#include "timekeeper.h" // Local logging tag static const char TAG[] = __FILE__; // symbol to display current time source const char timeSetSymbols[] = {'G', 'R', 'L', '?'}; getExternalTime TimeSourcePtr; // pointer to time source function time_t timeProvider(void) { ESP_LOGD(TAG, "time synched"); time_t t = 0; #ifdef HAS_GPS // xSemaphoreTake(TimePulse, pdMS_TO_TICKS(1100)); // wait for pps t = get_gpstime(); // fetch recent time from last NEMA record if (t) { // t++; // last NMEA record concerns past second, so we add one #ifdef HAS_RTC set_rtctime(t); // calibrate RTC #endif timeSource = _gps; return t; } #endif // no GPS -> fallback to RTC time while trying lora sync #ifdef HAS_RTC t = get_rtctime(); if (t) { timeSource = _rtc; } #endif // kick off asychron lora sync if we have #if defined HAS_LORA && defined TIME_SYNC_LORA LMIC_requestNetworkTime(user_request_network_time_callback, &userUTCTime); #endif if (!t) timeSource = _unsynced; return t; } // timeProvider() // helper function to setup a pulse per second for time synchronisation uint8_t timepulse_init() { // use time pulse from GPS as time base with fixed 1Hz frequency #ifdef GPS_INT // setup external interupt pin for rising edge GPS INT pinMode(GPS_INT, INPUT_PULLDOWN); // setup external rtc 1Hz clock as pulse per second clock ESP_LOGI(TAG, "Timepulse: external (GPS)"); return 1; // success // use pulse from on board RTC chip as time base with fixed frequency #elif defined RTC_INT // setup external interupt pin for falling edge RTC INT pinMode(RTC_INT, INPUT_PULLUP); // setup external rtc 1Hz clock as pulse per second clock if (I2C_MUTEX_LOCK()) { Rtc.SetSquareWavePinClockFrequency(DS3231SquareWaveClock_1Hz); Rtc.SetSquareWavePin(DS3231SquareWavePin_ModeClock); I2C_MUTEX_UNLOCK(); ESP_LOGI(TAG, "Timepulse: external (RTC)"); return 1; // success } else { ESP_LOGE(TAG, "RTC initialization error, I2C bus busy"); return 0; // failure } return 1; // success #else // use ESP32 hardware timer as time base with adjustable frequency clockCycle = timerBegin(1, 8000, true); // set 80 MHz prescaler to 1/10000 sec timerAlarmWrite(clockCycle, 10000, true); // 1000ms ESP_LOGI(TAG, "Timepulse: internal (ESP32 hardware timer)"); return 1; // success #endif } // timepulse_init void timepulse_start(void) { #ifdef GPS_INT // start external clock gps pps line attachInterrupt(digitalPinToInterrupt(GPS_INT), CLOCKIRQ, RISING); #elif defined RTC_INT // start external clock rtc attachInterrupt(digitalPinToInterrupt(RTC_INT), CLOCKIRQ, FALLING); #else // start internal clock esp32 hardware timer timerAttachInterrupt(clockCycle, &CLOCKIRQ, true); timerAlarmEnable(clockCycle); #endif } // interrupt service routine triggered by either pps or esp32 hardware timer void IRAM_ATTR CLOCKIRQ(void) { SyncToPPS(); // calibrate systime from Time.h if (ClockTask != NULL) xTaskNotifyFromISR(ClockTask, uint32_t(now()), eSetBits, NULL); #if defined GPS_INT || defined RTC_INT xSemaphoreGiveFromISR(TimePulse, NULL); TimePulseTick = !TimePulseTick; // flip ticker #endif portYIELD_FROM_ISR(); } // helper function to check plausibility of a time time_t timeIsValid(time_t const t) { // is it a time in the past? we use compile date to guess return (t >= compiledUTC() ? t : 0); } // helper function to convert compile time to UTC time time_t compiledUTC(void) { static time_t t = myTZ.toUTC(RtcDateTime(__DATE__, __TIME__).Epoch32Time()); return t; } // helper function to convert gps date/time into time_t time_t tmConvert(uint16_t YYYY, uint8_t MM, uint8_t DD, uint8_t hh, uint8_t mm, uint8_t ss) { tmElements_t tm; tm.Year = CalendarYrToTm(YYYY); // year offset from 1970 in time.h tm.Month = MM; tm.Day = DD; tm.Hour = hh; tm.Minute = mm; tm.Second = ss; return makeTime(tm); } // helper function to calculate serial transmit time TickType_t tx_Ticks(uint32_t framesize, unsigned long baud, uint32_t config, int8_t rxPin, int8_t txPins) { uint32_t databits = ((config & 0x0c) >> 2) + 5; uint32_t stopbits = ((config & 0x20) >> 5) + 1; uint32_t txTime = (databits + stopbits + 2) * framesize * 1000.0 / baud; // +1 ms margin for the startbit +1 ms for pending processing time return round(txTime); } #if defined HAS_IF482 || defined HAS_DCF77 #if defined HAS_DCF77 && defined HAS_IF482 #error You must define at most one of IF482 or DCF77! #endif void clock_init(void) { // setup clock output interface #ifdef HAS_IF482 IF482.begin(HAS_IF482); #elif defined HAS_DCF77 pinMode(HAS_DCF77, OUTPUT); #endif xTaskCreatePinnedToCore(clock_loop, // task function "clockloop", // name of task 2048, // stack size of task (void *)1, // task parameter 4, // priority of the task &ClockTask, // task handle 1); // CPU core assert(ClockTask); // has clock task started? } // clock_init void clock_loop(void *pvParameters) { // ClockTask configASSERT(((uint32_t)pvParameters) == 1); // FreeRTOS check TickType_t wakeTime; uint32_t printtime; time_t t; #define t1(t) (t + DCF77_FRAME_SIZE + 1) // future minute for next DCF77 frame #define t2(t) (t + 1) // future second after sync with 1pps trigger // preload first DCF frame before start #ifdef HAS_DCF77 uint8_t *DCFpulse; // pointer on array with DCF pulse bits DCFpulse = DCF77_Frame(t1(now())); #endif // output time telegram for second following sec beginning with timepulse for (;;) { xTaskNotifyWait(0x00, ULONG_MAX, &printtime, portMAX_DELAY); // wait for timepulse // no confident time -> suppress clock output if (timeStatus() == timeNotSet) continue; t = time_t(printtime); #if defined HAS_IF482 // IF482_Pulse(t2(t)); // next second IF482_Pulse(t); // next second #elif defined HAS_DCF77 if (second(t) == DCF77_FRAME_SIZE - 1) // is it time to load new frame? DCFpulse = DCF77_Frame(t1(t)); // generate next frame if (DCFpulse[DCF77_FRAME_SIZE] != minute(t1(t))) // have recent frame? (timepulses could be missed!) continue; else // DCF77_Pulse(t2(t), DCFpulse); // then output next second of this frame DCF77_Pulse(t, DCFpulse); // then output next second of this frame #endif } // for } // clock_loop() #endif // HAS_IF482 || defined HAS_DCF77