/* // Emulate a DCF77 radio receiver // // a nice & free logic test program for DCF77 can be found here: https://www-user.tu-chemnitz.de/~heha/viewzip.cgi/hs/Funkuhr.zip/ // */ #ifdef HAS_DCF77 #ifdef IF_482 #error "You must define at most one of IF482 or DCF77" #endif #include "dcf77.h" // Local logging tag static const char TAG[] = "main"; #define DCF77_FRAME_SIZE (60) #define DCF77_PULSE_DURATION (100) // select internal / external clock #if defined RTC_INT && defined RTC_CLK #define PPS RTC_CLK #elif defined GPS_INT && defined GPS_CLK #define PPS GPS_CLK #else #define PPS DCF77_PULSE_DURATION #endif // array of dcf pulses for three minutes uint8_t DCFtimeframe[DCF77_FRAME_SIZE]; // initialize and configure DCF77 output int dcf77_init(void) { BitsPending = false; pinMode(HAS_DCF77, OUTPUT); set_DCF77_pin(dcf_low); xTaskCreatePinnedToCore(dcf77_loop, // task function "dcf77loop", // name of task 2048, // stack size of task (void *)1, // parameter of the task 3, // priority of the task &ClockTask, // task handle 0); // CPU core assert(ClockTask); // has clock task started? pps_init(PPS); // setup pulse DCF_Out(sync_clock(now())); // sync DCF time on next second pps_start(); // start pulse return 1; // success } // ifdcf77_init // called every 100msec by hardware timer to pulse out DCF signal void DCF_Out(uint8_t startOffset) { static uint8_t bit = startOffset; static uint8_t pulse = 0; #ifdef TIME_SYNC_INTERVAL_DCF static uint32_t nextDCFsync = millis() + TIME_SYNC_INTERVAL_DCF * 60000; #endif if (!BitsPending) { // do we have confident time/date? if ((timeStatus() == timeSet) || (timeStatus() == timeNeedsSync)) { // prepare frame to send for next minute generateTimeframe(now() + DCF77_FRAME_SIZE + 1); // start blinking symbol on display and kick off timer BitsPending = true; } else return; } // ticker out current DCF frame if (BitsPending) { switch (pulse++) { case 0: // start of second -> start of timeframe for logic signal if (DCFtimeframe[bit] != dcf_off) set_DCF77_pin(dcf_low); break; case 1: // 100ms after start of second -> end of timeframe for logic 0 if (DCFtimeframe[bit] == dcf_zero) set_DCF77_pin(dcf_high); break; case 2: // 200ms after start of second -> end of timeframe for logic 1 set_DCF77_pin(dcf_high); break; case 9: // 900ms after start -> last pulse before next second starts pulse = 0; if (bit++ == (DCF77_FRAME_SIZE - 1)) // end of DCF77 frame (59th second) { bit = 0; BitsPending = false; // recalibrate clock after a fixed timespan, do this in 59th second #ifdef TIME_SYNC_INTERVAL_DCF if ((millis() >= nextDCFsync)) { sync_clock(now()); // in second 58,90x -> waiting for second 59 nextDCFsync = millis() + TIME_SYNC_INTERVAL_DCF * 60000; // set up next time sync period } #endif }; break; }; // switch }; // if } // DCF_Out() void dcf77_loop(void *pvParameters) { configASSERT(((uint32_t)pvParameters) == 1); // FreeRTOS check TickType_t wakeTime; // task remains in blocked state until it is notified by isr for (;;) { xTaskNotifyWait( 0x00, // don't clear any bits on entry ULONG_MAX, // clear all bits on exit &wakeTime, // receives moment of call from isr portMAX_DELAY); // wait forever (missing error handling here...) // select clock scale #if (PPS == DCF77_PULSE_DURATION) // we don't need clock rescaling DCF_Out(0); #elif (PPS > DCF77_PULSE_DURATION) // we need upclocking for (uint8_t i = 1; i <= PPS / DCF77_PULSE_DURATION; i++) { DCF_Out(0); vTaskDelayUntil(&wakeTime, pdMS_TO_TICKS(DCF77_PULSE_DURATION)); } #elif (PPS < DCF77_PULSE_DURATION) // we need downclocking vTaskDelayUntil(&wakeTime, pdMS_TO_TICKS(DCF77_PULSE_DURATION - PPS)); DCF_Out(0); #endif } // for } // dcf77_loop() // helper function to convert decimal to bcd digit uint8_t dec2bcd(uint8_t dec, uint8_t startpos, uint8_t endpos, uint8_t pArray[]) { uint8_t data = (dec < 10) ? dec : ((dec / 10) << 4) + (dec % 10); uint8_t parity = 0; for (uint8_t n = startpos; n <= endpos; n++) { pArray[n] = (data & 1) ? dcf_one : dcf_zero; parity += (data & 1); data >>= 1; } return parity; } void generateTimeframe(time_t tt) { uint8_t ParityCount; time_t t = myTZ.toLocal(tt); // convert to local time // ENCODE HEAD // bits 0..19 initialized with zeros for (int n = 0; n <= 19; n++) DCFtimeframe[n] = dcf_zero; // bits 17..18: adjust for DayLightSaving DCFtimeframe[18 - (myTZ.locIsDST(t) ? 1 : 0)] = dcf_one; // bit 20: must be 1 to indicate time active DCFtimeframe[20] = dcf_one; // ENCODE MINUTE (bits 21..28) ParityCount = dec2bcd(minute(t), 21, 27, DCFtimeframe); DCFtimeframe[28] = (ParityCount & 1) ? dcf_one : dcf_zero; // ENCODE HOUR (bits 29..35) ParityCount = dec2bcd(hour(t), 29, 34, DCFtimeframe); DCFtimeframe[35] = (ParityCount & 1) ? dcf_one : dcf_zero; // ENCODE DATE (bits 36..58) ParityCount = dec2bcd(day(t), 36, 41, DCFtimeframe); ParityCount += dec2bcd((weekday(t) - 1) ? (weekday(t) - 1) : 7, 42, 44, DCFtimeframe); ParityCount += dec2bcd(month(t), 45, 49, DCFtimeframe); ParityCount += dec2bcd(year(t) - 2000, 50, 57, DCFtimeframe); // yes, we have a millenium 3000 bug here ;-) DCFtimeframe[58] = (ParityCount & 1) ? dcf_one : dcf_zero; // ENCODE TAIL (bit 59) DCFtimeframe[59] = dcf_off; // !! missing code here for leap second !! /* // for debug: print the DCF77 frame buffer char out[DCF77_FRAME_SIZE + 1]; uint8_t i; for (i = 0; i < DCF77_FRAME_SIZE; i++) { out[i] = DCFtimeframe[i] + '0'; // convert int digit to printable ascii } out[DCF77_FRAME_SIZE] = '\0'; // string termination char ESP_LOGD(TAG, "DCF Timeframe = %s", out); */ } // helper function to switch GPIO line with DCF77 signal void set_DCF77_pin(dcf_pinstate state) { switch (state) { case dcf_low: #ifdef DCF77_ACTIVE_LOW digitalWrite(HAS_DCF77, HIGH); #else digitalWrite(HAS_DCF77, LOW); #endif break; case dcf_high: #ifdef DCF77_ACTIVE_LOW digitalWrite(HAS_DCF77, LOW); #else digitalWrite(HAS_DCF77, HIGH); #endif break; } // switch } // DCF77_pulse #endif // HAS_DCF77