// Basic config #include "globals.h" #include "power.h" // Local logging tag static const char TAG[] = __FILE__; #ifdef BAT_MEASURE_ADC esp_adc_cal_characteristics_t *adc_characs = (esp_adc_cal_characteristics_t *)calloc( 1, sizeof(esp_adc_cal_characteristics_t)); #ifndef BAT_MEASURE_ADC_UNIT // ADC1 static const adc1_channel_t adc_channel = BAT_MEASURE_ADC; #else // ADC2 static const adc2_channel_t adc_channel = BAT_MEASURE_ADC; #endif static const adc_atten_t atten = ADC_ATTEN_DB_11; static const adc_unit_t unit = ADC_UNIT_1; #endif // BAT_MEASURE_ADC #ifdef HAS_PMU AXP20X_Class pmu; void AXP192_powerevent_IRQ(void) { pmu.readIRQ(); if (pmu.isVbusOverVoltageIRQ()) ESP_LOGI(TAG, "USB voltage %.2fV too high.", pmu.getVbusVoltage() / 1000); if (pmu.isVbusPlugInIRQ()) ESP_LOGI(TAG, "USB plugged, %.2fV @ %.0mA", pmu.getVbusVoltage() / 1000, pmu.getVbusCurrent()); if (pmu.isVbusRemoveIRQ()) ESP_LOGI(TAG, "USB unplugged."); if (pmu.isBattPlugInIRQ()) ESP_LOGI(TAG, "Battery is connected."); if (pmu.isBattRemoveIRQ()) ESP_LOGI(TAG, "Battery was removed."); if (pmu.isChargingIRQ()) ESP_LOGI(TAG, "Battery charging."); if (pmu.isChargingDoneIRQ()) ESP_LOGI(TAG, "Battery charging done."); if (pmu.isBattTempLowIRQ()) ESP_LOGI(TAG, "Battery high temperature."); if (pmu.isBattTempHighIRQ()) ESP_LOGI(TAG, "Battery low temperature."); // short press -> esp32 deep sleep mode, can be exited by pressing user button #ifdef HAS_BUTTON if (pmu.isPEKShortPressIRQ() && (RTC_runmode == RUNMODE_NORMAL)) { enter_deepsleep(0, HAS_BUTTON); } #endif // long press -> shutdown power, can be exited by another longpress if (pmu.isPEKLongtPressIRQ()) { AXP192_power(pmu_power_off); // switch off Lora, GPS, display pmu.shutdown(); // switch off device } pmu.clearIRQ(); // refresh stored voltage value read_voltage(); } void AXP192_power(pmu_power_t powerlevel) { switch (powerlevel) { case pmu_power_off: pmu.setChgLEDMode(AXP20X_LED_OFF); pmu.setPowerOutPut(AXP192_DCDC1, AXP202_OFF); pmu.setPowerOutPut(AXP192_LDO3, AXP202_OFF); pmu.setPowerOutPut(AXP192_LDO2, AXP202_OFF); // pmu.setPowerOutPut(AXP192_DCDC3, AXP202_OFF); break; case pmu_power_sleep: pmu.setChgLEDMode(AXP20X_LED_BLINK_1HZ); // we don't cut off DCDC1, because then display blocks i2c bus pmu.setPowerOutPut(AXP192_LDO3, AXP202_OFF); // gps off pmu.setPowerOutPut(AXP192_LDO2, AXP202_OFF); // lora off break; default: // all rails power on pmu.setPowerOutPut(AXP192_LDO2, AXP202_ON); // Lora on T-Beam V1.0 pmu.setPowerOutPut(AXP192_LDO3, AXP202_ON); // Gps on T-Beam V1.0 pmu.setPowerOutPut(AXP192_DCDC1, AXP202_ON); // OLED on T-Beam v1.0 pmu.setChgLEDMode(AXP20X_LED_LOW_LEVEL); break; } } void AXP192_showstatus(void) { if (pmu.isBatteryConnect()) if (pmu.isChargeing()) ESP_LOGI(TAG, "Battery charging, %.2fV @ %.0fmAh", pmu.getBattVoltage() / 1000, pmu.getBattChargeCurrent()); else ESP_LOGI(TAG, "Battery not charging"); else ESP_LOGI(TAG, "No Battery"); if (pmu.isVBUSPlug()) ESP_LOGI(TAG, "USB powered, %.0fmW", pmu.getVbusVoltage() / 1000 * pmu.getVbusCurrent()); else ESP_LOGI(TAG, "USB not present"); } void AXP192_init(void) { if (pmu.begin(i2c_readBytes, i2c_writeBytes, AXP192_PRIMARY_ADDRESS) == AXP_FAIL) ESP_LOGI(TAG, "AXP192 PMU initialization failed"); else { // configure AXP192 pmu.setDCDC1Voltage(3300); // for external OLED display pmu.setTimeOutShutdown(false); // no automatic shutdown pmu.setTSmode(AXP_TS_PIN_MODE_DISABLE); // TS pin mode off to save power // switch ADCs on pmu.adc1Enable(AXP202_BATT_VOL_ADC1, true); pmu.adc1Enable(AXP202_BATT_CUR_ADC1, true); pmu.adc1Enable(AXP202_VBUS_VOL_ADC1, true); pmu.adc1Enable(AXP202_VBUS_CUR_ADC1, true); // switch power rails on AXP192_power(pmu_power_on); #ifdef PMU_INT pinMode(PMU_INT, INPUT_PULLUP); attachInterrupt(digitalPinToInterrupt(PMU_INT), PMUIRQ, FALLING); pmu.enableIRQ(AXP202_VBUS_REMOVED_IRQ | AXP202_VBUS_CONNECT_IRQ | AXP202_BATT_REMOVED_IRQ | AXP202_BATT_CONNECT_IRQ | AXP202_CHARGING_FINISHED_IRQ, 1); pmu.clearIRQ(); #endif // PMU_INT ESP_LOGI(TAG, "AXP192 PMU initialized"); } } #endif // HAS_PMU void calibrate_voltage(void) { #ifdef BAT_MEASURE_ADC // configure ADC #ifndef BAT_MEASURE_ADC_UNIT // ADC1 ESP_ERROR_CHECK(adc1_config_width(ADC_WIDTH_BIT_12)); ESP_ERROR_CHECK(adc1_config_channel_atten(adc_channel, atten)); #else // ADC2 // ESP_ERROR_CHECK(adc2_config_width(ADC_WIDTH_BIT_12)); ESP_ERROR_CHECK(adc2_config_channel_atten(adc_channel, atten)); #endif // calibrate ADC esp_adc_cal_value_t val_type = esp_adc_cal_characterize( unit, atten, ADC_WIDTH_BIT_12, DEFAULT_VREF, adc_characs); // show ADC characterization base if (val_type == ESP_ADC_CAL_VAL_EFUSE_TP) { ESP_LOGI(TAG, "ADC characterization based on Two Point values stored in eFuse"); } else if (val_type == ESP_ADC_CAL_VAL_EFUSE_VREF) { ESP_LOGI(TAG, "ADC characterization based on reference voltage stored in eFuse"); } else { ESP_LOGI(TAG, "ADC characterization based on default reference voltage"); } #endif } bool batt_sufficient() { #if (defined HAS_PMU || defined BAT_MEASURE_ADC) uint16_t volts = read_voltage(); return ((volts < 1000) || (volts > OTA_MIN_BATT)); // no battery or battery sufficient #else return true; #endif } uint16_t read_voltage() { uint16_t voltage = 0; #ifdef HAS_PMU voltage = pmu.isVBUSPlug() ? 0xffff : pmu.getBattVoltage(); #else #ifdef BAT_MEASURE_ADC // multisample ADC uint32_t adc_reading = 0; #ifndef BAT_MEASURE_ADC_UNIT // ADC1 for (int i = 0; i < NO_OF_SAMPLES; i++) { adc_reading += adc1_get_raw(adc_channel); } #else // ADC2 int adc_buf = 0; for (int i = 0; i < NO_OF_SAMPLES; i++) { ESP_ERROR_CHECK(adc2_get_raw(adc_channel, ADC_WIDTH_BIT_12, &adc_buf)); adc_reading += adc_buf; } #endif // BAT_MEASURE_ADC_UNIT adc_reading /= NO_OF_SAMPLES; // Convert ADC reading to voltage in mV voltage = esp_adc_cal_raw_to_voltage(adc_reading, adc_characs); #endif // BAT_MEASURE_ADC #ifdef BAT_VOLTAGE_DIVIDER voltage *= BAT_VOLTAGE_DIVIDER; #endif // BAT_VOLTAGE_DIVIDER #endif // HAS_PMU return voltage; }