/* //////////////////////// ESP32-Paxcounter \\\\\\\\\\\\\\\\\\\\\\\\\\ Copyright 2018 Oliver Brandmueller Copyright 2018 Klaus Wilting Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. NOTE: Parts of the source files in this repository are made available under different licenses. Refer to LICENSE.txt file in repository for more details. //////////////////////// ESP32-Paxcounter \\\\\\\\\\\\\\\\\\\\\\\\\\ // Tasks and timers: Task Core Prio Purpose ------------------------------------------------------------------------------- ledloop 0 3 blinks LEDs spiloop 0 2 reads/writes data on spi interface mqttloop 0 2 reads/writes data on ETH interface IDLE 0 0 ESP32 arduino scheduler -> runs wifi sniffer lmictask 1 2 MCCI LMiC LORAWAN stack clockloop 1 4 generates realtime telegrams for external clock timesync_proc 1 3 processes realtime time sync requests irqhandler 1 1 cyclic tasks (i.e. displayrefresh) triggered by timers gpsloop 1 1 reads data from GPS via serial or i2c lorasendtask 1 1 feeds data from lora sendqueue to lmcic IDLE 1 0 ESP32 arduino scheduler -> runs wifi channel rotator Low priority numbers denote low priority tasks. NOTE: Changing any timings will have impact on time accuracy of whole code. So don't do it if you do not own a digital oscilloscope. // ESP32 hardware timers ------------------------------------------------------------------------------- 0 displayIRQ -> display refresh -> 40ms (DISPLAYREFRESH_MS) 1 ppsIRQ -> pps clock irq -> 1sec 3 MatrixDisplayIRQ -> matrix mux cycle -> 0,5ms (MATRIX_DISPLAY_SCAN_US) // Interrupt routines ------------------------------------------------------------------------------- fired by hardware DisplayIRQ -> esp32 timer 0 -> irqHandlerTask (Core 1) CLOCKIRQ -> esp32 timer 1 -> ClockTask (Core 1) ButtonIRQ -> external gpio -> irqHandlerTask (Core 1) PMUIRQ -> PMU chip gpio -> irqHandlerTask (Core 1) fired by software (Ticker.h) TIMESYNC_IRQ -> timeSync() -> irqHandlerTask (Core 1) CYCLIC_IRQ -> housekeeping() -> irqHandlerTask (Core 1) SENDCYCLE_IRQ -> sendcycle() -> irqHandlerTask (Core 1) BME_IRQ -> bmecycle() -> irqHandlerTask (Core 1) // External RTC timer (if present) ------------------------------------------------------------------------------- triggers pps 1 sec impulse */ // Basic Config #include "main.h" configData_t cfg; // struct holds current device configuration char lmic_event_msg[LMIC_EVENTMSG_LEN]; // display buffer for LMIC event message uint8_t volatile channel = 0; // channel rotation counter uint8_t batt_level = 0; // display value uint16_t volatile macs_wifi = 0, macs_ble = 0; // globals for display hw_timer_t *ppsIRQ = NULL, *displayIRQ = NULL, *matrixDisplayIRQ = NULL; TaskHandle_t irqHandlerTask = NULL, ClockTask = NULL; SemaphoreHandle_t I2Caccess; bool volatile TimePulseTick = false; timesource_t timeSource = _unsynced; // container holding unique MAC address hashes with Memory Alloctor using PSRAM, // if present std::set, Mallocator> macs; // initialize payload encoder PayloadConvert payload(PAYLOAD_BUFFER_SIZE); // set Time Zone for user setting from paxcounter.conf TimeChangeRule myDST = DAYLIGHT_TIME; TimeChangeRule mySTD = STANDARD_TIME; Timezone myTZ(myDST, mySTD); // local Tag for logging static const char TAG[] = __FILE__; void setup() { char features[100] = ""; // create some semaphores for syncing / mutexing tasks I2Caccess = xSemaphoreCreateMutex(); // for access management of i2c bus assert(I2Caccess != NULL); I2C_MUTEX_UNLOCK(); // disable brownout detection #ifdef DISABLE_BROWNOUT // register with brownout is at address DR_REG_RTCCNTL_BASE + 0xd4 (*((uint32_t volatile *)ETS_UNCACHED_ADDR((DR_REG_RTCCNTL_BASE + 0xd4)))) = 0; #endif // setup debug output or silence device #if (VERBOSE) Serial.begin(115200); esp_log_level_set("*", ESP_LOG_VERBOSE); #else // mute logs completely by redirecting them to silence function esp_log_level_set("*", ESP_LOG_NONE); #endif do_after_reset(rtc_get_reset_reason(0)); // print chip information on startup if in verbose mode after coldstart #if (VERBOSE) if (RTC_runmode == RUNMODE_POWERCYCLE) { esp_chip_info_t chip_info; esp_chip_info(&chip_info); ESP_LOGI(TAG, "This is ESP32 chip with %d CPU cores, WiFi%s%s, silicon revision " "%d, %dMB %s Flash", chip_info.cores, (chip_info.features & CHIP_FEATURE_BT) ? "/BT" : "", (chip_info.features & CHIP_FEATURE_BLE) ? "/BLE" : "", chip_info.revision, spi_flash_get_chip_size() / (1024 * 1024), (chip_info.features & CHIP_FEATURE_EMB_FLASH) ? "embedded" : "external"); ESP_LOGI(TAG, "Internal Total heap %d, internal Free Heap %d", ESP.getHeapSize(), ESP.getFreeHeap()); #ifdef BOARD_HAS_PSRAM ESP_LOGI(TAG, "SPIRam Total heap %d, SPIRam Free Heap %d", ESP.getPsramSize(), ESP.getFreePsram()); #endif ESP_LOGI(TAG, "ChipRevision %d, Cpu Freq %d, SDK Version %s", ESP.getChipRevision(), ESP.getCpuFreqMHz(), ESP.getSdkVersion()); ESP_LOGI(TAG, "Flash Size %d, Flash Speed %d", ESP.getFlashChipSize(), ESP.getFlashChipSpeed()); ESP_LOGI(TAG, "Wifi/BT software coexist version %s", esp_coex_version_get()); #if (HAS_LORA) ESP_LOGI(TAG, "IBM LMIC version %d.%d.%d", LMIC_VERSION_MAJOR, LMIC_VERSION_MINOR, LMIC_VERSION_BUILD); ESP_LOGI(TAG, "Arduino LMIC version %d.%d.%d.%d", ARDUINO_LMIC_VERSION_GET_MAJOR(ARDUINO_LMIC_VERSION), ARDUINO_LMIC_VERSION_GET_MINOR(ARDUINO_LMIC_VERSION), ARDUINO_LMIC_VERSION_GET_PATCH(ARDUINO_LMIC_VERSION), ARDUINO_LMIC_VERSION_GET_LOCAL(ARDUINO_LMIC_VERSION)); showLoraKeys(); #endif // HAS_LORA #if (HAS_GPS) ESP_LOGI(TAG, "TinyGPS+ version %s", TinyGPSPlus::libraryVersion()); #endif } #endif // VERBOSE // open i2c bus i2c_init(); // setup power on boards with power management logic #ifdef EXT_POWER_SW pinMode(EXT_POWER_SW, OUTPUT); digitalWrite(EXT_POWER_SW, EXT_POWER_ON); strcat_P(features, " VEXT"); #endif #if defined HAS_PMU || defined HAS_IP5306 #ifdef HAS_PMU AXP192_init(); #elif defined HAS_IP5306 IP5306_init(); #endif strcat_P(features, " PMU"); #endif // read (and initialize on first run) runtime settings from NVRAM loadConfig(); // includes initialize if necessary // now that we are powered, we scan i2c bus for devices i2c_scan(); // initialize display #ifdef HAS_DISPLAY strcat_P(features, " OLED"); DisplayIsOn = cfg.screenon; // display verbose info only after a coldstart (note: blocking call!) dp_init(RTC_runmode == RUNMODE_POWERCYCLE ? true : false); #endif #ifdef BOARD_HAS_PSRAM assert(psramFound()); ESP_LOGI(TAG, "PSRAM found and initialized"); strcat_P(features, " PSRAM"); #endif #ifdef BAT_MEASURE_EN pinMode(BAT_MEASURE_EN, OUTPUT); #endif // initialize leds #if (HAS_LED != NOT_A_PIN) pinMode(HAS_LED, OUTPUT); strcat_P(features, " LED"); #ifdef LED_POWER_SW pinMode(LED_POWER_SW, OUTPUT); digitalWrite(LED_POWER_SW, LED_POWER_ON); #endif #ifdef HAS_TWO_LED pinMode(HAS_TWO_LED, OUTPUT); strcat_P(features, " LED1"); #endif // use LED for power display if we have additional RGB LED, else for status #ifdef HAS_RGB_LED switch_LED(LED_ON); strcat_P(features, " RGB"); #endif #endif // HAS_LED #if (HAS_LED != NOT_A_PIN) || defined(HAS_RGB_LED) // start led loop ESP_LOGI(TAG, "Starting LED Controller..."); xTaskCreatePinnedToCore(ledLoop, // task function "ledloop", // name of task 1024, // stack size of task (void *)1, // parameter of the task 3, // priority of the task &ledLoopTask, // task handle 0); // CPU core #endif // initialize wifi antenna #ifdef HAS_ANTENNA_SWITCH strcat_P(features, " ANT"); antenna_init(); antenna_select(cfg.wifiant); #endif // initialize battery status #if (defined BAT_MEASURE_ADC || defined HAS_PMU || defined HAS_IP5306) strcat_P(features, " BATT"); calibrate_voltage(); batt_level = read_battlevel(); #ifdef HAS_IP5306 printIP5306Stats(); #endif #endif #if (USE_OTA) strcat_P(features, " OTA"); // reboot to firmware update mode if ota trigger switch is set if (RTC_runmode == RUNMODE_UPDATE) start_ota_update(); #endif // start BLE scan callback if BLE function is enabled in NVRAM configuration // or switch off bluetooth, if not compiled #if (BLECOUNTER) strcat_P(features, " BLE"); if (cfg.blescan) { ESP_LOGI(TAG, "Starting Bluetooth..."); start_BLEscan(); } else btStop(); #else // remove bluetooth stack to gain more free memory btStop(); ESP_ERROR_CHECK(esp_bt_mem_release(ESP_BT_MODE_BTDM)); ESP_ERROR_CHECK(esp_coex_preference_set( ESP_COEX_PREFER_WIFI)); // configure Wifi/BT coexist lib #endif // initialize gps #if (HAS_GPS) strcat_P(features, " GPS"); if (gps_init()) { ESP_LOGI(TAG, "Starting GPS Feed..."); xTaskCreatePinnedToCore(gps_loop, // task function "gpsloop", // name of task 2048, // stack size of task (void *)1, // parameter of the task 1, // priority of the task &GpsTask, // task handle 1); // CPU core } #endif // initialize sensors #if (HAS_SENSORS) #if (HAS_SENSOR_1) #if (COUNT_CWA) ESP_LOGI(TAG, "init CWA-counter"); if ( cwa_init() ) strcat_P(features, " CWA"); #else strcat_P(features, " SENS(1)"); sensor_init(); #endif #endif #if (HAS_SENSOR_2) strcat_P(features, " SENS(2)"); sensor_init(); #endif #if (HAS_SENSOR_3) strcat_P(features, " SENS(3)"); sensor_init(); #endif #endif // initialize LoRa #if (HAS_LORA) strcat_P(features, " LORA"); // kick off join, except we come from sleep assert(lora_stack_init(RTC_runmode == RUNMODE_WAKEUP ? false : true) == ESP_OK); #endif // initialize SPI #ifdef HAS_SPI strcat_P(features, " SPI"); assert(spi_init() == ESP_OK); #endif // initialize MQTT #ifdef HAS_MQTT strcat_P(features, " MQTT"); assert(mqtt_init() == ESP_OK); #endif #if (HAS_SDCARD) if (sdcard_init()) strcat_P(features, " SD"); #endif #if (HAS_SDS011) ESP_LOGI(TAG, "init fine-dust-sensor"); if (sds011_init()) strcat_P(features, " SDS"); #endif #if (VENDORFILTER) strcat_P(features, " FILTER"); #endif // initialize matrix display #ifdef HAS_MATRIX_DISPLAY strcat_P(features, " LED_MATRIX"); MatrixDisplayIsOn = cfg.screenon; init_matrix_display(); // note: blocking call #endif // show payload encoder #if PAYLOAD_ENCODER == 1 strcat_P(features, " PLAIN"); #elif PAYLOAD_ENCODER == 2 strcat_P(features, " PACKED"); #elif PAYLOAD_ENCODER == 3 strcat_P(features, " LPPDYN"); #elif PAYLOAD_ENCODER == 4 strcat_P(features, " LPPPKD"); #endif // initialize RTC #ifdef HAS_RTC strcat_P(features, " RTC"); assert(rtc_init()); #endif #if defined HAS_DCF77 strcat_P(features, " DCF77"); #endif #if defined HAS_IF482 strcat_P(features, " IF482"); #endif #if (WIFICOUNTER) strcat_P(features, " WIFI"); // start wifi in monitor mode and start channel rotation timer ESP_LOGI(TAG, "Starting Wifi..."); wifi_sniffer_init(); #else // switch off wifi esp_wifi_deinit(); #endif // initialize salt value using esp_random() called by random() in // arduino-esp32 core. Note: do this *after* wifi has started, since // function gets it's seed from RF noise get_salt(); // get new 16bit for salting hashes // start state machine ESP_LOGI(TAG, "Starting Interrupt Handler..."); xTaskCreatePinnedToCore(irqHandler, // task function "irqhandler", // name of task 4096, // stack size of task (void *)1, // parameter of the task 2, // priority of the task &irqHandlerTask, // task handle 1); // CPU core // initialize BME sensor (BME280/BME680) #if (HAS_BME) #ifdef HAS_BME680 strcat_P(features, " BME680"); #elif defined HAS_BME280 strcat_P(features, " BME280"); #elif defined HAS_BMP180 strcat_P(features, " BMP180"); #endif if (bme_init()) ESP_LOGI(TAG, "Starting BME sensor..."); #endif // starting timers and interrupts assert(irqHandlerTask != NULL); // has interrupt handler task started? ESP_LOGI(TAG, "Starting Timers..."); // display interrupt #ifdef HAS_DISPLAY // https://techtutorialsx.com/2017/10/07/esp32-arduino-timer-interrupts/ // prescaler 80 -> divides 80 MHz CPU freq to 1 MHz, timer 0, count up displayIRQ = timerBegin(0, 80, true); timerAttachInterrupt(displayIRQ, &DisplayIRQ, true); timerAlarmWrite(displayIRQ, DISPLAYREFRESH_MS * 1000, true); timerAlarmEnable(displayIRQ); #endif // LED Matrix display interrupt #ifdef HAS_MATRIX_DISPLAY // https://techtutorialsx.com/2017/10/07/esp32-arduino-timer-interrupts/ // prescaler 80 -> divides 80 MHz CPU freq to 1 MHz, timer 3, count up matrixDisplayIRQ = timerBegin(3, 80, true); timerAttachInterrupt(matrixDisplayIRQ, &MatrixDisplayIRQ, true); timerAlarmWrite(matrixDisplayIRQ, MATRIX_DISPLAY_SCAN_US, true); timerAlarmEnable(matrixDisplayIRQ); #endif // initialize button #ifdef HAS_BUTTON strcat_P(features, " BTN_"); #ifdef BUTTON_PULLUP strcat_P(features, "PU"); #else strcat_P(features, "PD"); #endif // BUTTON_PULLUP button_init(HAS_BUTTON); #endif // HAS_BUTTON // cyclic function interrupts sendcycler.attach(SENDCYCLE * 2, sendcycle); housekeeper.attach(HOMECYCLE, housekeeping); #if (TIME_SYNC_INTERVAL) #if (!(TIME_SYNC_LORAWAN) && !(TIME_SYNC_LORASERVER) && !defined HAS_GPS && \ !defined HAS_RTC) #warning you did not specify a time source, time will not be synched #endif // initialize gps time #if (HAS_GPS) get_gpstime(); #endif #if (defined HAS_IF482 || defined HAS_DCF77) ESP_LOGI(TAG, "Starting Clock Controller..."); clock_init(); #endif #if (TIME_SYNC_LORASERVER) || (TIME_SYNC_LORAWAN) timesync_init(); // create loraserver time sync task #endif ESP_LOGI(TAG, "Starting Timekeeper..."); assert(timepulse_init()); // setup pps timepulse timepulse_start(); // starts pps and cyclic time sync #endif // TIME_SYNC_INTERVAL // show compiled features ESP_LOGI(TAG, "Features:%s", features); // set runmode to normal RTC_runmode = RUNMODE_NORMAL; vTaskDelete(NULL); } // setup() void loop() { vTaskDelete(NULL); }