// Basic Config #include "globals.h" // LMIC-Arduino LoRaWAN Stack #include "loraconf.h" #include #include #ifdef MCP_24AA02E64_I2C_ADDRESS #include // Needed for 24AA02E64, does not hurt anything if included and not used #endif // Local logging Tag static const char TAG[] = "lora"; // functions defined in rcommand.cpp void rcommand(uint8_t cmd, uint8_t arg); void switch_lora(uint8_t sf, uint8_t tx); // DevEUI generator using devices's MAC address void gen_lora_deveui(uint8_t *pdeveui) { uint8_t *p = pdeveui, dmac[6]; int i = 0; esp_efuse_mac_get_default(dmac); // deveui is LSB, we reverse it so TTN DEVEUI display // will remain the same as MAC address // MAC is 6 bytes, devEUI 8, set first 2 ones // with an arbitrary value *p++ = 0xFF; *p++ = 0xFE; // Then next 6 bytes are mac address reversed for ( i=0; i<6 ; i++) { *p++ = dmac[5-i]; } } // Function to do a byte swap in a byte array void RevBytes(unsigned char* b, size_t c) { u1_t i; for (i = 0; i < c / 2; i++) { unsigned char t = b[i]; b[i] = b[c - 1 - i]; b[c - 1 - i] = t; } } void get_hard_deveui(uint8_t *pdeveui) { // read DEVEUI from Microchip 24AA02E64 2Kb serial eeprom if present #ifdef MCP_24AA02E64_I2C_ADDRESS uint8_t i2c_ret; // Init this just in case, no more to 100KHz Wire.begin(OLED_SDA, OLED_SCL, 100000); Wire.beginTransmission(MCP_24AA02E64_I2C_ADDRESS); Wire.write(MCP_24AA02E64_MAC_ADDRESS); i2c_ret = Wire.endTransmission(); // check if device seen on i2c bus if (i2c_ret == 0) { char deveui[32]=""; uint8_t data; Wire.beginTransmission(MCP_24AA02E64_I2C_ADDRESS); Wire.write(MCP_24AA02E64_MAC_ADDRESS); Wire.requestFrom(MCP_24AA02E64_I2C_ADDRESS, 8); while (Wire.available()) { data = Wire.read(); sprintf(deveui+strlen(deveui), "%02X ", data); *pdeveui++ = data; } i2c_ret = Wire.endTransmission(); ESP_LOGI(TAG, "Serial EEPROM 24AA02E64 found, read DEVEUI %s", deveui); } else { ESP_LOGI(TAG, "Serial EEPROM 24AA02E64 not found ret=%d", i2c_ret); } // Set back to 400KHz to speed up OLED Wire.setClock(400000); #endif // MCP 24AA02E64 } #ifdef VERBOSE // Display a key void printKey(const char * name, const uint8_t * key, uint8_t len, bool lsb) { const uint8_t * p ; char keystring[len+1] = "", keybyte[3]; for (uint8_t i=0; i> 8; mydata[1] = macs_wifi & 0xff; if (cfg.blescan) { // append sum of unique BLE MACs seen to payload mydata[2] = (macs_ble & 0xff00) >> 8; mydata[3] = macs_ble & 0xff; } else { mydata[2] = 0; mydata[3] = 0; } #ifdef HAS_GPS static uint8_t gpsdata[18]; if (cfg.gpsmode && gps.location.isValid()) { gps_read(); memcpy (gpsdata+4, &gps_status, sizeof(gps_status)); memcpy (gpsdata, mydata, 4); ESP_LOGI(TAG, "lat=%f / lon=%f | Sats=%u | HDOP=%u | Alti=%u", gps_status.latitude / 1000000, gps_status.longitude / 1000000, gps_status.satellites, gps_status.hdop, gps_status.altitude); LMIC_setTxData2(COUNTERPORT, gpsdata, sizeof(gpsdata), (cfg.countermode & 0x02)); ESP_LOGI(TAG, "%d bytes queued to send", sizeof(gpsdata)); } else { #endif LMIC_setTxData2(COUNTERPORT, mydata, sizeof(mydata), (cfg.countermode & 0x02)); ESP_LOGI(TAG, "%d bytes queued to send", sizeof(mydata)); sprintf(display_lmic, "PACKET QUEUED"); #ifdef HAS_GPS } #endif // clear counter if not in cumulative counter mode if (cfg.countermode != 1) { reset_counters(); // clear macs container and reset all counters reset_salt(); // get new salt for salting hashes ESP_LOGI(TAG, "Counter cleared (countermode = %d)", cfg.countermode); } // Schedule next transmission end: os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(cfg.sendcycle * 2), do_send); } // do_send() void onEvent (ev_t ev) { char buff[24]=""; switch(ev) { case EV_SCAN_TIMEOUT: strcpy_P(buff, PSTR("SCAN TIMEOUT")); break; case EV_BEACON_FOUND: strcpy_P(buff, PSTR("BEACON FOUND")); break; case EV_BEACON_MISSED: strcpy_P(buff, PSTR("BEACON MISSED")); break; case EV_BEACON_TRACKED: strcpy_P(buff, PSTR("BEACON TRACKED")); break; case EV_JOINING: strcpy_P(buff, PSTR("JOINING")); break; case EV_LOST_TSYNC: strcpy_P(buff, PSTR("LOST TSYNC")); break; case EV_RESET: strcpy_P(buff, PSTR("RESET")); break; case EV_RXCOMPLETE: strcpy_P(buff, PSTR("RX COMPLETE")); break; case EV_LINK_DEAD: strcpy_P(buff, PSTR("LINK DEAD")); break; case EV_LINK_ALIVE: strcpy_P(buff, PSTR("LINK ALIVE")); break; case EV_RFU1: strcpy_P(buff, PSTR("RFUI")); break; case EV_JOIN_FAILED: strcpy_P(buff, PSTR("JOIN FAILED")); break; case EV_REJOIN_FAILED: strcpy_P(buff, PSTR("REJOIN FAILED")); break; case EV_JOINED: strcpy_P(buff, PSTR("JOINED")); sprintf(display_lora, " "); // clear previous lmic status message from display // set data rate adaptation LMIC_setAdrMode(cfg.adrmode); // Set data rate and transmit power (note: txpower seems to be ignored by the library) switch_lora(cfg.lorasf,cfg.txpower); // show effective LoRa parameters after join ESP_LOGI(TAG, "ADR=%d, SF=%d, TXPOWER=%d", cfg.adrmode, cfg.lorasf, cfg.txpower); break; case EV_TXCOMPLETE: strcpy_P(buff, (LMIC.txrxFlags & TXRX_ACK) ? PSTR("RECEIVED ACK") : PSTR("TX COMPLETE")); sprintf(display_lora, " "); // clear previous lmic status message from display if (LMIC.dataLen) { ESP_LOGI(TAG, "Received %d bytes of payload, RSSI %d SNR %d", LMIC.dataLen, LMIC.rssi, (signed char)LMIC.snr / 4); // LMIC.snr = SNR twos compliment [dB] * 4 // LMIC.rssi = RSSI [dBm] (-196...+63) sprintf(display_lora, "RSSI %d SNR %d", LMIC.rssi, (signed char)LMIC.snr / 4 ); // check if payload received on command port, then call remote command interpreter if ( (LMIC.txrxFlags & TXRX_PORT) && (LMIC.frame[LMIC.dataBeg-1] == RCMDPORT ) ) { // caution: buffering LMIC values here because rcommand() can modify LMIC.frame unsigned char* buffer = new unsigned char[MAX_LEN_FRAME]; memcpy(buffer, LMIC.frame, MAX_LEN_FRAME); //Copy data from cfg to char* int i, k = LMIC.dataBeg, l = LMIC.dataBeg+LMIC.dataLen-2; for (i=k; i<=l; i+=2) { rcommand(buffer[i], buffer[i+1]); } delete[] buffer; //free memory } } break; default: sprintf_P(buff, PSTR("UNKNOWN EVENT %d"), ev); break; } // Log & Display if asked if (*buff) { ESP_LOGI(TAG, "EV_%s", buff); sprintf(display_lmic, buff); } } // onEvent()