ESP32-PaxCounter/src/timekeeper.cpp
2022-08-16 13:49:00 +02:00

393 lines
11 KiB
C++

#include "timekeeper.h"
#if (defined HAS_DCF77 && defined HAS_IF482)
#error You must define at most one of IF482 or DCF77!
#endif
// Local logging tag
static const char TAG[] = __FILE__;
// symbol to display current time source
// G = GPS / R = RTC / L = LORA / * = no sync / ? = never synced
const char timeSetSymbols[] = {'G', 'R', 'L', '*', '?'};
DRAM_ATTR bool TimePulseTick = false;
#ifdef GPS_INT
DRAM_ATTR unsigned long lastPPS = millis();
#endif
#ifdef RTC_INT
DRAM_ATTR unsigned long lastRTCpulse = millis();
#endif
timesource_t timeSource = _unsynced;
TaskHandle_t ClockTask = NULL;
hw_timer_t *ppsIRQ = NULL;
#ifdef HAS_IF482
HardwareSerial IF482(2); // use UART #2 (#1 may be in use for serial GPS)
static TickType_t txDelay = pdMS_TO_TICKS(1000 - IF482_SYNC_FIXUP) -
tx_Ticks(IF482_FRAME_SIZE, HAS_IF482);
#if (HAS_SDS011)
#error cannot use IF482 together with SDS011 (both use UART#2)
#endif
#endif // HAS_IF482
Ticker timesyncer;
void setTimeSyncIRQ() { xTaskNotify(irqHandlerTask, TIMESYNC_IRQ, eSetBits); }
#ifdef GPS_INT
// interrupt service routine triggered by GPS PPS
void IRAM_ATTR GPSIRQ(void) {
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
// take timestamp
lastPPS = millis(); // last time of pps
// yield only if we should
if (xHigherPriorityTaskWoken)
portYIELD_FROM_ISR();
}
#endif
// interrupt service routine triggered by esp32 hardware timer
void IRAM_ATTR CLOCKIRQ(void) {
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
// advance wall clock, if we have
#if (defined HAS_IF482 || defined HAS_DCF77)
xTaskNotifyFromISR(ClockTask, uint32_t(time(NULL)), eSetBits,
&xHigherPriorityTaskWoken);
#endif
// flip time pulse ticker, if needed
#ifdef HAS_DISPLAY
TimePulseTick = !TimePulseTick; // flip global variable pulse ticker
#endif
// take timestamp if we have RTC pulse
#ifdef RTC_INT
lastRTCpulse = millis(); // last time of RTC pulse
#endif
// yield only if we should
if (xHigherPriorityTaskWoken)
portYIELD_FROM_ISR();
}
void calibrateTime(void) {
// kick off asynchronous lora timesync if we have
#if (HAS_LORA_TIME)
timesync_request();
if (timeSource == _lora) // did have lora time before?
return;
#endif
#if ((HAS_GPS) || (HAS_RTC))
time_t t = 0;
uint16_t t_msec = 0;
// get GPS time, if we have
#if (HAS_GPS)
t = get_gpstime(&t_msec);
if (setMyTime((uint32_t)t, t_msec, _gps))
return;
#endif
// fallback to RTC time, if we have
#ifdef HAS_RTC
t = get_rtctime(&t_msec);
if (setMyTime((uint32_t)t, t_msec, _rtc))
return;
#endif
#endif
} // calibrateTime()
// set system time (UTC), calibrate RTC and RTC_INT pps
bool setMyTime(uint32_t t_sec, uint16_t t_msec, timesource_t mytimesource) {
struct timeval tv = {0};
// called with invalid timesource?
if (mytimesource == _unsynced)
return false;
// increment t_sec if t_msec > 1000
time_t time_to_set = (time_t)(t_sec + t_msec / 1000);
// do we have a valid time?
if (timeIsValid(time_to_set)) {
// if we have msec fraction, then wait until top of second with
// millisecond precision
if (t_msec % 1000) {
time_to_set++;
vTaskDelay(pdMS_TO_TICKS(1000 - t_msec % 1000));
}
// from here on we are on top of next second
tv.tv_sec = time_to_set;
tv.tv_usec = 0;
sntp_sync_time(&tv);
ESP_LOGI(TAG, "[%0.3f] UTC time: %d.000 sec", _seconds(), time_to_set);
// if we have a precise time timesource, set RTC time and shift RTC_INT
// pulse to top of second
#ifdef HAS_RTC
if ((mytimesource == _gps) || (mytimesource == _lora))
set_rtctime(time_to_set);
#endif
// if we have a software pps timer, shift it to top of second
if (ppsIRQ != NULL) {
timerWrite(ppsIRQ, 0); // reset pps timer
CLOCKIRQ(); // fire clock pps to advance wall clock by 1 sec
}
timeSource = mytimesource; // set global variable
timesyncer.attach(TIME_SYNC_INTERVAL * 60, setTimeSyncIRQ);
ESP_LOGD(TAG, "[%0.3f] Timesync finished, time was set | timesource=%d",
_seconds(), mytimesource);
return true;
} else {
timesyncer.attach(TIME_SYNC_INTERVAL_RETRY * 60, setTimeSyncIRQ);
ESP_LOGV(TAG,
"[%0.3f] Failed to synchronise time from source %c | unix sec "
"obtained from source: %d | unix sec at program compilation: %d",
_seconds(), timeSetSymbols[mytimesource], time_to_set,
compileTime());
return false;
}
}
// helper function to setup a pulse per second for time synchronisation
void timepulse_init(void) {
// set esp-idf API sntp sync mode
// sntp_init();
sntp_set_sync_mode(SNTP_SYNC_MODE_IMMED);
// if we have, use PPS time pulse from GPS for syncing time on top of second
#ifdef GPS_INT
// setup external interupt pin for rising edge of GPS PPS
pinMode(GPS_INT, INPUT_PULLDOWN);
attachInterrupt(digitalPinToInterrupt(GPS_INT), GPSIRQ, RISING);
#endif
// if we have, use pulse from on board RTC chip as time base for calendar time
#if defined RTC_INT
// setup external rtc 1Hz clock pulse
Rtc.SetSquareWavePinClockFrequency(DS3231SquareWaveClock_1Hz);
Rtc.SetSquareWavePin(DS3231SquareWavePin_ModeClock);
pinMode(RTC_INT, INPUT_PULLUP);
attachInterrupt(digitalPinToInterrupt(RTC_INT), CLOCKIRQ, FALLING);
ESP_LOGI(TAG, "Timepulse: external (RTC)");
#else
// use ESP32 hardware timer as time base for calendar time
ppsIRQ = timerBegin(1, 8000, true); // set 80 MHz prescaler to 1/10000 sec
timerAlarmWrite(ppsIRQ, 10000, true); // 1000ms
timerAttachInterrupt(ppsIRQ, &CLOCKIRQ, false);
timerAlarmEnable(ppsIRQ);
ESP_LOGI(TAG, "Timepulse: internal (ESP32 hardware timer)");
#endif
// get time if we don't have one
if (timeSource != _set) {
delay(1000); // wait for first PPS time stamp to arrive
setTimeSyncIRQ(); // init systime by RTC or GPS or LORA
}
// start cyclic time sync
timesyncer.attach(TIME_SYNC_INTERVAL * 60, setTimeSyncIRQ);
} // timepulse_init
// helper function to check plausibility of a given epoch time
bool timeIsValid(time_t const t) {
// is t a time in the past? we use compile time to guess
// compile time is some local time, but we do not know it's time zone
// thus, we go 1 full day back to be sure to catch a time in the past
return (t > (compileTime() - 86400));
}
// helper function to calculate serial transmit time
TickType_t tx_Ticks(uint32_t framesize, unsigned long baud, uint32_t config,
int8_t rxPin, int8_t txPins) {
uint32_t databits = ((config & 0x0c) >> 2) + 5;
uint32_t stopbits = ((config & 0x20) >> 5) + 1;
uint32_t txTime = (databits + stopbits + 1) * framesize * 1000.0 / baud;
// +1 for the startbit
return round(txTime);
}
void clock_loop(void *taskparameter) { // ClockTask
uint32_t current_time = 0, previous_time = 0;
time_t tt;
struct tm t = {0};
#ifdef HAS_TWO_LED
static bool led1_state = false;
#endif
#ifdef HAS_DCF77
uint64_t ClockPulse = 0;
int8_t ClockMinute = -1;
#endif
// output the next second's pulse/telegram after pps arrived
for (;;) {
// wait for timepulse and store UTC time
xTaskNotifyWait(0x00, ULONG_MAX, &current_time, portMAX_DELAY);
if ((sntp_get_sync_status() == SNTP_SYNC_STATUS_IN_PROGRESS) ||
!(timeIsValid(current_time)) || (current_time == previous_time))
continue;
// set calendar time for next second of clock output
tt = (time_t)(current_time + 1);
localtime_r(&tt, &t);
tt = mktime(&t);
#if defined HAS_IF482
// wait until moment to fire. Normally we won't get notified during this
// timespan, except when next pps pulse arrives while waiting, because pps
// was adjusted by recent time sync, then advance next_time one second
if (xTaskNotifyWait(0x00, ULONG_MAX, &current_time, txDelay) == pdTRUE) {
tt = (time_t)(current_time + 1);
localtime_r(&tt, &t);
tt = mktime(&t);
}
// send IF482 telegram
IF482.print(IF482_Frame(tt)); // note: telegram is for *next* second
ESP_LOGD(TAG, "[%0.3f] IF482: %s", _seconds(), IF482_Frame(tt).c_str());
#elif defined HAS_DCF77
// load new frame if second 59 is reached
if (t.tm_sec == 0) {
ClockMinute = t.tm_min;
t.tm_min++; // follow-up minute
mktime(&t); // normalize calendar time
ClockPulse = DCF77_Frame(t); // generate pulse frame
/* to do here: leap second handling in second 59 */
ESP_LOGD(TAG, "[%0.3f] DCF77: new frame for min %d", _seconds(),
t.tm_min);
} else {
// generate impulse
if (t.tm_min == ClockMinute) { // ensure frame is recent
DCF77_Pulse(ClockPulse & 1); // output next second
ClockPulse >>= 1;
}
}
#endif
// pps blink on secondary LED if we have one
#ifdef HAS_TWO_LED
if (led1_state)
switch_LED1(LED_OFF);
else
switch_LED1(LED_ON);
led1_state = !led1_state;
#endif
previous_time = current_time;
} // for
} // clock_loop()
void clock_init(void) {
// setup clock output interface
#ifdef HAS_IF482
IF482.begin(HAS_IF482);
#elif defined HAS_DCF77
pinMode(HAS_DCF77, OUTPUT);
#endif
xTaskCreatePinnedToCore(clock_loop, // task function
"clockloop", // name of task
3072, // stack size of task
(void *)1, // task parameter
6, // priority of the task
&ClockTask, // task handle
1); // CPU core
_ASSERT(ClockTask != NULL); // has clock task started?
} // clock_init
// we use compile date to create a time_t reference "in the past"
time_t compileTime(void) {
char s_month[5];
int year;
struct tm t = {0};
static const char month_names[] = "JanFebMarAprMayJunJulAugSepOctNovDec";
// store compile time once it's calculated
static time_t secs = -1;
if (secs == -1) {
// determine date
sscanf(__DATE__, "%4s %d %d", s_month, &t.tm_mday, &year);
t.tm_mon = (strstr(month_names, s_month) - month_names) / 3;
t.tm_year = year - 1900;
// determine time
sscanf(__TIME__, "%d:%d:%d", &t.tm_hour, &t.tm_min, &t.tm_sec);
// convert to secs local time
secs = mktime(&t);
}
return secs;
}
static bool IsLeapYear(short year) {
if (year % 4 != 0)
return false;
if (year % 100 != 0)
return true;
return (year % 400) == 0;
}
// convert UTC tm time to time_t epoch time
time_t mkgmtime(const struct tm *ptm) {
const int SecondsPerMinute = 60;
const int SecondsPerHour = 3600;
const int SecondsPerDay = 86400;
const int DaysOfMonth[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
time_t secs = 0;
// tm_year is years since 1900
int year = ptm->tm_year + 1900;
for (int y = 1970; y < year; ++y) {
secs += (IsLeapYear(y) ? 366 : 365) * SecondsPerDay;
}
// tm_mon is month from 0..11
for (int m = 0; m < ptm->tm_mon; ++m) {
secs += DaysOfMonth[m] * SecondsPerDay;
if (m == 1 && IsLeapYear(year))
secs += SecondsPerDay;
}
secs += (ptm->tm_mday - 1) * SecondsPerDay;
secs += ptm->tm_hour * SecondsPerHour;
secs += ptm->tm_min * SecondsPerMinute;
secs += ptm->tm_sec;
return secs;
}
void time_init(void) {
#if (defined HAS_IF482 || defined HAS_DCF77)
ESP_LOGI(TAG, "Starting clock controller...");
clock_init();
#endif
#if (HAS_LORA_TIME)
timesync_init(); // create loraserver time sync task
#endif
ESP_LOGI(TAG, "Starting time pulse...");
timepulse_init(); // starts pps and cyclic time sync
}