/* // Emulate a DCF77 radio receiver to control an external clock // // a nice & free logic test program for DCF77 can be found here: https://www-user.tu-chemnitz.de/~heha/viewzip.cgi/hs/Funkuhr.zip/ // */ #ifdef HAS_DCF77 #include "dcf77.h" // Local logging tag static const char TAG[] = "main"; // array of dcf pulses for one minute uint8_t DCFpulse[DCF77_FRAME_SIZE + 1]; // triggered by 1 second timepulse to ticker out DCF signal void DCF_Pulse(time_t t) { uint8_t sec = second(t); TickType_t startTime = xTaskGetTickCount(); ESP_LOGD(TAG, "DCF77 sec %d", sec); // induce 10 pulses for (uint8_t pulse = 0; pulse <= 9; pulse++) { switch (pulse) { case 0: // start of second -> start of timeframe for logic signal if (DCFpulse[sec] != dcf_off) set_DCF77_pin(dcf_low); else // 59th second reached, nothing more to do return; break; case 1: // 100ms after start of second -> end of timeframe for logic 0 if (DCFpulse[sec] == dcf_zero) set_DCF77_pin(dcf_high); break; case 2: // 200ms after start of second -> end of timeframe for logic 1 set_DCF77_pin(dcf_high); break; case 9: // 900ms after start -> last pulse return; } // switch vTaskDelayUntil(&startTime, pdMS_TO_TICKS(DCF77_PULSE_LENGTH)); } // for } // DCF_Pulse() void IRAM_ATTR DCF77_Frame(time_t tt) { uint8_t Parity; time_t t = myTZ.toLocal(tt); // convert to local time ESP_LOGD(TAG, "DCF77 minute %d", minute(t)); // ENCODE HEAD // secs 0..19 initialized with zeros for (int n = 0; n <= 19; n++) DCFpulse[n] = dcf_zero; // secs 17..18: adjust for DayLightSaving DCFpulse[18 - (myTZ.locIsDST(t) ? 1 : 0)] = dcf_one; // sec 20: must be 1 to indicate time active DCFpulse[20] = dcf_one; // ENCODE MINUTE (secs 21..28) Parity = dec2bcd(minute(t), 21, 27, DCFpulse); DCFpulse[28] = (Parity & 1) ? dcf_one : dcf_zero; // ENCODE HOUR (secs 29..35) Parity = dec2bcd(hour(t), 29, 34, DCFpulse); DCFpulse[35] = (Parity & 1) ? dcf_one : dcf_zero; // ENCODE DATE (secs 36..58) Parity = dec2bcd(day(t), 36, 41, DCFpulse); Parity += dec2bcd((weekday(t) - 1) ? (weekday(t) - 1) : 7, 42, 44, DCFpulse); Parity += dec2bcd(month(t), 45, 49, DCFpulse); Parity += dec2bcd(year(t) - 2000, 50, 57, DCFpulse); // yes, we have a millenium 3000 bug here ;-) DCFpulse[58] = (Parity & 1) ? dcf_one : dcf_zero; // ENCODE TAIL (sec 59) DCFpulse[59] = dcf_off; // !! missing code here for leap second !! // timestamp the frame with minute pointer DCFpulse[60] = minute(t); /* // for debug: print the DCF77 frame buffer char out[DCF77_FRAME_SIZE + 1]; uint8_t i; for (i = 0; i < DCF77_FRAME_SIZE; i++) { out[i] = DCFpulse[i] + '0'; // convert int digit to printable ascii } out[DCF77_FRAME_SIZE] = '\0'; // string termination char ESP_LOGD(TAG, "DCF minute %d = %s", DCFpulse[DCF77_FRAME_SIZE], out); */ } // helper function to convert decimal to bcd digit uint8_t IRAM_ATTR dec2bcd(uint8_t dec, uint8_t startpos, uint8_t endpos, uint8_t pArray[]) { uint8_t data = (dec < 10) ? dec : ((dec / 10) << 4) + (dec % 10); uint8_t parity = 0; for (uint8_t n = startpos; n <= endpos; n++) { pArray[n] = (data & 1) ? dcf_one : dcf_zero; parity += (data & 1); data >>= 1; } return parity; } // helper function to switch GPIO line with DCF77 signal void set_DCF77_pin(dcf_pinstate state) { switch (state) { case dcf_low: #ifdef DCF77_ACTIVE_LOW digitalWrite(HAS_DCF77, HIGH); #else digitalWrite(HAS_DCF77, LOW); #endif break; case dcf_high: #ifdef DCF77_ACTIVE_LOW digitalWrite(HAS_DCF77, LOW); #else digitalWrite(HAS_DCF77, HIGH); #endif break; } // switch } // DCF77_pulse #endif // HAS_DCF77