len1 = LMIC_DIST(radio, pendTxData);
memcpy(&LMIC.radio, ttn_rtc_mem_buf, len1);
memset(LMIC.pendTxData, 0, MAX_LEN_PAYLOAD);
size_t len2 = LMIC_DIST(pendTxData, frame) - MAX_LEN_PAYLOAD;
memcpy((u1_t *)&LMIC.pendTxData + MAX_LEN_PAYLOAD, ttn_rtc_mem_buf + len1,
len2);
memset(LMIC.frame, 0, MAX_LEN_FRAME);
size_t len3 = sizeof(struct lmic_t) - LMIC_OFFSET(frame) - MAX_LEN_FRAME;
memcpy((u1_t *)&LMIC.frame + MAX_LEN_FRAME, ttn_rtc_mem_buf + len1 + len2,
len3);
ttn_rtc_flag = 0xffffffff; // invalidate RTC data
return true;
}
// following code includes snippets taken from
// https://github.com/JackGruber/ESP32-LMIC-DeepSleep-example/blob/master/src/main.cpp
void SaveLMICToRTC(uint32_t deepsleep_sec) {
// ESP32 can't track millis during DeepSleep and no option to advance
// millis after DeepSleep. Therefore reset DutyCyles before saving LMIC struct
unsigned long now = millis();
// EU Like Bands
#if CFG_LMIC_EU_like
for (int i = 0; i < MAX_BANDS; i++) {
ostime_t correctedAvail =
LMIC.bands[i].avail -
((now / 1000.0 + deepsleep_sec) * OSTICKS_PER_SEC);
if (correctedAvail < 0) {
correctedAvail = 0;
}
LMIC.bands[i].avail = correctedAvail;
}
LMIC.globalDutyAvail =
LMIC.globalDutyAvail - ((now / 1000.0 + deepsleep_sec) * OSTICKS_PER_SEC);
if (LMIC.globalDutyAvail < 0) {
LMIC.globalDutyAvail = 0;
}
#else
ESP_LOGW(TAG, "No DutyCycle recalculation function!");
#endif
ttn_rtc_save();
ESP_LOGI(TAG, "LMIC state saved");
}
void LoadLMICFromRTC() {
if (ttn_rtc_restore())
ESP_LOGI(TAG, "LMIC state loaded");
else {
ESP_LOGE(TAG, "LMIC state not found - resetting device");
do_reset(false); // coldstart
}
}
#endif // HAS_LORA