ESP32-PaxCounter/src/dcf77.cpp
Klaus K Wilting 590e4d91f8 DCF77 fixes
2019-02-23 18:31:47 +01:00

123 lines
3.5 KiB
C++

/*
// Emulate a DCF77 radio receiver to control an external clock
//
// a nice & free logic test program for DCF77 can be found here:
https://www-user.tu-chemnitz.de/~heha/viewzip.cgi/hs/Funkuhr.zip/
//
// a DCF77 digital scope for Arduino boards can be found here:
https://github.com/udoklein/dcf77
//
*/
#ifdef HAS_DCF77
#include "dcf77.h"
// Local logging tag
static const char TAG[] = "main";
// array of dcf pulses for one minute, secs 0..16 and 20 are never touched, so
// we initialize them statically to avoid dumb recalculation every minute
uint8_t DCFpulse[DCF77_FRAME_SIZE + 1] = {
dcf_zero, dcf_zero, dcf_zero, dcf_zero, dcf_zero, dcf_zero, dcf_zero,
dcf_zero, dcf_zero, dcf_zero, dcf_zero, dcf_zero, dcf_zero, dcf_zero,
dcf_zero, dcf_zero, dcf_zero, dcf_zero, dcf_zero, dcf_zero, dcf_one};
// triggered by 1 second timepulse to ticker out DCF signal
void DCF_Pulse(time_t t) {
TickType_t startTime = xTaskGetTickCount();
uint8_t sec = second(t);
ESP_LOGD(TAG, "DCF77 sec %d", sec);
// induce 10 pulses
for (uint8_t pulse = 0; pulse <= 9; pulse++) {
switch (pulse) {
case 0: // start of second -> start of timeframe for logic signal
if (DCFpulse[sec] != dcf_off)
digitalWrite(HAS_DCF77, dcf_low);
else // 59th second reached, nothing more to do
return;
break;
case 1: // 100ms after start of second -> end of timeframe for logic 0
if (DCFpulse[sec] == dcf_zero)
digitalWrite(HAS_DCF77, dcf_high);
break;
case 2: // 200ms after start of second -> end of timeframe for logic 1
digitalWrite(HAS_DCF77, dcf_high);
break;
case 9: // 900ms after start -> last pulse
return;
} // switch
// impulse period pause
vTaskDelayUntil(&startTime, pdMS_TO_TICKS(DCF77_PULSE_LENGTH));
} // for
} // DCF_Pulse()
void IRAM_ATTR DCF77_Frame(time_t tt) {
uint8_t Parity;
time_t t = myTZ.toLocal(tt); // convert to local time
// ENCODE DST CHANGE ANNOUNCEMENT (Sec 16)
DCFpulse[16] = dcf_zero; // not yet implemented
// ENCODE DAYLIGHTSAVING (secs 17..18)
DCFpulse[17] = myTZ.locIsDST(t) ? dcf_one : dcf_zero;
DCFpulse[18] = myTZ.locIsDST(t) ? dcf_zero : dcf_one;
// ENCODE MINUTE (secs 21..28)
Parity = dec2bcd(minute(t), 21, 27, DCFpulse);
DCFpulse[28] = setParityBit(Parity);
// ENCODE HOUR (secs 29..35)
Parity = dec2bcd(hour(t), 29, 34, DCFpulse);
DCFpulse[35] = setParityBit(Parity);
// ENCODE DATE (secs 36..58)
Parity = dec2bcd(day(t), 36, 41, DCFpulse);
Parity += dec2bcd((weekday(t) - 1) ? (weekday(t) - 1) : 7, 42, 44, DCFpulse);
Parity += dec2bcd(month(t), 45, 49, DCFpulse);
Parity += dec2bcd(year(t) - 2000, 50, 57,
DCFpulse); // yes, we have a millenium 3000 bug here ;-)
DCFpulse[58] = setParityBit(Parity);
// ENCODE MARK (sec 59)
DCFpulse[59] = dcf_off; // !! missing code here for leap second !!
// timestamp this frame with it's minute
DCFpulse[60] = minute(t);
} // DCF77_Frame()
// helper function to encode parity
uint8_t IRAM_ATTR setParityBit(uint8_t p) {
return ((p & 1) ? dcf_one : dcf_zero);
}
// helper function to convert decimal to bcd digit
uint8_t IRAM_ATTR dec2bcd(uint8_t dec, uint8_t startpos, uint8_t endpos,
uint8_t pArray[]) {
uint8_t data = (dec < 10) ? dec : ((dec / 10) << 4) + (dec % 10);
uint8_t parity = 0;
for (uint8_t n = startpos; n <= endpos; n++) {
pArray[n] = (data & 1) ? dcf_one : dcf_zero;
parity += (data & 1);
data >>= 1;
}
return parity;
}
#endif // HAS_DCF77