/* //////////////////////// ESP32-Paxcounter \\\\\\\\\\\\\\\\\\\\\\\\\\ Copyright 2018 Oliver Brandmueller Copyright 2018 Klaus Wilting Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. NOTICE: Parts of the source files in this repository are made available under different licenses. Refer to LICENSE.txt file in repository for more details. //////////////////////// ESP32-Paxcounter \\\\\\\\\\\\\\\\\\\\\\\\\\ Uused tasks and timers: Task Core Prio Purpose ==================================================================================== wifiloop 0 4 rotates wifi channels ledloop 0 3 blinks LEDs spiloop 0 2 reads/writes data on spi interface IDLE 0 0 ESP32 arduino scheduler -> runs wifi sniffer looptask 1 1 arduino core -> runs the LMIC LoRa stack irqhandler 1 1 executes tasks triggered by irq gpsloop 1 2 reads data from GPS via serial or i2c bmeloop 1 2 reads data from BME sensor via i2c IDLE 1 0 ESP32 arduino scheduler ESP32 hardware timers ========================== 0 Trigger display refresh 1 Trigger Wifi channel switch 2 Trigger send payload cycle 3 Trigger housekeeping cycle */ // Basic Config #include "main.h" configData_t cfg; // struct holds current device configuration char display_line6[16], display_line7[16]; // display buffers uint8_t volatile channel = 0; // channel rotation counter uint16_t volatile macs_total = 0, macs_wifi = 0, macs_ble = 0, batt_voltage = 0; // globals for display hw_timer_t *channelSwitch = NULL, *sendCycle = NULL, *homeCycle = NULL, *displaytimer = NULL; // irq tasks TaskHandle_t irqHandlerTask, wifiSwitchTask; // container holding unique MAC address hashes with Memory Alloctor using PSRAM, // if present std::set, Mallocator> macs; // initialize payload encoder PayloadConvert payload(PAYLOAD_BUFFER_SIZE); // local Tag for logging static const char TAG[] = "main"; void setup() { // disable the default wifi logging esp_log_level_set("wifi", ESP_LOG_NONE); char features[100] = ""; // disable brownout detection #ifdef DISABLE_BROWNOUT // register with brownout is at address DR_REG_RTCCNTL_BASE + 0xd4 (*((uint32_t volatile *)ETS_UNCACHED_ADDR((DR_REG_RTCCNTL_BASE + 0xd4)))) = 0; #endif // setup debug output or silence device #ifdef VERBOSE Serial.begin(115200); esp_log_level_set("*", ESP_LOG_VERBOSE); #else // mute logs completely by redirecting them to silence function esp_log_level_set("*", ESP_LOG_NONE); esp_log_set_vprintf(redirect_log); #endif ESP_LOGI(TAG, "Starting %s v%s", PRODUCTNAME, PROGVERSION); // print chip information on startup if in verbose mode #ifdef VERBOSE esp_chip_info_t chip_info; esp_chip_info(&chip_info); ESP_LOGI(TAG, "This is ESP32 chip with %d CPU cores, WiFi%s%s, silicon revision " "%d, %dMB %s Flash", chip_info.cores, (chip_info.features & CHIP_FEATURE_BT) ? "/BT" : "", (chip_info.features & CHIP_FEATURE_BLE) ? "/BLE" : "", chip_info.revision, spi_flash_get_chip_size() / (1024 * 1024), (chip_info.features & CHIP_FEATURE_EMB_FLASH) ? "embedded" : "external"); ESP_LOGI(TAG, "Internal Total heap %d, internal Free Heap %d", ESP.getHeapSize(), ESP.getFreeHeap()); #ifdef BOARD_HAS_PSRAM ESP_LOGI(TAG, "SPIRam Total heap %d, SPIRam Free Heap %d", ESP.getPsramSize(), ESP.getFreePsram()); #endif ESP_LOGI(TAG, "ChipRevision %d, Cpu Freq %d, SDK Version %s", ESP.getChipRevision(), ESP.getCpuFreqMHz(), ESP.getSdkVersion()); ESP_LOGI(TAG, "Flash Size %d, Flash Speed %d", ESP.getFlashChipSize(), ESP.getFlashChipSpeed()); ESP_LOGI(TAG, "Wifi/BT software coexist version: %s", esp_coex_version_get()); #ifdef HAS_GPS ESP_LOGI(TAG, "TinyGPS+ v%s", TinyGPSPlus::libraryVersion()); #endif #endif // verbose // read (and initialize on first run) runtime settings from NVRAM loadConfig(); // includes initialize if necessary #ifdef BOARD_HAS_PSRAM if (psramFound()) { ESP_LOGI(TAG, "PSRAM found and initialized"); strcat_P(features, " PSRAM"); } else ESP_LOGI(TAG, "No PSRAM found"); #else #endif // initialize leds #if (HAS_LED != NOT_A_PIN) pinMode(HAS_LED, OUTPUT); strcat_P(features, " LED"); // switch on power LED if we have 2 LEDs, else use it for status #ifdef HAS_RGB_LED switch_LED(LED_ON); strcat_P(features, " RGB"); rgb_set_color(COLOR_PINK); #endif #endif #if (HAS_LED != NOT_A_PIN) || defined(HAS_RGB_LED) // start led loop ESP_LOGI(TAG, "Starting LEDloop..."); xTaskCreatePinnedToCore(ledLoop, // task function "ledloop", // name of task 1024, // stack size of task (void *)1, // parameter of the task 3, // priority of the task &ledLoopTask, // task handle 0); // CPU core #endif // initialize wifi antenna #ifdef HAS_ANTENNA_SWITCH strcat_P(features, " ANT"); antenna_init(); antenna_select(cfg.wifiant); #endif // initialize battery status #ifdef HAS_BATTERY_PROBE strcat_P(features, " BATT"); calibrate_voltage(); batt_voltage = read_voltage(); #endif #ifdef USE_OTA strcat_P(features, " OTA"); // reboot to firmware update mode if ota trigger switch is set if (cfg.runmode == 1) { cfg.runmode = 0; saveConfig(); start_ota_update(); } #endif // start BLE scan callback if BLE function is enabled in NVRAM configuration // or switch off bluetooth, if not compiled #ifdef BLECOUNTER strcat_P(features, " BLE"); if (cfg.blescan) { ESP_LOGI(TAG, "Starting Bluetooth..."); start_BLEscan(); } else btStop(); #else // remove bluetooth stack to gain more free memory ESP_ERROR_CHECK(esp_bluedroid_disable()); ESP_ERROR_CHECK(esp_bluedroid_deinit()); btStop(); ESP_ERROR_CHECK(esp_bt_controller_deinit()); ESP_ERROR_CHECK(esp_bt_mem_release(ESP_BT_MODE_BTDM)); ESP_ERROR_CHECK(esp_coex_preference_set(( esp_coex_prefer_t)ESP_COEX_PREFER_WIFI)); // configure Wifi/BT coexist lib #endif // initialize button #ifdef HAS_BUTTON strcat_P(features, " BTN_"); #ifdef BUTTON_PULLUP strcat_P(features, "PU"); // install button interrupt (pullup mode) pinMode(HAS_BUTTON, INPUT_PULLUP); #else strcat_P(features, "PD"); // install button interrupt (pulldown mode) pinMode(HAS_BUTTON, INPUT_PULLDOWN); #endif // BUTTON_PULLUP #endif // HAS_BUTTON // initialize gps #ifdef HAS_GPS strcat_P(features, " GPS"); if (gps_init()) { ESP_LOGI(TAG, "Starting GPSloop..."); xTaskCreatePinnedToCore(gps_loop, // task function "gpsloop", // name of task 2048, // stack size of task (void *)1, // parameter of the task 2, // priority of the task &GpsTask, // task handle 1); // CPU core } #endif // initialize bme #ifdef HAS_BME strcat_P(features, " BME"); if (bme_init()) { ESP_LOGI(TAG, "Starting BMEloop..."); xTaskCreatePinnedToCore(bme_loop, // task function "bmeloop", // name of task 4096, // stack size of task (void *)1, // parameter of the task 2, // priority of the task &BmeTask, // task handle 1); // CPU core } #endif // initialize sensors #ifdef HAS_SENSORS strcat_P(features, " SENS"); sensor_init(); #endif // initialize LoRa #ifdef HAS_LORA strcat_P(features, " LORA"); #endif assert(lora_stack_init() == ESP_OK); // initialize SPI #ifdef HAS_SPI strcat_P(features, " SPI"); #endif assert(spi_init() == ESP_OK); #ifdef VENDORFILTER strcat_P(features, " OUIFLT"); #endif // initialize display #ifdef HAS_DISPLAY strcat_P(features, " OLED"); DisplayState = cfg.screenon; init_display(PRODUCTNAME, PROGVERSION); // setup display refresh trigger IRQ using esp32 hardware timer // https://techtutorialsx.com/2017/10/07/esp32-arduino-timer-interrupts/ // prescaler 80 -> divides 80 MHz CPU freq to 1 MHz, timer 0, count up displaytimer = timerBegin(0, 80, true); // interrupt handler DisplayIRQ, triggered by edge timerAttachInterrupt(displaytimer, &DisplayIRQ, true); // reload interrupt after each trigger of display refresh cycle timerAlarmWrite(displaytimer, DISPLAYREFRESH_MS * 1000, true); #endif // setup send cycle trigger IRQ using esp32 hardware timer 2 sendCycle = timerBegin(2, 8000, true); timerAttachInterrupt(sendCycle, &SendCycleIRQ, true); timerAlarmWrite(sendCycle, cfg.sendcycle * 2 * 10000, true); // setup house keeping cycle trigger IRQ using esp32 hardware timer 3 homeCycle = timerBegin(3, 8000, true); timerAttachInterrupt(homeCycle, &homeCycleIRQ, true); timerAlarmWrite(homeCycle, HOMECYCLE * 10000, true); // setup channel rotation trigger IRQ using esp32 hardware timer 1 channelSwitch = timerBegin(1, 800, true); timerAttachInterrupt(channelSwitch, &ChannelSwitchIRQ, true); timerAlarmWrite(channelSwitch, cfg.wifichancycle * 1000, true); // show payload encoder #if PAYLOAD_ENCODER == 1 strcat_P(features, " PLAIN"); #elif PAYLOAD_ENCODER == 2 strcat_P(features, " PACKED"); #elif PAYLOAD_ENCODER == 3 strcat_P(features, " LPPDYN"); #elif PAYLOAD_ENCODER == 4 strcat_P(features, " LPPPKD"); #endif // show compiled features ESP_LOGI(TAG, "Features:%s", features); #ifdef HAS_LORA // output LoRaWAN keys to console #ifdef VERBOSE showLoraKeys(); #endif #endif // start wifi in monitor mode and start channel rotation task on core 0 ESP_LOGI(TAG, "Starting Wifi..."); wifi_sniffer_init(); // initialize salt value using esp_random() called by random() in // arduino-esp32 core. Note: do this *after* wifi has started, since // function gets it's seed from RF noise get_salt(); // get new 16bit for salting hashes // start state machine ESP_LOGI(TAG, "Starting IRQ Handler..."); xTaskCreatePinnedToCore(irqHandler, // task function "irqhandler", // name of task 2048, // stack size of task (void *)1, // parameter of the task 1, // priority of the task &irqHandlerTask, // task handle 1); // CPU core // start wifi channel rotation task ESP_LOGI(TAG, "Starting Wifi Channel rotation..."); xTaskCreatePinnedToCore(switchWifiChannel, // task function "wifiloop", // name of task 2048, // stack size of task NULL, // parameter of the task 4, // priority of the task &wifiSwitchTask, // task handle 0); // CPU core // start timer triggered interrupts ESP_LOGI(TAG, "Starting Interrupts..."); #ifdef HAS_DISPLAY timerAlarmEnable(displaytimer); #endif timerAlarmEnable(sendCycle); timerAlarmEnable(homeCycle); timerAlarmEnable(channelSwitch); // start button interrupt #ifdef HAS_BUTTON #ifdef BUTTON_PULLUP attachInterrupt(digitalPinToInterrupt(HAS_BUTTON), ButtonIRQ, RISING); #else attachInterrupt(digitalPinToInterrupt(HAS_BUTTON), ButtonIRQ, FALLING); #endif #endif // HAS_BUTTON } // setup() void loop() { while (1) { #ifdef HAS_LORA os_runloop_once(); // execute lmic scheduled jobs and events #endif delay(2); // yield to CPU } vTaskDelete(NULL); // shoud never be reached }