// Basic Config #if (HAS_LORA) #include "lorawan.h" #endif // Local logging Tag static const char TAG[] = "lora"; #if (HAS_LORA) #if CLOCK_ERROR_PROCENTAGE > 7 #warning CLOCK_ERROR_PROCENTAGE value in lmic_config.h is too high; values > 7 will cause side effects #endif #if (TIME_SYNC_LORAWAN) #ifndef LMIC_ENABLE_DeviceTimeReq #define LMIC_ENABLE_DeviceTimeReq 1 #endif #endif QueueHandle_t LoraSendQueue; TaskHandle_t lmicTask = NULL, lorasendTask = NULL; // table of LORAWAN MAC messages sent by the network to the device // format: opcode, cmdname (max 19 chars), #bytes params // source: LoRaWAN 1.1 Specification (October 11, 2017) static const mac_t MACdn_table[] = { {0x01, "ResetConf", 1}, {0x02, "LinkCheckAns", 2}, {0x03, "LinkADRReq", 4}, {0x04, "DutyCycleReq", 1}, {0x05, "RXParamSetupReq", 4}, {0x06, "DevStatusReq", 0}, {0x07, "NewChannelReq", 5}, {0x08, "RxTimingSetupReq", 1}, {0x09, "TxParamSetupReq", 1}, {0x0A, "DlChannelReq", 4}, {0x0B, "RekeyConf", 1}, {0x0C, "ADRParamSetupReq", 1}, {0x0D, "DeviceTimeAns", 5}, {0x0E, "ForceRejoinReq", 2}, {0x0F, "RejoinParamSetupReq", 1}}; // table of LORAWAN MAC messages sent by the device to the network static const mac_t MACup_table[] = { {0x01, "ResetInd", 1}, {0x02, "LinkCheckReq", 0}, {0x03, "LinkADRAns", 1}, {0x04, "DutyCycleAns", 0}, {0x05, "RXParamSetupAns", 1}, {0x06, "DevStatusAns", 2}, {0x07, "NewChannelAns", 1}, {0x08, "RxTimingSetupAns", 0}, {0x09, "TxParamSetupAns", 0}, {0x0A, "DlChannelAns", 1}, {0x0B, "RekeyInd", 1}, {0x0C, "ADRParamSetupAns", 0}, {0x0D, "DeviceTimeReq", 0}, {0x0F, "RejoinParamSetupAns", 1}}; class MyHalConfig_t : public Arduino_LMIC::HalConfiguration_t { public: MyHalConfig_t(){}; virtual void begin(void) override { SPI.begin(LORA_SCK, LORA_MISO, LORA_MOSI, LORA_CS); } }; MyHalConfig_t myHalConfig{}; // LMIC pin mapping const lmic_pinmap lmic_pins = { .nss = LORA_CS, .rxtx = LMIC_UNUSED_PIN, .rst = LORA_RST == NOT_A_PIN ? LMIC_UNUSED_PIN : LORA_RST, .dio = {LORA_IRQ, LORA_IO1, LORA_IO2 == NOT_A_PIN ? LMIC_UNUSED_PIN : LORA_IO2}, // optional: set polarity of rxtx pin. .rxtx_rx_active = 0, // optional: set RSSI cal for listen-before-talk // this value is in dB, and is added to RSSI // measured prior to decision. // Must include noise guardband! Ignored in US, // EU, IN, other markets where LBT is not required. .rssi_cal = 0, // optional: override LMIC_SPI_FREQ if non-zero .spi_freq = 0, .pConfig = &myHalConfig}; // DevEUI generator using devices's MAC address void gen_lora_deveui(uint8_t *pdeveui) { uint8_t *p = pdeveui, dmac[6]; int i = 0; esp_efuse_mac_get_default(dmac); // deveui is LSB, we reverse it so TTN DEVEUI display // will remain the same as MAC address // MAC is 6 bytes, devEUI 8, set first 2 ones // with an arbitrary value *p++ = 0xFF; *p++ = 0xFE; // Then next 6 bytes are mac address reversed for (i = 0; i < 6; i++) { *p++ = dmac[5 - i]; } } /* new version, does it with well formed mac according IEEE spec, but is breaking change // DevEUI generator using devices's MAC address void gen_lora_deveui(uint8_t *pdeveui) { uint8_t *p = pdeveui, dmac[6]; ESP_ERROR_CHECK(esp_efuse_mac_get_default(dmac)); // deveui is LSB, we reverse it so TTN DEVEUI display // will remain the same as MAC address // MAC is 6 bytes, devEUI 8, set middle 2 ones // to an arbitrary value *p++ = dmac[5]; *p++ = dmac[4]; *p++ = dmac[3]; *p++ = 0xfe; *p++ = 0xff; *p++ = dmac[2]; *p++ = dmac[1]; *p++ = dmac[0]; } */ // Function to do a byte swap in a byte array void RevBytes(unsigned char *b, size_t c) { u1_t i; for (i = 0; i < c / 2; i++) { unsigned char t = b[i]; b[i] = b[c - 1 - i]; b[c - 1 - i] = t; } } // LMIC callback functions void os_getDevKey(u1_t *buf) { memcpy(buf, APPKEY, 16); } void os_getArtEui(u1_t *buf) { memcpy(buf, APPEUI, 8); RevBytes(buf, 8); // TTN requires it in LSB First order, so we swap bytes } void os_getDevEui(u1_t *buf) { int i = 0, k = 0; memcpy(buf, DEVEUI, 8); // get fixed DEVEUI from loraconf.h for (i = 0; i < 8; i++) { k += buf[i]; } if (k) { RevBytes(buf, 8); // use fixed DEVEUI and swap bytes to LSB format } else { gen_lora_deveui(buf); // generate DEVEUI from device's MAC } // Get MCP 24AA02E64 hardware DEVEUI (override default settings if found) #ifdef MCP_24AA02E64_I2C_ADDRESS get_hard_deveui(buf); RevBytes(buf, 8); // swap bytes to LSB format #endif } void get_hard_deveui(uint8_t *pdeveui) { // read DEVEUI from Microchip 24AA02E64 2Kb serial eeprom if present #ifdef MCP_24AA02E64_I2C_ADDRESS uint8_t i2c_ret; // Init this just in case, no more to 100KHz Wire.begin(SDA, SCL, 100000); Wire.beginTransmission(MCP_24AA02E64_I2C_ADDRESS); Wire.write(MCP_24AA02E64_MAC_ADDRESS); i2c_ret = Wire.endTransmission(); // check if device was seen on i2c bus if (i2c_ret == 0) { char deveui[32] = ""; uint8_t data; Wire.beginTransmission(MCP_24AA02E64_I2C_ADDRESS); Wire.write(MCP_24AA02E64_MAC_ADDRESS); Wire.endTransmission(); Wire.requestFrom(MCP_24AA02E64_I2C_ADDRESS, 8); while (Wire.available()) { data = Wire.read(); sprintf(deveui + strlen(deveui), "%02X ", data); *pdeveui++ = data; } ESP_LOGI(TAG, "Serial EEPROM found, read DEVEUI %s", deveui); } else ESP_LOGI(TAG, "Could not read DEVEUI from serial EEPROM"); // Set back to 400KHz to speed up OLED Wire.setClock(400000); #endif // MCP 24AA02E64 } #if (VERBOSE) // Display OTAA keys void showLoraKeys(void) { // LMIC may not have used callback to fill // all EUI buffer so we do it here to a temp // buffer to be able to display them uint8_t buf[32]; os_getDevEui((u1_t *)buf); printKey("DevEUI", buf, 8, true); os_getArtEui((u1_t *)buf); printKey("AppEUI", buf, 8, true); os_getDevKey((u1_t *)buf); printKey("AppKey", buf, 16, false); } #endif // VERBOSE void onEvent(ev_t ev) { char buff[24] = ""; switch (ev) { case EV_SCAN_TIMEOUT: strcpy_P(buff, PSTR("SCAN TIMEOUT")); break; case EV_BEACON_FOUND: strcpy_P(buff, PSTR("BEACON FOUND")); break; case EV_BEACON_MISSED: strcpy_P(buff, PSTR("BEACON MISSED")); break; case EV_BEACON_TRACKED: strcpy_P(buff, PSTR("BEACON TRACKED")); break; case EV_JOINING: strcpy_P(buff, PSTR("JOINING")); break; case EV_JOINED: strcpy_P(buff, PSTR("JOINED")); sprintf(display_line6, " "); // clear previous lmic status // set data rate adaptation according to saved setting LMIC_setAdrMode(cfg.adrmode); // set data rate and transmit power to defaults only if we have no ADR if (!cfg.adrmode) LMIC_setDrTxpow(assertDR(cfg.loradr), cfg.txpower); // show current devaddr ESP_LOGI(TAG, "DEVaddr=%08X", LMIC.devaddr); ESP_LOGI(TAG, "Radio parameters %s / %s / %s", getSfName(updr2rps(LMIC.datarate)), getBwName(updr2rps(LMIC.datarate)), getCrName(updr2rps(LMIC.datarate))); break; case EV_RFU1: strcpy_P(buff, PSTR("RFU1")); break; case EV_JOIN_FAILED: strcpy_P(buff, PSTR("JOIN FAILED")); break; case EV_REJOIN_FAILED: strcpy_P(buff, PSTR("REJOIN FAILED")); break; case EV_TXCOMPLETE: #if (TIME_SYNC_LORASERVER) // if last packet sent was a timesync request, store TX timestamp if (LMIC.pendTxPort == TIMEPORT) store_time_sync_req(osticks2ms(LMIC.txend)); // milliseconds #endif strcpy_P(buff, (LMIC.txrxFlags & TXRX_ACK) ? PSTR("RECEIVED ACK") : PSTR("TX COMPLETE")); sprintf(display_line6, " "); // clear previous lmic status break; case EV_LOST_TSYNC: strcpy_P(buff, PSTR("LOST TSYNC")); break; case EV_RESET: strcpy_P(buff, PSTR("RESET")); break; case EV_RXCOMPLETE: // data received in ping slot strcpy_P(buff, PSTR("RX COMPLETE")); break; case EV_LINK_DEAD: strcpy_P(buff, PSTR("LINK DEAD")); break; case EV_LINK_ALIVE: strcpy_P(buff, PSTR("LINK_ALIVE")); break; case EV_SCAN_FOUND: strcpy_P(buff, PSTR("SCAN FOUND")); break; case EV_TXSTART: if (!(LMIC.opmode & OP_JOINING)) { strcpy_P(buff, PSTR("TX START")); } break; case EV_TXCANCELED: strcpy_P(buff, PSTR("TX CANCELLED")); break; case EV_RXSTART: strcpy_P(buff, PSTR("RX START")); break; case EV_JOIN_TXCOMPLETE: strcpy_P(buff, PSTR("JOIN WAIT")); break; default: sprintf_P(buff, PSTR("LMIC EV %d"), ev); break; } // Log & Display if asked if (*buff) { ESP_LOGI(TAG, "%s", buff); sprintf(display_line7, buff); } } // LMIC send task void lora_send(void *pvParameters) { configASSERT(((uint32_t)pvParameters) == 1); // FreeRTOS check MessageBuffer_t SendBuffer; while (1) { // postpone until we are joined if we are not while (!LMIC.devaddr) { vTaskDelay(pdMS_TO_TICKS(500)); } // fetch next or wait for payload to send from queue if (xQueueReceive(LoraSendQueue, &SendBuffer, portMAX_DELAY) != pdTRUE) { ESP_LOGE(TAG, "Premature return from xQueueReceive() with no data!"); continue; } // attempt to transmit payload else { switch (LMIC_sendWithCallback_strict( SendBuffer.MessagePort, SendBuffer.Message, SendBuffer.MessageSize, (cfg.countermode & 0x02), myTxCallback, NULL)) { case LMIC_ERROR_SUCCESS: ESP_LOGI(TAG, "%d byte(s) sent to LORA", SendBuffer.MessageSize); break; case LMIC_ERROR_TX_BUSY: // LMIC already has a tx message pending case LMIC_ERROR_TX_FAILED: // message was not sent // ESP_LOGD(TAG, "LMIC busy, message re-enqueued"); // very noisy vTaskDelay(pdMS_TO_TICKS(1000 + random(500))); // wait a while lora_enqueuedata(&SendBuffer); // re-enqueue the undelivered message break; case LMIC_ERROR_TX_TOO_LARGE: // message size exceeds LMIC buffer size case LMIC_ERROR_TX_NOT_FEASIBLE: // message too large for current datarate ESP_LOGI(TAG, "Message too large to send, message not sent and deleted"); // we need some kind of error handling here -> to be done break; default: // other LMIC return code ESP_LOGE(TAG, "LMIC error, message not sent and deleted"); } // switch } delay(2); // yield to CPU } } esp_err_t lora_stack_init() { assert(SEND_QUEUE_SIZE); LoraSendQueue = xQueueCreate(SEND_QUEUE_SIZE, sizeof(MessageBuffer_t)); if (LoraSendQueue == 0) { ESP_LOGE(TAG, "Could not create LORA send queue. Aborting."); return ESP_FAIL; } ESP_LOGI(TAG, "LORA send queue created, size %d Bytes", SEND_QUEUE_SIZE * sizeof(MessageBuffer_t)); // start lorawan stack ESP_LOGI(TAG, "Starting LMIC..."); xTaskCreatePinnedToCore(lmictask, // task function "lmictask", // name of task 4096, // stack size of task (void *)1, // parameter of the task 5, // priority of the task &lmicTask, // task handle 1); // CPU core if (!LMIC_startJoining()) { // start joining ESP_LOGI(TAG, "Already joined"); } // start lmic send task xTaskCreatePinnedToCore(lora_send, // task function "lorasendtask", // name of task 3072, // stack size of task (void *)1, // parameter of the task 1, // priority of the task &lorasendTask, // task handle 1); // CPU core return ESP_OK; } void lora_enqueuedata(MessageBuffer_t *message) { // enqueue message in LORA send queue BaseType_t ret = pdFALSE; MessageBuffer_t DummyBuffer; sendprio_t prio = message->MessagePrio; switch (prio) { case prio_high: // clear some space in queue if full, then fallthrough to prio_normal if (uxQueueSpacesAvailable(LoraSendQueue) == 0) { xQueueReceive(LoraSendQueue, &DummyBuffer, (TickType_t)0); ESP_LOGW(TAG, "LORA sendqueue purged, data is lost"); } case prio_normal: ret = xQueueSendToFront(LoraSendQueue, (void *)message, (TickType_t)0); break; case prio_low: default: ret = xQueueSendToBack(LoraSendQueue, (void *)message, (TickType_t)0); break; } if (ret != pdTRUE) ESP_LOGW(TAG, "LORA sendqueue is full"); } void lora_queuereset(void) { xQueueReset(LoraSendQueue); } #if (TIME_SYNC_LORAWAN) void IRAM_ATTR user_request_network_time_callback(void *pVoidUserUTCTime, int flagSuccess) { // Explicit conversion from void* to uint32_t* to avoid compiler errors time_t *pUserUTCTime = (time_t *)pVoidUserUTCTime; // A struct that will be populated by LMIC_getNetworkTimeReference. // It contains the following fields: // - tLocal: the value returned by os_GetTime() when the time // request was sent to the gateway, and // - tNetwork: the seconds between the GPS epoch and the time // the gateway received the time request lmic_time_reference_t lmicTimeReference; if (flagSuccess != 1) { ESP_LOGW(TAG, "LoRaWAN network did not answer time request"); return; } // Populate lmic_time_reference flagSuccess = LMIC_getNetworkTimeReference(&lmicTimeReference); if (flagSuccess != 1) { ESP_LOGW(TAG, "LoRaWAN time request failed"); return; } // mask application irq to ensure accurate timing mask_user_IRQ(); // Update userUTCTime, considering the difference between the GPS and UTC // time, and the leap seconds until year 2019 *pUserUTCTime = lmicTimeReference.tNetwork + 315964800; // Current time, in ticks ostime_t ticksNow = os_getTime(); // Time when the request was sent, in ticks ostime_t ticksRequestSent = lmicTimeReference.tLocal; // Add the delay between the instant the time was transmitted and // the current time time_t requestDelaySec = osticks2ms(ticksNow - ticksRequestSent) / 1000; // Update system time with time read from the network setMyTime(*pUserUTCTime + requestDelaySec, 0, _lora); finish: // end of time critical section: release app irq lock unmask_user_IRQ(); } // user_request_network_time_callback #endif // TIME_SYNC_LORAWAN // LMIC lorawan stack task void lmictask(void *pvParameters) { configASSERT(((uint32_t)pvParameters) == 1); // FreeRTOS check os_init(); // initialize lmic run-time environment LMIC_reset(); // initialize lmic MAC LMIC_setLinkCheckMode(0); // This tells LMIC to make the receive windows bigger, in case your clock is // faster or slower. This causes the transceiver to be earlier switched on, // so consuming more power. You may sharpen (reduce) CLOCK_ERROR_PERCENTAGE // in src/lmic_config.h if you are limited on battery. #ifdef CLOCK_ERROR_PROCENTAGE LMIC_setClockError(MAX_CLOCK_ERROR * CLOCK_ERROR_PROCENTAGE / 100); #endif //#if defined(CFG_US915) || defined(CFG_au921) #if CFG_LMIC_US_like // in the US, with TTN, it saves join time if we start on subband 1 // (channels 8-15). This will get overridden after the join by parameters // from the network. If working with other networks or in other regions, // this will need to be changed. LMIC_selectSubBand(1); #endif // Set the data rate to Spreading Factor 7. This is the fastest supported // rate for 125 kHz channels, and it minimizes air time and battery power. // Set the transmission power to 14 dBi (25 mW). LMIC_setDrTxpow(DR_SF7, 14); // register a callback for downlink messages. We aren't trying to write // reentrant code, so pUserData is NULL. LMIC_registerRxMessageCb(myRxCallback, NULL); while (1) { os_runloop_once(); // execute lmic scheduled jobs and events delay(2); // yield to CPU } } // lmictask // receive message handler void myRxCallback(void *pUserData, uint8_t port, const uint8_t *pMsg, size_t nMsg) { // display type of received data if (nMsg) ESP_LOGI(TAG, "Received %u byte(s) of payload on port %u", nMsg, port); else if (port) ESP_LOGI(TAG, "Received empty message on port %u", port); // list MAC messages, if any uint8_t nMac = pMsg - &LMIC.frame[0]; if (port != MACPORT) --nMac; if (nMac) { ESP_LOGI(TAG, "%u byte(s) downlink MAC commands", nMac); // NOT WORKING YET // whe need to unwrap the MAC command from LMIC.frame here // mac_decode(LMIC.frame, nMac, MACdn_table, sizeof(MACdn_table) / // sizeof(MACdn_table[0])); } if (LMIC.pendMacLen) { ESP_LOGI(TAG, "%u byte(s) uplink MAC commands", LMIC.pendMacLen); mac_decode(LMIC.pendMacData, LMIC.pendMacLen, MACup_table, sizeof(MACup_table) / sizeof(MACup_table[0])); } switch (port) { // ignore mac messages case MACPORT: break; // rcommand received -> call interpreter case RCMDPORT: rcommand(pMsg, nMsg); break; default: #if (TIME_SYNC_LORASERVER) // valid timesync answer -> call timesync processor if ((port >= TIMEANSWERPORT_MIN) && (port <= TIMEANSWERPORT_MAX)) { recv_timesync_ans(port, pMsg, nMsg); break; } #endif // unknown port -> display info ESP_LOGI(TAG, "Received data on unsupported port %u", port); break; } // switch } // transmit complete message handler void myTxCallback(void *pUserData, int fSuccess) { /* currently no code here */ } // decode LORAWAN MAC message void mac_decode(const uint8_t cmd[], const uint8_t cmdlen, const mac_t table[], const uint8_t tablesize) { if (!cmdlen) return; uint8_t foundcmd[cmdlen], cursor = 0; while (cursor < cmdlen) { int i = tablesize; // number of commands in table while (i--) { if (cmd[cursor] == table[i].opcode) { // lookup command in opcode table cursor++; // strip 1 byte opcode if ((cursor + table[i].params) <= cmdlen) { memmove(foundcmd, cmd + cursor, table[i].params); // strip opcode from cmd array cursor += table[i].params; ESP_LOGD(TAG, "MAC command %s", table[i].cmdname); } else ESP_LOGD(TAG, "MAC command 0x%02X with missing parameter(s)", table[i].opcode); break; // command found -> exit table lookup loop } // end of command validation } // end of command table lookup loop if (i < 0) { // command not found -> skip it ESP_LOGD(TAG, "Unknown MAC command 0x%02X", cmd[cursor]); cursor++; } } // command parsing loop } // mac_decode() uint8_t getBattLevel() { /* return values: MCMD_DEVS_EXT_POWER = 0x00, // external power supply MCMD_DEVS_BATT_MIN = 0x01, // min battery value MCMD_DEVS_BATT_MAX = 0xFE, // max battery value MCMD_DEVS_BATT_NOINFO = 0xFF, // unknown battery level */ #if (defined HAS_PMU || defined BAT_MEASURE_ADC) uint16_t voltage = read_voltage(); switch (voltage) { case 0: return MCMD_DEVS_BATT_NOINFO; case 0xffff: return MCMD_DEVS_EXT_POWER; default: return (voltage > OTA_MIN_BATT ? MCMD_DEVS_BATT_MAX : MCMD_DEVS_BATT_MIN); } #else // we don't have any info on battery level return MCMD_DEVS_BATT_NOINFO; #endif } // getBattLevel() // u1_t os_getBattLevel(void) { return getBattLevel(); }; const char *getSfName(rps_t rps) { const char *const t[] = {"FSK", "SF7", "SF8", "SF9", "SF10", "SF11", "SF12", "SFrfu"}; return t[getSf(rps)]; } const char *getBwName(rps_t rps) { const char *const t[] = {"BW125", "BW250", "BW500", "BWrfu"}; return t[getBw(rps)]; } const char *getCrName(rps_t rps) { const char *const t[] = {"CR 4/5", "CR 4/6", "CR 4/7", "CR 4/8"}; return t[getCr(rps)]; } #endif // HAS_LORA