ESP32-PaxCounter/EspSoftwareSerial/examples/loopback/loopback.ino
2020-02-05 16:34:37 +01:00

264 lines
7.8 KiB
C++

#include <SoftwareSerial.h>
// On ESP8266:
// Local SoftwareSerial loopback, connect D5 (rx) and D6 (tx).
// For local hardware loopback, connect D5 to D8 (tx), D6 to D7 (rx).
// For hardware send/sink, connect D7 (rx) and D8 (tx).
// Hint: The logger is run at 9600bps such that enableIntTx(true) can remain unchanged. Blocking
// interrupts severely impacts the ability of the SoftwareSerial devices to operate concurrently
// and/or in duplex mode.
// Operating in software serial full duplex mode, runs at 19200bps and few errors (~2.5%).
// Operating in software serial half duplex mode (both loopback and repeater),
// runs at 57600bps with nearly no errors.
// Operating loopback in full duplex, and repeater in half duplex, runs at 38400bps with nearly no errors.
// On ESP32:
// For SoftwareSerial or hardware send/sink, connect D5 (rx) and D6 (tx).
// Hardware Serial2 defaults to D4 (rx), D3 (tx).
// For local hardware loopback, connect D5 (rx) to D3 (tx), D6 (tx) to D4 (rx).
#if defined(ESP8266) && !defined(D5)
#define D5 (14)
#define D6 (12)
#define D7 (13)
#define D8 (15)
#define TX (1)
#endif
// Pick only one of HWLOOPBACK, HWSOURCESWSINK, or HWSOURCESINK
//#define HWLOOPBACK 1
//#define HWSOURCESWSINK 1
//#define HWSOURCESINK 1
#define HALFDUPLEX 1
#ifdef ESP32
constexpr int IUTBITRATE = 19200;
#else
constexpr int IUTBITRATE = 19200;
#endif
#if defined(ESP8266)
constexpr SoftwareSerialConfig swSerialConfig = SWSERIAL_8E1;
constexpr SerialConfig hwSerialConfig = SERIAL_8E1;
#elif defined(ESP32)
constexpr SoftwareSerialConfig swSerialConfig = SWSERIAL_8E1;
constexpr uint32_t hwSerialConfig = SERIAL_8E1;
#else
constexpr unsigned swSerialConfig = 3;
#endif
constexpr bool invert = false;
constexpr int BLOCKSIZE = 16; // use fractions of 256
unsigned long start;
String effTxTxt("eff. tx: ");
String effRxTxt("eff. rx: ");
int txCount;
int rxCount;
int expected;
int rxErrors;
int rxParityErrors;
constexpr int ReportInterval = IUTBITRATE / 8;
#if defined(ESP8266)
#if defined(HWLOOPBACK) || defined(HWSOURCESWSINK)
HardwareSerial& hwSerial(Serial);
SoftwareSerial serialIUT;
SoftwareSerial logger;
#elif defined(HWSOURCESINK)
HardwareSerial& serialIUT(Serial);
SoftwareSerial logger;
#else
SoftwareSerial serialIUT;
HardwareSerial& logger(Serial);
#endif
#elif defined(ESP32)
#if defined(HWLOOPBACK) || defined (HWSOURCESWSINK)
HardwareSerial& hwSerial(Serial2);
SoftwareSerial serialIUT;
#elif defined(HWSOURCESINK)
HardwareSerial& serialIUT(Serial2);
#else
SoftwareSerial serialIUT;
#endif
HardwareSerial& logger(Serial);
#else
SoftwareSerial serialIUT(14, 12);
HardwareSerial& logger(Serial);
#endif
void setup() {
#if defined(ESP8266)
#if defined(HWLOOPBACK) || defined(HWSOURCESINK) || defined(HWSOURCESWSINK)
Serial.begin(IUTBITRATE, hwSerialConfig, SERIAL_FULL, 1, invert);
Serial.swap();
Serial.setRxBufferSize(2 * BLOCKSIZE);
logger.begin(9600, SWSERIAL_8N1, -1, TX);
#else
logger.begin(9600);
#endif
#if !defined(HWSOURCESINK)
serialIUT.begin(IUTBITRATE, swSerialConfig, D5, D6, invert, 2 * BLOCKSIZE);
#ifdef HALFDUPLEX
serialIUT.enableIntTx(false);
#endif
#endif
#elif defined(ESP32)
#if defined(HWLOOPBACK) || defined(HWSOURCESWSINK)
Serial2.begin(IUTBITRATE, hwSerialConfig, D4, D3, invert);
Serial2.setRxBufferSize(2 * BLOCKSIZE);
#elif defined(HWSOURCESINK)
serialIUT.begin(IUTBITRATE, hwSerialConfig, D5, D6, invert);
serialIUT.setRxBufferSize(2 * BLOCKSIZE);
#endif
#if !defined(HWSOURCESINK)
serialIUT.begin(IUTBITRATE, swSerialConfig, D5, D6, invert, 2 * BLOCKSIZE);
#ifdef HALFDUPLEX
serialIUT.enableIntTx(false);
#endif
#endif
logger.begin(9600);
#else
#if !defined(HWSOURCESINK)
serialIUT.begin(IUTBITRATE);
#endif
logger.begin(9600);
#endif
logger.println("Loopback example for EspSoftwareSerial");
start = micros();
txCount = 0;
rxCount = 0;
rxErrors = 0;
rxParityErrors = 0;
expected = -1;
}
unsigned char c = 0;
void loop() {
#ifdef HALFDUPLEX
char block[BLOCKSIZE];
#endif
char inBuf[BLOCKSIZE];
for (int i = 0; i < BLOCKSIZE; ++i) {
#ifndef HALFDUPLEX
#ifdef HWSOURCESWSINK
hwSerial.write(c);
#else
serialIUT.write(c);
#endif
#ifdef HWLOOPBACK
int avail = hwSerial.available();
while ((0 == (i % 8)) && avail > 0) {
int inCnt = hwSerial.read(inBuf, min(avail, min(BLOCKSIZE, hwSerial.availableForWrite())));
hwSerial.write(inBuf, inCnt);
avail -= inCnt;
}
#endif
#else
block[i] = c;
#endif
c = (c + 1) % 256;
++txCount;
}
#ifdef HALFDUPLEX
#ifdef HWSOURCESWSINK
hwSerial.write(block, BLOCKSIZE);
#else
serialIUT.write(block, BLOCKSIZE);
#endif
#endif
#ifdef HWSOURCESINK
#if defined(ESP8266)
if (serialIUT.hasOverrun()) { logger.println("serialIUT.overrun"); }
#endif
#else
if (serialIUT.overflow()) { logger.println("serialIUT.overflow"); }
#endif
int inCnt;
uint32_t deadlineStart;
#ifdef HWLOOPBACK
// starting deadline for the first bytes to become readable
deadlineStart = ESP.getCycleCount();
inCnt = 0;
while ((ESP.getCycleCount() - deadlineStart) < (1000000UL * 12 * BLOCKSIZE) / IUTBITRATE * 24 * ESP.getCpuFreqMHz()) {
int avail = hwSerial.available();
inCnt += hwSerial.read(&inBuf[inCnt], min(avail, min(BLOCKSIZE - inCnt, hwSerial.availableForWrite())));
if (inCnt >= BLOCKSIZE) { break; }
// wait for more outstanding bytes to trickle in
if (avail) deadlineStart = ESP.getCycleCount();
}
hwSerial.write(inBuf, inCnt);
#endif
// starting deadline for the first bytes to come in
deadlineStart = ESP.getCycleCount();
inCnt = 0;
while ((ESP.getCycleCount() - deadlineStart) < (1000000UL * 12 * BLOCKSIZE) / IUTBITRATE * 8 * ESP.getCpuFreqMHz()) {
int avail;
if (0 != (swSerialConfig & 070))
avail = serialIUT.available();
else
avail = serialIUT.read(inBuf, BLOCKSIZE);
for (int i = 0; i < avail; ++i)
{
unsigned char r;
if (0 != (swSerialConfig & 070))
r = serialIUT.read();
else
r = inBuf[i];
if (expected == -1) { expected = r; }
else {
expected = (expected + 1) % (1UL << (5 + swSerialConfig % 4));
}
if (r != expected) {
++rxErrors;
expected = -1;
}
#ifndef HWSOURCESINK
if (serialIUT.readParity() != (static_cast<bool>(swSerialConfig & 010) ? serialIUT.parityOdd(r) : serialIUT.parityEven(r)))
{
++rxParityErrors;
}
#endif
++rxCount;
++inCnt;
}
if (inCnt >= BLOCKSIZE) { break; }
// wait for more outstanding bytes to trickle in
if (avail) deadlineStart = ESP.getCycleCount();
}
const uint32_t interval = micros() - start;
if (txCount >= ReportInterval && interval) {
uint8_t wordBits = (5 + swSerialConfig % 4) + static_cast<bool>(swSerialConfig & 070) + 1 + ((swSerialConfig & 0300) ? 1 : 0);
logger.println(String("tx/rx: ") + txCount + "/" + rxCount);
const long txCps = txCount * (1000000.0 / interval);
const long rxCps = rxCount * (1000000.0 / interval);
logger.print(effTxTxt + wordBits * txCps + "bps, "
+ effRxTxt + wordBits * rxCps + "bps, "
+ rxErrors + " errors (" + 100.0 * rxErrors / (!rxErrors ? 1 : rxCount) + "%)");
if (0 != (swSerialConfig & 070))
{
logger.print(" ("); logger.print(rxParityErrors); logger.println(" parity errors)");
}
else
{
logger.println();
}
txCount = 0;
rxCount = 0;
rxErrors = 0;
rxParityErrors = 0;
expected = -1;
// resync
delay(1000UL * 12 * BLOCKSIZE / IUTBITRATE * 16);
serialIUT.flush();
start = micros();
}
}