/* // Emulate a DCF77 radio receiver to control an external clock // // a nice & free logic test program for DCF77 can be found here: https://www-user.tu-chemnitz.de/~heha/viewzip.cgi/hs/Funkuhr.zip/ // // a DCF77 digital scope for Arduino boards can be found here: https://github.com/udoklein/dcf77 // */ #ifdef HAS_DCF77 #include "dcf77.h" // Local logging tag static const char TAG[] = __FILE__; // triggered by second timepulse to ticker out DCF signal void DCF77_Pulse(uint8_t const bit) { TickType_t startTime = xTaskGetTickCount(); // induce a DCF Pulse for (uint8_t pulse = 0; pulse <= 2; pulse++) { switch (pulse) { case 0: // start of second -> start of timeframe for logic signal if (bit != dcf_Z) digitalWrite(HAS_DCF77, dcf_low); break; case 1: // 100ms after start of second -> end of timeframe for logic 0 if (bit == dcf_0) digitalWrite(HAS_DCF77, dcf_high); break; case 2: // 200ms after start of second -> end of timeframe for logic 1 digitalWrite(HAS_DCF77, dcf_high); break; } // switch // pulse pause vTaskDelayUntil(&startTime, pdMS_TO_TICKS(100)); } // for } // DCF77_Pulse() void DCF77_Frame(const struct tm t, uint8_t *frame) { // writes a 1 minute dcf pulse scheme for calendar time t to frame uint8_t Parity; // START OF NEW MINUTE frame[0] = dcf_0; // PAYLOAD -> not used here frame[1] = dcf_0; frame[2] = dcf_0; frame[3] = dcf_0; frame[4] = dcf_0; frame[5] = dcf_0; frame[6] = dcf_0; frame[7] = dcf_0; frame[8] = dcf_0; frame[9] = dcf_0; frame[10] = dcf_0; frame[11] = dcf_0; frame[12] = dcf_0; frame[13] = dcf_0; frame[14] = dcf_0; frame[15] = dcf_0; // DST CHANGE ANNOUNCEMENT frame[16] = dcf_0; // not yet implemented // DAYLIGHTSAVING // "01" = MEZ / "10" = MESZ frame[17] = (t.tm_isdst > 0) ? dcf_1 : dcf_0; frame[18] = (t.tm_isdst > 0) ? dcf_0 : dcf_1; // LEAP SECOND frame[19] = dcf_0; // not implemented // BEGIN OF TIME INFORMATION frame[20] = dcf_1; // MINUTE (bits 21..28) Parity = dec2bcd(t.tm_min, 21, 27, frame); frame[28] = setParityBit(Parity); // HOUR (bits 29..35) Parity = dec2bcd(t.tm_hour, 29, 34, frame); frame[35] = setParityBit(Parity); // DATE (bits 36..58) Parity = dec2bcd(t.tm_mday, 36, 41, frame); Parity += dec2bcd((t.tm_wday == 0) ? 7 : t.tm_wday, 42, 44, frame); Parity += dec2bcd(t.tm_mon + 1, 45, 49, frame); Parity += dec2bcd(t.tm_year + 1900 - 2000, 50, 57, frame); frame[58] = setParityBit(Parity); // MARK (bit 59) frame[59] = dcf_Z; // !! missing code here for leap second !! // internal timestamp for the frame frame[60] = t.tm_min; } // DCF77_Frame() // helper function to convert decimal to bcd digit uint8_t dec2bcd(uint8_t const dec, uint8_t const startpos, uint8_t const endpos, uint8_t *array) { uint8_t data = (dec < 10) ? dec : ((dec / 10) << 4) + (dec % 10); uint8_t parity = 0; for (uint8_t i = startpos; i <= endpos; i++) { array[i] = (data & 1) ? dcf_1 : dcf_0; parity += (data & 1); data >>= 1; } return parity; } // helper function to encode parity uint8_t setParityBit(uint8_t const p) { return ((p & 1) ? dcf_1 : dcf_0); } #endif // HAS_DCF77