ESP32-PaxCounter/src/timesync.cpp
2019-08-03 14:01:25 +02:00

263 lines
8.8 KiB
C++

/*
///--> IMPORTANT LICENSE NOTE for this file <--///
PLEASE NOTE: There is a patent filed for the time sync algorithm used in the
code of this file. The shown implementation example is covered by the
repository's licencse, but you may not be eligible to deploy the applied
algorithm in applications without granted license by the patent holder.
*/
#if (TIME_SYNC_LORASERVER) && (HAS_LORA)
#include "timesync.h"
// Local logging tag
static const char TAG[] = __FILE__;
using namespace std::chrono;
typedef std::chrono::system_clock myClock;
typedef myClock::time_point myClock_timepoint;
typedef std::chrono::duration<long long int, std::ratio<1, 1000>>
myClock_msecTick;
TaskHandle_t timeSyncReqTask = NULL;
static uint8_t time_sync_seqNo = random(TIMEANSWERPORT_MIN, TIMEANSWERPORT_MAX);
static bool timeSyncPending = false;
static myClock_timepoint time_sync_tx[TIME_SYNC_SAMPLES];
static myClock_timepoint time_sync_rx[TIME_SYNC_SAMPLES];
// send time request message
void send_timesync_req() {
// if a timesync handshake is pending then exit
if (timeSyncPending)
return;
// else unblock timesync task
else {
ESP_LOGI(TAG, "[%0.3f] Timeserver sync request started", millis() / 1000.0);
xTaskNotifyGive(timeSyncReqTask);
}
}
// task for sending time sync requests
void process_timesync_req(void *taskparameter) {
uint8_t k;
uint16_t time_to_set_fraction_msec;
uint32_t seq_no = 0, time_to_set;
auto time_offset_ms = myClock_msecTick::zero();
while (1) {
// reset all timestamps before next sync run
time_offset_ms = myClock_msecTick::zero();
for (uint8_t i = 0; i < TIME_SYNC_SAMPLES; i++)
time_sync_tx[i] = time_sync_rx[i] = myClock_timepoint();
// wait for kickoff
ulTaskNotifyTake(pdFALSE, portMAX_DELAY);
timeSyncPending = true;
// wait until we are joined if we are not
while (!LMIC.devaddr) {
vTaskDelay(pdMS_TO_TICKS(3000));
}
// collect timestamp samples
for (uint8_t i = 0; i < TIME_SYNC_SAMPLES; i++) {
// send sync request to server
payload.reset();
payload.addByte(time_sync_seqNo);
SendPayload(TIMEPORT, prio_high);
// wait for a valid timestamp from recv_timesync_ans()
while (seq_no != time_sync_seqNo) {
if (xTaskNotifyWait(0x00, ULONG_MAX, &seq_no,
pdMS_TO_TICKS(TIME_SYNC_TIMEOUT * 1000)) ==
pdFALSE) {
ESP_LOGW(TAG, "[%0.3f] Timesync handshake error: timeout",
millis() / 1000.0);
goto finish; // no valid sequence received before timeout
}
}
// process answer
k = seq_no % TIME_SYNC_SAMPLES;
// calculate time diff from collected timestamps
time_offset_ms += time_point_cast<milliseconds>(time_sync_rx[k]) -
time_point_cast<milliseconds>(time_sync_tx[k]);
// wrap around seqNo, keeping it in time port range
time_sync_seqNo = (time_sync_seqNo < TIMEANSWERPORT_MAX)
? time_sync_seqNo + 1
: TIMEANSWERPORT_MIN;
if (i < TIME_SYNC_SAMPLES - 1) {
// wait until next cycle
vTaskDelay(pdMS_TO_TICKS(TIME_SYNC_CYCLE * 1000));
} else { // before sending last time sample...
// ...send flush to open a receive window for last time_sync_answer
payload.reset();
payload.addByte(0x99);
SendPayload(RCMDPORT, prio_high);
// ...send a alive open a receive window for last time_sync_answer
// LMIC_sendAlive();
}
} // end of for loop to collect timestamp samples
// mask application irq to ensure accurate timing
mask_user_IRQ();
// average time offset over all collected diffs
time_offset_ms /= TIME_SYNC_SAMPLES;
// calculate time offset with millisecond precision using LMIC's time base,
// since we use LMIC's ostime_t txEnd as tx timestamp.
// Also apply calibration const to compensate processing time.
time_offset_ms +=
milliseconds(osticks2ms(os_getTime())) + milliseconds(TIME_SYNC_FIXUP);
// calculate absolute time in UTC epoch: convert to whole seconds, round to
// ceil, and calculate fraction milliseconds
time_to_set = (uint32_t)(time_offset_ms.count() / 1000) + 1;
// calculate fraction milliseconds
time_to_set_fraction_msec = (uint16_t)(time_offset_ms.count() % 1000);
setMyTime(time_to_set, time_to_set_fraction_msec, _lora);
finish:
// end of time critical section: release app irq lock
timeSyncPending = false;
unmask_user_IRQ();
} // infinite while(1)
}
// called from lorawan.cpp after time_sync_req was sent
void store_time_sync_req(uint32_t timestamp) {
// if no timesync handshake is pending then exit
if (!timeSyncPending)
return;
uint8_t k = time_sync_seqNo % TIME_SYNC_SAMPLES;
time_sync_tx[k] += milliseconds(timestamp);
ESP_LOGD(TAG, "[%0.3f] Timesync request #%d of %d sent at %d.%03d",
millis() / 1000.0, k + 1, TIME_SYNC_SAMPLES, timestamp / 1000,
timestamp % 1000);
}
// process timeserver timestamp answer, called from lorawan.cpp
int recv_timesync_ans(uint8_t seq_no, uint8_t buf[], uint8_t buf_len) {
// if no timesync handshake is pending then exit
if (!timeSyncPending)
return 0; // failure
// if no time is available or spurious buffer then exit
if (buf_len != TIME_SYNC_FRAME_LENGTH) {
if (buf[0] == 0xff)
ESP_LOGI(TAG, "[%0.3f] Timeserver error: no confident time available",
millis() / 1000.0);
else
ESP_LOGW(TAG, "[%0.3f] Timeserver error: spurious data received",
millis() / 1000.0);
return 0; // failure
}
else { // we received a probably valid time frame
uint8_t k = seq_no % TIME_SYNC_SAMPLES;
// the 5th byte contains the fractional seconds in 2^-8 second steps
// (= 1/250th sec), we convert this to ms
uint16_t timestamp_msec = 4 * buf[4];
// pointers to 4 bytes 4 bytes containing UTC seconds since unix epoch, msb
uint32_t timestamp_sec, *timestamp_ptr;
// convert buffer to uint32_t, octet order is big endian
timestamp_ptr = (uint32_t *)buf;
// swap byte order from msb to lsb, note: this is platform dependent
timestamp_sec = __builtin_bswap32(*timestamp_ptr);
// construct the timepoint when message was seen on gateway
time_sync_rx[k] += seconds(timestamp_sec) + milliseconds(timestamp_msec);
// we guess timepoint is recent if it newer than code compile date
if (timeIsValid(myClock::to_time_t(time_sync_rx[k]))) {
ESP_LOGD(TAG, "[%0.3f] Timesync request #%d of %d rcvd at %d.%03d",
millis() / 1000.0, k + 1, TIME_SYNC_SAMPLES, timestamp_sec,
timestamp_msec);
// inform processing task
xTaskNotify(timeSyncReqTask, seq_no, eSetBits);
return 1; // success
} else {
ESP_LOGW(TAG, "[%0.3f] Timeserver error: outdated time received",
millis() / 1000.0);
return 0; // failure
}
}
}
// adjust system time, calibrate RTC and RTC_INT pps
void IRAM_ATTR setMyTime(uint32_t t_sec, uint16_t t_msec,
timesource_t mytimesource) {
time_t time_to_set = (time_t)(t_sec);
if (timeIsValid(time_to_set)) {
ESP_LOGD(TAG, "[%0.3f] UTC epoch time: %d.%03d sec", millis() / 1000.0,
time_to_set, t_msec);
// wait until top of second with millisecond precision
if (t_msec) {
vTaskDelay(pdMS_TO_TICKS(1000 - t_msec));
time_to_set++;
}
// if we got a timesource, set RTC time and calibrate RTC_INT pulse on top of
// second
#ifdef HAS_RTC
if (mytimesource != _rtc)
set_rtctime(time_to_set);
#endif
// sync pps timer to top of second
#if (!defined GPS_INT && !defined RTC_INT)
timerWrite(ppsIRQ, 0); // reset pps timer
CLOCKIRQ(); // fire clock pps, this advances time 1 sec
#endif
setTime(time_to_set); // set the time on top of second
timeSource = mytimesource; // set global variable
timesyncer.attach(TIME_SYNC_INTERVAL * 60, timeSync);
ESP_LOGI(TAG, "[%0.3f] Timesync finished, time was set | source: %c",
millis() / 1000.0, timeSetSymbols[timeSource]);
} else {
timesyncer.attach(TIME_SYNC_INTERVAL_RETRY * 60, timeSync);
ESP_LOGI(TAG, "[%0.3f] Timesync failed, invalid time fetched | source: %c",
millis() / 1000.0, timeSetSymbols[timeSource]);
}
}
void timesync_init() {
// create task for timeserver handshake processing, called from main.cpp
xTaskCreatePinnedToCore(process_timesync_req, // task function
"timesync_req", // name of task
2048, // stack size of task
(void *)1, // task parameter
3, // priority of the task
&timeSyncReqTask, // task handle
1); // CPU core
}
#endif