// Basic config #include "globals.h" #include "power.h" // Local logging tag static const char TAG[] = __FILE__; #ifdef HAS_PMU AXP20X_Class axp; void AXP192_init(void) { if (axp.begin(Wire, AXP192_PRIMARY_ADDRESS)) ESP_LOGI(TAG, "AXP192 PMU initialization failed"); else { axp.setPowerOutPut(AXP192_LDO2, AXP202_ON); axp.setPowerOutPut(AXP192_LDO3, AXP202_ON); axp.setPowerOutPut(AXP192_DCDC2, AXP202_ON); axp.setPowerOutPut(AXP192_EXTEN, AXP202_ON); axp.setPowerOutPut(AXP192_DCDC1, AXP202_ON); axp.setDCDC1Voltage(3300); axp.setChgLEDMode(AXP20X_LED_BLINK_1HZ); // axp.setChgLEDMode(AXP20X_LED_OFF); axp.adc1Enable(AXP202_BATT_CUR_ADC1, 1); #ifdef PMU_INT pinMode(PMU_INT, INPUT_PULLUP); attachInterrupt(digitalPinToInterrupt(PMU_INT), [] { ESP_LOGI(TAG, "Power source changed"); /* put your code here */ }, FALLING); axp.enableIRQ(AXP202_VBUS_REMOVED_IRQ | AXP202_VBUS_CONNECT_IRQ | AXP202_BATT_REMOVED_IRQ | AXP202_BATT_CONNECT_IRQ, 1); axp.clearIRQ(); #endif // PMU_INT ESP_LOGI(TAG, "AXP192 PMU initialized."); } } #endif // HAS_PMU #ifdef BAT_MEASURE_ADC esp_adc_cal_characteristics_t *adc_characs = (esp_adc_cal_characteristics_t *)calloc( 1, sizeof(esp_adc_cal_characteristics_t)); static const adc1_channel_t adc_channel = BAT_MEASURE_ADC; static const adc_atten_t atten = ADC_ATTEN_DB_11; static const adc_unit_t unit = ADC_UNIT_1; #endif void calibrate_voltage(void) { #ifdef BAT_MEASURE_ADC // configure ADC ESP_ERROR_CHECK(adc1_config_width(ADC_WIDTH_BIT_12)); ESP_ERROR_CHECK(adc1_config_channel_atten(adc_channel, atten)); // calibrate ADC esp_adc_cal_value_t val_type = esp_adc_cal_characterize( unit, atten, ADC_WIDTH_BIT_12, DEFAULT_VREF, adc_characs); // show ADC characterization base if (val_type == ESP_ADC_CAL_VAL_EFUSE_TP) { ESP_LOGI(TAG, "ADC characterization based on Two Point values stored in eFuse"); } else if (val_type == ESP_ADC_CAL_VAL_EFUSE_VREF) { ESP_LOGI(TAG, "ADC characterization based on reference voltage stored in eFuse"); } else { ESP_LOGI(TAG, "ADC characterization based on default reference voltage"); } #endif } uint8_t getBattLevel() { /* return values: MCMD_DEVS_EXT_POWER = 0x00, // external power supply MCMD_DEVS_BATT_MIN = 0x01, // min battery value MCMD_DEVS_BATT_MAX = 0xFE, // max battery value MCMD_DEVS_BATT_NOINFO = 0xFF, // unknown battery level */ #if (defined HAS_PMU || defined BAT_MEASURE_ADC) uint16_t voltage = read_voltage(); switch (voltage) { case 0: return MCMD_DEVS_BATT_NOINFO; case 0xffff: return MCMD_DEVS_EXT_POWER; default: return (voltage > OTA_MIN_BATT ? MCMD_DEVS_BATT_MAX : MCMD_DEVS_BATT_MIN); } #else // we don't have any info on battery level return MCMD_DEVS_BATT_NOINFO; #endif } // getBattLevel() // u1_t os_getBattLevel(void) { return getBattLevel(); }; uint16_t read_voltage() { uint16_t voltage = 0; #ifdef HAS_PMU voltage = axp.isVBUSPlug() ? 0xffff : axp.getBattVoltage(); #else #ifdef BAT_MEASURE_ADC // multisample ADC uint32_t adc_reading = 0; for (int i = 0; i < NO_OF_SAMPLES; i++) { adc_reading += adc1_get_raw(adc_channel); } adc_reading /= NO_OF_SAMPLES; // Convert ADC reading to voltage in mV voltage = esp_adc_cal_raw_to_voltage(adc_reading, adc_characs); #endif #ifdef BAT_VOLTAGE_DIVIDER voltage *= BAT_VOLTAGE_DIVIDER; #endif #endif // HAS_PMU return voltage; }