#if (HAS_GPS) #include "globals.h" #include "gpsread.h" // Local logging tag static const char TAG[] = __FILE__; TinyGPSPlus gps; TaskHandle_t GpsTask; HardwareSerial GPS_Serial(1); // use UART #1 // Ublox UBX packet data // UBX CFG-PRT packet byte CFG_PRT[] = { 0xB5, // sync char 1 0x62, // sync char 2 0x06, // class 0x00, // id 0x14, // length 0x00, // . 0x01, // portID (UART 1) 0x00, // reserved 0x00, // txReady 0x00, // . 0b11010000, // UART mode: 8N1 0b00001000, // . 0x00, // . 0x00, // . (byte)GPS_BAUDRATE, // baudrate (byte)(GPS_BAUDRATE >> 8), // . (byte)(GPS_BAUDRATE >> 16), // . (byte)(GPS_BAUDRATE >> 24), // . 0b00000011, // input protocols: NMEA + UBX 0b00000000, // . 0b00000010, // output protocols: NMEA 0x00000000, // . 0x00, // reserved 0x00, // . 0x00, // . 0x00 // . }; // Array of two bytes for CFG-MSG packets payload. byte CFG_MSG_CID[][2] = {{0xF0, 0x01}, {0xF0, 0x02}, {0xF0, 0x03}, {0xF0, 0x05}, {0xF0, 0x06}, {0xF0, 0x07}, {0xF0, 0x08}, {0xF0, 0x09}, {0xF0, 0x0A}, {0xF0, 0x0E}, {0xF1, 0x00}, {0xF1, 0x03}, {0xF1, 0x04}, {0xF1, 0x05}, {0xF1, 0x06}}; // UBX CFG-MSG packet byte CFG_MSG[] = { 0xB5, // sync char 1 0x62, // sync char 2 0x06, // class 0x01, // id 0x03, // length 0x00, // . 0x00, // payload (first byte from messages array element) 0x00, // payload (second byte from messages array element) 0x00 // payload (zero to disable message) }; // UBX CFG-CFG packet byte CFG_CFG[] = { 0xB5, // sync char 1 0x62, // sync char 2 0x06, // class 0x09, // id 0x0D, // length 0x00, // . 0b00011111, // clearmask 0b00000110, // . 0x00, // . 0x00, // . 0x00, // savemask 0x00, // . 0x00, // . 0x00, // . 0b00011111, // loadmask 0b00000110, // . 0x00, // . 0x00, // . 0b00010001 // devicemask }; // helper functions to send UBX commands to ublox gps chip void sendPacket(byte *packet, byte len) { uint8_t CK_A = 0; uint8_t CK_B = 0; for (int i = 0; i < len; i++) GPS_Serial.write(packet[i]); // calculate and send Fletcher checksum for (int i = 2; i < len; i++) { CK_A += packet[i]; CK_B += CK_A; } GPS_Serial.write(CK_A); GPS_Serial.write(CK_B); } void restoreDefaults() { sendPacket(CFG_CFG, sizeof(CFG_CFG)); } void changeBaudrate() { sendPacket(CFG_PRT, sizeof(CFG_PRT)); } void disableNmea() { // tinygps++ processes only $GPGGA/$GNGGA and $GPRMC/$GNRMC // thus, we disable all other NMEA messages byte packetSize = sizeof(CFG_MSG); // Offset to the place where payload starts. byte payloadOffset = 6; // Iterate over the messages array. for (byte i = 0; i < sizeof(CFG_MSG_CID) / sizeof(*CFG_MSG_CID); i++) { // Copy two bytes of payload to the packet buffer. for (byte j = 0; j < sizeof(*CFG_MSG_CID); j++) { CFG_MSG[payloadOffset + j] = CFG_MSG_CID[i][j]; } sendPacket(CFG_MSG, packetSize); } } // initialize and configure GPS int gps_init(void) { ESP_LOGI(TAG, "Opening serial GPS"); GPS_Serial.begin(GPS_SERIAL); restoreDefaults(); delay(100); changeBaudrate(); delay(100); GPS_Serial.flush(); GPS_Serial.updateBaudRate(GPS_BAUDRATE); disableNmea(); return 1; } // gps_init() // store current GPS location data in struct void gps_storelocation(gpsStatus_t *gps_store) { if (gps.location.isUpdated() && gps.location.isValid() && (gps.location.age() < 1500)) { gps_store->latitude = (int32_t)(gps.location.lat() * 1e6); gps_store->longitude = (int32_t)(gps.location.lng() * 1e6); gps_store->satellites = (uint8_t)gps.satellites.value(); gps_store->hdop = (uint16_t)gps.hdop.value(); gps_store->altitude = (int16_t)gps.altitude.meters(); } } bool gps_hasfix() { // adapted from source: // https://github.com/hottimuc/Lora-TTNMapper-T-Beam/blob/master/fromV08/gps.cpp return (gps.location.isValid() && gps.location.age() < 4000 && gps.hdop.isValid() && gps.hdop.value() <= 600 && gps.hdop.age() < 4000 && gps.altitude.isValid() && gps.altitude.age() < 4000); } // function to poll UTC time from GPS NMEA data; note: this is costly time_t get_gpstime(uint16_t *msec = 0) { const uint16_t txDelay = 70U * 1000 / (GPS_BAUDRATE / 9); // serial tx of 70 NMEA chars // did we get a current date & time? if (gps.time.age() < 1000) { // convert tinygps time format to struct tm format struct tm gps_tm = {0}; gps_tm.tm_sec = gps.time.second(); gps_tm.tm_min = gps.time.minute(); gps_tm.tm_hour = gps.time.hour(); gps_tm.tm_mday = gps.date.day(); gps_tm.tm_mon = gps.date.month() - 1; // 1-12 -> 0-11 gps_tm.tm_year = gps.date.year() - 1900; // 2000+ -> years since 1900 // convert UTC tm to time_t epoch gps_tm.tm_isdst = 0; // UTC has no DST time_t t = mkgmtime(&gps_tm); #ifdef GPS_INT // if we have a recent GPS PPS pulse, sync on top of next second uint16_t ppsDiff = millis() - lastPPS; if (ppsDiff < 1000) *msec = ppsDiff; else { ESP_LOGD(TAG, "no PPS from GPS"); return 0; } #else // best guess for sync on top of next second *msec = gps.time.centisecond() * 10U + txDelay; #endif return t; } ESP_LOGD(TAG, "no valid GPS time"); return 0; } // get_gpstime() // GPS serial feed FreeRTos Task void gps_loop(void *pvParameters) { _ASSERT((uint32_t)pvParameters == 1); // FreeRTOS check // feed GPS decoder with serial NMEA data from GPS device while (1) { while (cfg.payloadmask & GPS_DATA) { while (GPS_Serial.available()) gps.encode(GPS_Serial.read()); delay(5); } delay(1000); } // infinite while loop } // gps_loop() #endif // HAS_GPS