// Basic Config #if (HAS_LORA) #include "lorawan.h" #if CLOCK_ERROR_PROCENTAGE > 7 #warning CLOCK_ERROR_PROCENTAGE value in lmic_config.h is too high; values > 7 will cause side effects #endif #if (TIME_SYNC_LORAWAN) #ifndef LMIC_ENABLE_DeviceTimeReq #define LMIC_ENABLE_DeviceTimeReq 1 #endif #endif static QueueHandle_t LoraSendQueue; TaskHandle_t lmicTask = NULL, lorasendTask = NULL; char lmic_event_msg[LMIC_EVENTMSG_LEN]; // display buffer for LMIC event message class MyHalConfig_t : public Arduino_LMIC::HalConfiguration_t { public: MyHalConfig_t(){}; // set SPI pins to board configuration, pins may come from pins_arduino.h void begin(void) override { SPI.begin(LORA_SCK, LORA_MISO, LORA_MOSI, LORA_CS); } // void end(void) override // ostime_t setModuleActive(bool state) override }; static MyHalConfig_t myHalConfig{}; // LMIC pin mapping for Hope RFM95 / HPDtek HPD13A transceivers static const lmic_pinmap myPinmap = { .nss = LORA_CS, .rxtx = LMIC_UNUSED_PIN, .rst = LORA_RST == NOT_A_PIN ? LMIC_UNUSED_PIN : LORA_RST, .dio = {LORA_IRQ, LORA_IO1, LORA_IO2 == NOT_A_PIN ? LMIC_UNUSED_PIN : LORA_IO2}, .rxtx_rx_active = LMIC_UNUSED_PIN, .rssi_cal = 10, .spi_freq = 8000000, // 8MHz .pConfig = &myHalConfig}; void lora_setupForNetwork(bool preJoin) { if (preJoin) { #if CFG_LMIC_US_like // in the US, with TTN, it saves join time if we start on subband 1 // (channels 8-15). This will get overridden after the join by // parameters from the network. If working with other networks or in // other regions, this will need to be changed. LMIC_selectSubBand(1); #elif CFG_LMIC_EU_like // settings for TheThingsNetwork // Enable link check validation LMIC_setLinkCheckMode(1); #endif } else { // set data rate adaptation according to saved setting LMIC_setAdrMode(cfg.adrmode); // set data rate and transmit power to stored device values if no ADR if (!cfg.adrmode) LMIC_setDrTxpow(assertDR(cfg.loradr), cfg.txpower); // show current devaddr ESP_LOGI(TAG, "DEVaddr: 0x%08X | Network ID: 0x%06X | Network Type: %d", LMIC.devaddr, LMIC.netid & 0x001FFFFF, LMIC.netid & 0x00E00000); ESP_LOGI(TAG, "RSSI: %d | SNR: %d", LMIC.rssi, (LMIC.snr + 2) / 4); ESP_LOGI(TAG, "Radio parameters: %s | %s | %s", getSfName(updr2rps(LMIC.datarate)), getBwName(updr2rps(LMIC.datarate)), getCrName(updr2rps(LMIC.datarate))); } } // DevEUI generator using devices's MAC address void gen_lora_deveui(uint8_t *pdeveui) { uint8_t *p = pdeveui, dmac[6]; int i = 0; esp_efuse_mac_get_default(dmac); // deveui is LSB, we reverse it so TTN DEVEUI display // will remain the same as MAC address // MAC is 6 bytes, devEUI 8, set first 2 ones // with an arbitrary value *p++ = 0xFF; *p++ = 0xFE; // Then next 6 bytes are mac address reversed for (i = 0; i < 6; i++) { *p++ = dmac[5 - i]; } } /* new version, does it with well formed mac according IEEE spec, but is breaking change // DevEUI generator using devices's MAC address void gen_lora_deveui(uint8_t *pdeveui) { uint8_t *p = pdeveui, dmac[6]; esp_efuse_mac_get_default(dmac); // deveui is LSB, we reverse it so TTN DEVEUI display // will remain the same as MAC address // MAC is 6 bytes, devEUI 8, set middle 2 ones // to an arbitrary value *p++ = dmac[5]; *p++ = dmac[4]; *p++ = dmac[3]; *p++ = 0xfe; *p++ = 0xff; *p++ = dmac[2]; *p++ = dmac[1]; *p++ = dmac[0]; } */ // Function to do a byte swap in a byte array void RevBytes(unsigned char *b, size_t c) { u1_t i; for (i = 0; i < c / 2; i++) { unsigned char t = b[i]; b[i] = b[c - 1 - i]; b[c - 1 - i] = t; } } // LMIC callback functions void os_getDevKey(u1_t *buf) { #ifndef LORA_ABP memcpy(buf, APPKEY, 16); #endif } void os_getArtEui(u1_t *buf) { #ifndef LORA_ABP memcpy(buf, APPEUI, 8); RevBytes(buf, 8); // TTN requires it in LSB First order, so we swap bytes #endif } void os_getDevEui(u1_t *buf) { #ifndef LORA_ABP int i = 0, k = 0; memcpy(buf, DEVEUI, 8); // get fixed DEVEUI from loraconf.h for (i = 0; i < 8; i++) { k += buf[i]; } if (k) { RevBytes(buf, 8); // use fixed DEVEUI and swap bytes to LSB format } else { gen_lora_deveui(buf); // generate DEVEUI from device's MAC } #endif } #if (VERBOSE) // Display a key void printKey(const char *name, const uint8_t *key, uint8_t len, bool lsb) { const uint8_t *p; char keystring[len + 1] = "", keybyte[3]; for (uint8_t i = 0; i < len; i++) { p = lsb ? key + len - i - 1 : key + i; snprintf(keybyte, 3, "%02X", *p); strncat(keystring, keybyte, 2); } ESP_LOGI(TAG, "%s: %s", name, keystring); } // Display OTAA keys void showLoraKeys(void) { // LMIC may not have used callback to fill // all EUI buffer so we do it here to a temp // buffer to be able to display them uint8_t buf[32]; os_getDevEui((u1_t *)buf); printKey("DevEUI", buf, 8, true); //os_getArtEui((u1_t *)buf); //printKey("AppEUI", buf, 8, true); //os_getDevKey((u1_t *)buf); //printKey("AppKey", buf, 16, false); } #endif // VERBOSE // LMIC send task void lora_send(void *pvParameters) { _ASSERT((uint32_t)pvParameters == 1); // FreeRTOS check MessageBuffer_t SendBuffer; while (1) { // postpone until we are joined if we are not while (!LMIC.devaddr) { vTaskDelay(pdMS_TO_TICKS(500)); } // fetch next or wait for payload to send from queue // do not delete item from queue until it is transmitted if (xQueuePeek(LoraSendQueue, &SendBuffer, portMAX_DELAY) != pdTRUE) { ESP_LOGE(TAG, "Premature return from xQueueReceive() with no data!"); continue; } // attempt to transmit payload switch (LMIC_setTxData2_strict(SendBuffer.MessagePort, SendBuffer.Message, SendBuffer.MessageSize, (cfg.countermode & 0x02))) { case LMIC_ERROR_SUCCESS: #if (TIME_SYNC_LORASERVER) // if last packet sent was a timesync request, store TX timestamp if (SendBuffer.MessagePort == TIMEPORT) // store LMIC time when we started transmit of timesync request timesync_store(osticks2ms(os_getTime()), timesync_tx); #endif ESP_LOGI(TAG, "%d byte(s) sent to LORA", SendBuffer.MessageSize); // delete sent item from queue xQueueReceive(LoraSendQueue, &SendBuffer, (TickType_t)0); break; case LMIC_ERROR_TX_BUSY: // LMIC already has a tx message pending ESP_LOGI(TAG, "Message not sent, LMIC busy, will retry later"); vTaskDelay(pdMS_TO_TICKS(500 + random(400))); // wait a while break; case LMIC_ERROR_TX_FAILED: // message was not sent ESP_LOGI(TAG, "Message not sent, TX failed, will retry later"); vTaskDelay(pdMS_TO_TICKS(500 + random(400))); // wait a while break; case LMIC_ERROR_TX_TOO_LARGE: // message size exceeds LMIC buffer size case LMIC_ERROR_TX_NOT_FEASIBLE: // message too large for current // datarate ESP_LOGI(TAG, "Message too large to send, message not sent and deleted"); // we need some kind of error handling here -> to be done break; default: // other LMIC return code ESP_LOGE(TAG, "LMIC error, message not sent and deleted"); } // switch delay(2); // yield to CPU } // while(1) } esp_err_t lmic_init(void) { _ASSERT(SEND_QUEUE_SIZE > 0); LoraSendQueue = xQueueCreate(SEND_QUEUE_SIZE, sizeof(MessageBuffer_t)); if (LoraSendQueue == 0) { ESP_LOGE(TAG, "Could not create LORA send queue. Aborting."); return ESP_FAIL; } ESP_LOGI(TAG, "LORA send queue created, size %d Bytes", SEND_QUEUE_SIZE * sizeof(MessageBuffer_t)); // setup LMIC stack os_init_ex(&myPinmap); // initialize lmic run-time environment // register a callback for downlink messages and lmic events. // We aren't trying to write reentrant code, so pUserData is NULL. // LMIC_reset() doesn't affect callbacks, so we can do this first. LMIC_registerRxMessageCb(myRxCallback, NULL); LMIC_registerEventCb(myEventCallback, NULL); // to come with future LMIC version // Reset the MAC state. Session and pending data transfers will be // discarded. LMIC_reset(); // This tells LMIC to make the receive windows bigger, in case your clock is // faster or slower. This causes the transceiver to be earlier switched on, // so consuming more power. You may sharpen (reduce) CLOCK_ERROR_PERCENTAGE // in src/lmic_config.h if you are limited on battery. #ifdef CLOCK_ERROR_PROCENTAGE LMIC_setClockError(CLOCK_ERROR_PROCENTAGE * MAX_CLOCK_ERROR / 1000); #endif // Pass ABP parameters to LMIC_setSession #ifdef LORA_ABP setABPParameters(); // These parameters are defined as macro in loraconf.h // load saved session from RTC, if we have one if (RTC_runmode == RUNMODE_WAKEUP) { LoadLMICFromRTC(); } else { uint8_t appskey[sizeof(APPSKEY)]; uint8_t nwkskey[sizeof(NWKSKEY)]; memcpy_P(appskey, APPSKEY, sizeof(APPSKEY)); memcpy_P(nwkskey, NWKSKEY, sizeof(NWKSKEY)); LMIC_setSession(NETID, DEVADDR, nwkskey, appskey); } // Pass OTA parameters to LMIC_setSession #else // load saved session from RTC, if we have one if (RTC_runmode == RUNMODE_WAKEUP) LoadLMICFromRTC(); if (!LMIC_startJoining()) ESP_LOGI(TAG, "Already joined"); #endif // start lmic loop task ESP_LOGI(TAG, "Starting LMIC..."); xTaskCreatePinnedToCore(lmictask, // task function "lmictask", // name of task 4096, // stack size of task (void *)1, // parameter of the task 2, // priority of the task &lmicTask, // task handle 1); // CPU core // start lora send task xTaskCreatePinnedToCore(lora_send, // task function "lorasendtask", // name of task 3072, // stack size of task (void *)1, // parameter of the task 2, // priority of the task &lorasendTask, // task handle 1); // CPU core return ESP_OK; } void lora_enqueuedata(MessageBuffer_t *message) { // enqueue message in LORA send queue if (xQueueSendToBack(LoraSendQueue, (void *)message, (TickType_t)0) != pdTRUE) { snprintf(lmic_event_msg + 14, LMIC_EVENTMSG_LEN - 14, "<>"); ESP_LOGW(TAG, "LORA sendqueue is full"); } else { // add Lora send queue length to display snprintf(lmic_event_msg + 14, LMIC_EVENTMSG_LEN - 14, "%2u", uxQueueMessagesWaiting(LoraSendQueue)); } } void lora_queuereset(void) { xQueueReset(LoraSendQueue); } uint32_t lora_queuewaiting(void) { return uxQueueMessagesWaiting(LoraSendQueue); } // blocking wait until LMIC is idle void lora_waitforidle(uint16_t timeout_sec) { ESP_LOGI(TAG, "Waiting until LMIC is idle..."); for (int i = timeout_sec; i > 0; i--) { if ((LMIC.opmode & (OP_JOINING | OP_TXDATA | OP_POLL | OP_TXRXPEND)) || os_queryTimeCriticalJobs(sec2osticks(timeout_sec))) vTaskDelay(pdMS_TO_TICKS(1000)); else break; } } // LMIC loop task void lmictask(void *pvParameters) { _ASSERT((uint32_t)pvParameters == 1); while (1) { os_runloop_once(); // execute lmic scheduled jobs and events delay(2); // yield to CPU } } // lmic event handler void myEventCallback(void *pUserData, ev_t ev) { // using message descriptors from LMIC library static const char *const evNames[] = {LMIC_EVENT_NAME_TABLE__INIT}; // get current length of lora send queue uint8_t const msgWaiting = uxQueueMessagesWaiting(LoraSendQueue); // get current event message if (ev < sizeof(evNames) / sizeof(evNames[0])) snprintf(lmic_event_msg, LMIC_EVENTMSG_LEN, "%-16s", evNames[ev] + 3); // +3 to strip "EV_" else snprintf(lmic_event_msg, LMIC_EVENTMSG_LEN, "LMIC event %-4u ", ev); // process current event message switch (ev) { case EV_TXCOMPLETE: // -> processed in lora_send() break; case EV_RXCOMPLETE: // -> processed in myRxCallback() break; case EV_JOINING: // do the network-specific setup prior to join. lora_setupForNetwork(true); break; case EV_JOINED: // do the after join network-specific setup. lora_setupForNetwork(false); break; case EV_JOIN_FAILED: // must call LMIC_reset() to stop joining // otherwise join procedure continues. LMIC_reset(); break; case EV_JOIN_TXCOMPLETE: // replace descriptor from library with more descriptive term snprintf(lmic_event_msg, LMIC_EVENTMSG_LEN, "%-16s", "JOIN_WAIT"); break; default: break; } // add Lora send queue length to display if (msgWaiting) snprintf(lmic_event_msg + 14, LMIC_EVENTMSG_LEN - 14, "%2u", msgWaiting); // print event ESP_LOGD(TAG, "%s", lmic_event_msg); } // event EV_RXCOMPLETE message handler void myRxCallback(void *pUserData, uint8_t port, const uint8_t *pMsg, size_t nMsg) { // display amount of received data if (nMsg) ESP_LOGI(TAG, "Received %u byte(s) of payload on port %u", nMsg, port); else if (port) ESP_LOGI(TAG, "Received empty message on port %u", port); switch (port) { // rcommand received -> call interpreter case RCMDPORT: rcommand(pMsg, nMsg); break; // timeserver answer -> call timesync processor #if (TIME_SYNC_LORASERVER) case TIMEPORT: // get and store gwtime from payload timesync_serverAnswer(const_cast(pMsg), nMsg); break; #endif } // switch } const char *getSfName(rps_t rps) { const char *const t[] = {"FSK", "SF7", "SF8", "SF9", "SF10", "SF11", "SF12", "SF?"}; return t[getSf(rps)]; } const char *getBwName(rps_t rps) { const char *const t[] = {"BW125", "BW250", "BW500", "BW?"}; return t[getBw(rps)]; } const char *getCrName(rps_t rps) { const char *const t[] = {"CR 4/5", "CR 4/6", "CR 4/7", "CR 4/8"}; return t[getCr(rps)]; } /******************************************************************************* * * ttn-esp32 - The Things Network device library for ESP-IDF / SX127x * * Copyright (c) 2018-2021 Manuel Bleichenbacher * * Licensed under MIT License * https://opensource.org/licenses/MIT * * Functions for storing and retrieving TTN communication state from RTC memory. *******************************************************************************/ #define LMIC_OFFSET(field) __builtin_offsetof(struct lmic_t, field) #define LMIC_DIST(field1, field2) (LMIC_OFFSET(field2) - LMIC_OFFSET(field1)) #define TTN_RTC_MEM_SIZE \ (sizeof(struct lmic_t) - LMIC_OFFSET(radio) - MAX_LEN_PAYLOAD - MAX_LEN_FRAME) #define TTN_RTC_FLAG_VALUE 0xf8025b8a RTC_DATA_ATTR uint8_t ttn_rtc_mem_buf[TTN_RTC_MEM_SIZE]; RTC_DATA_ATTR uint32_t ttn_rtc_flag; void ttn_rtc_save() { // Copy LMIC struct except client, osjob, pendTxData and frame size_t len1 = LMIC_DIST(radio, pendTxData); memcpy(ttn_rtc_mem_buf, &LMIC.radio, len1); size_t len2 = LMIC_DIST(pendTxData, frame) - MAX_LEN_PAYLOAD; memcpy(ttn_rtc_mem_buf + len1, (u1_t *)&LMIC.pendTxData + MAX_LEN_PAYLOAD, len2); size_t len3 = sizeof(struct lmic_t) - LMIC_OFFSET(frame) - MAX_LEN_FRAME; memcpy(ttn_rtc_mem_buf + len1 + len2, (u1_t *)&LMIC.frame + MAX_LEN_FRAME, len3); ttn_rtc_flag = TTN_RTC_FLAG_VALUE; } bool ttn_rtc_restore() { if (ttn_rtc_flag != TTN_RTC_FLAG_VALUE) return false; // Restore data size_t len1 = LMIC_DIST(radio, pendTxData); memcpy(&LMIC.radio, ttn_rtc_mem_buf, len1); memset(LMIC.pendTxData, 0, MAX_LEN_PAYLOAD); size_t len2 = LMIC_DIST(pendTxData, frame) - MAX_LEN_PAYLOAD; memcpy((u1_t *)&LMIC.pendTxData + MAX_LEN_PAYLOAD, ttn_rtc_mem_buf + len1, len2); memset(LMIC.frame, 0, MAX_LEN_FRAME); size_t len3 = sizeof(struct lmic_t) - LMIC_OFFSET(frame) - MAX_LEN_FRAME; memcpy((u1_t *)&LMIC.frame + MAX_LEN_FRAME, ttn_rtc_mem_buf + len1 + len2, len3); ttn_rtc_flag = 0xffffffff; // invalidate RTC data return true; } // following code includes snippets taken from // https://github.com/JackGruber/ESP32-LMIC-DeepSleep-example/blob/master/src/main.cpp void SaveLMICToRTC(uint32_t deepsleep_sec) { // ESP32 can't track millis during DeepSleep and no option to advance // millis after DeepSleep. Therefore reset DutyCyles before saving LMIC struct unsigned long now = millis(); // EU Like Bands #if CFG_LMIC_EU_like for (int i = 0; i < MAX_BANDS; i++) { ostime_t correctedAvail = LMIC.bands[i].avail - ((now / 1000.0 + deepsleep_sec) * OSTICKS_PER_SEC); if (correctedAvail < 0) { correctedAvail = 0; } LMIC.bands[i].avail = correctedAvail; } LMIC.globalDutyAvail = LMIC.globalDutyAvail - ((now / 1000.0 + deepsleep_sec) * OSTICKS_PER_SEC); if (LMIC.globalDutyAvail < 0) { LMIC.globalDutyAvail = 0; } #else ESP_LOGW(TAG, "No DutyCycle recalculation function!"); #endif ttn_rtc_save(); ESP_LOGI(TAG, "LMIC state saved"); } void LoadLMICFromRTC() { if (ttn_rtc_restore()) ESP_LOGI(TAG, "LMIC state loaded"); else { ESP_LOGE(TAG, "LMIC state not found - resetting device"); do_reset(false); // coldstart } } #endif // HAS_LORA