/* //////////////////////// ESP32-Paxcounter \\\\\\\\\\\\\\\\\\\\\\\\\\ Copyright 2018 Oliver Brandmueller Copyright 2018 Klaus Wilting Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. NOTICE: Parts of the source files in this repository are made available under different licenses. Refer to LICENSE.txt file in repository for more details. //////////////////////// ESP32-Paxcounter \\\\\\\\\\\\\\\\\\\\\\\\\\ // Tasks and timers: Task Core Prio Purpose ------------------------------------------------------------------------------- ledloop 0 3 blinks LEDs spiloop 0 2 reads/writes data on spi interface IDLE 0 0 ESP32 arduino scheduler -> runs wifi sniffer clockloop 1 4 generates realtime telegrams for external clock looptask 1 1 arduino core -> runs the LMIC LoRa stack irqhandler 1 1 executes tasks triggered by timer irq gpsloop 1 2 reads data from GPS via serial or i2c bmeloop 1 1 reads data from BME sensor via i2c timesync_ans 1 0 temporary task for receiving time sync requests timesync_req 1 0 temporary task for sending time sync requests IDLE 1 0 ESP32 arduino scheduler -> runs wifi channel rotator Low priority numbers denote low priority tasks. Tasks using i2c bus all must have same priority, because using mutex semaphore (irqhandler, bmeloop) // ESP32 hardware timers ------------------------------------------------------------------------------- 0 displayIRQ -> display refresh -> 40ms (DISPLAYREFRESH_MS in paxcounter.conf) 1 ppsIRQ -> pps clock irq -> 1sec 2 unused 3 unused // Interrupt routines ------------------------------------------------------------------------------- fired by hardware DisplayIRQ -> esp32 timer 0 -> irqhandler.cpp CLOCKIRQ -> esp32 timer 1 -> timekeeper.cpp ButtonIRQ -> external gpio -> irqhandler.cpp fired by software (Ticker.h) TIMESYNC_IRQ -> timeSync() -> timerkeeper.cpp CYLCIC_IRQ -> housekeeping() -> cyclic.cpp SENDCYCLE_IRQ -> sendcycle() -> senddata.cpp // External RTC timer (if present) ------------------------------------------------------------------------------- triggers pps 1 sec impulse */ // Basic Config #include "main.h" configData_t cfg; // struct holds current device configuration char display_line6[16], display_line7[16]; // display buffers uint8_t volatile channel = 0; // channel rotation counter uint16_t volatile macs_total = 0, macs_wifi = 0, macs_ble = 0, batt_voltage = 0; // globals for display hw_timer_t *ppsIRQ = NULL, *displayIRQ = NULL; TaskHandle_t irqHandlerTask, ClockTask; SemaphoreHandle_t I2Caccess, TimePulse; bool volatile TimePulseTick = false; time_t userUTCTime = 0; timesource_t timeSource = _unsynced; // container holding unique MAC address hashes with Memory Alloctor using PSRAM, // if present std::set, Mallocator> macs; // initialize payload encoder PayloadConvert payload(PAYLOAD_BUFFER_SIZE); // set Time Zone for user setting from paxcounter.conf TimeChangeRule myDST = DAYLIGHT_TIME; TimeChangeRule mySTD = STANDARD_TIME; Timezone myTZ(myDST, mySTD); // local Tag for logging static const char TAG[] = __FILE__; void setup() { char features[100] = ""; // create some semaphores for syncing / mutexing tasks I2Caccess = xSemaphoreCreateMutex(); // for access management of i2c bus if (I2Caccess) xSemaphoreGive(I2Caccess); // Flag the i2c bus available for use TimePulse = xSemaphoreCreateBinary(); // as signal that shows time pulse flip // disable brownout detection #ifdef DISABLE_BROWNOUT // register with brownout is at address DR_REG_RTCCNTL_BASE + 0xd4 (*((uint32_t volatile *)ETS_UNCACHED_ADDR((DR_REG_RTCCNTL_BASE + 0xd4)))) = 0; #endif // setup debug output or silence device #if (VERBOSE) Serial.begin(115200); esp_log_level_set("*", ESP_LOG_VERBOSE); #else // mute logs completely by redirecting them to silence function esp_log_level_set("*", ESP_LOG_NONE); #endif ESP_LOGI(TAG, "Starting %s v%s", PRODUCTNAME, PROGVERSION); // print chip information on startup if in verbose mode #if (VERBOSE) esp_chip_info_t chip_info; esp_chip_info(&chip_info); ESP_LOGI(TAG, "This is ESP32 chip with %d CPU cores, WiFi%s%s, silicon revision " "%d, %dMB %s Flash", chip_info.cores, (chip_info.features & CHIP_FEATURE_BT) ? "/BT" : "", (chip_info.features & CHIP_FEATURE_BLE) ? "/BLE" : "", chip_info.revision, spi_flash_get_chip_size() / (1024 * 1024), (chip_info.features & CHIP_FEATURE_EMB_FLASH) ? "embedded" : "external"); ESP_LOGI(TAG, "Internal Total heap %d, internal Free Heap %d", ESP.getHeapSize(), ESP.getFreeHeap()); #ifdef BOARD_HAS_PSRAM ESP_LOGI(TAG, "SPIRam Total heap %d, SPIRam Free Heap %d", ESP.getPsramSize(), ESP.getFreePsram()); #endif ESP_LOGI(TAG, "ChipRevision %d, Cpu Freq %d, SDK Version %s", ESP.getChipRevision(), ESP.getCpuFreqMHz(), ESP.getSdkVersion()); ESP_LOGI(TAG, "Flash Size %d, Flash Speed %d", ESP.getFlashChipSize(), ESP.getFlashChipSpeed()); ESP_LOGI(TAG, "Wifi/BT software coexist version %s", esp_coex_version_get()); #if(HAS_LORA) ESP_LOGI(TAG, "IBM LMIC version %d.%d.%d", LMIC_VERSION_MAJOR, LMIC_VERSION_MINOR, LMIC_VERSION_BUILD); ESP_LOGI(TAG, "Arduino LMIC version %d.%d.%d.%d", ARDUINO_LMIC_VERSION_GET_MAJOR(ARDUINO_LMIC_VERSION), ARDUINO_LMIC_VERSION_GET_MINOR(ARDUINO_LMIC_VERSION), ARDUINO_LMIC_VERSION_GET_PATCH(ARDUINO_LMIC_VERSION), ARDUINO_LMIC_VERSION_GET_LOCAL(ARDUINO_LMIC_VERSION)); ESP_LOGI(TAG, "DEVEUI: "); showLoraKeys(); #endif // HAS_LORA #if(HAS_GPS) ESP_LOGI(TAG, "TinyGPS+ version %s", TinyGPSPlus::libraryVersion()); #endif #endif // verbose // read (and initialize on first run) runtime settings from NVRAM loadConfig(); // includes initialize if necessary #ifdef BOARD_HAS_PSRAM assert(psramFound()); ESP_LOGI(TAG, "PSRAM found and initialized"); strcat_P(features, " PSRAM"); #endif // set low power mode to off #ifdef HAS_LOWPOWER_SWITCH pinMode(HAS_LOWPOWER_SWITCH, OUTPUT); digitalWrite(HAS_LOWPOWER_SWITCH, LOW); strcat_P(features, " LPWR"); #endif // initialize leds #if (HAS_LED != NOT_A_PIN) pinMode(HAS_LED, OUTPUT); strcat_P(features, " LED"); // switch on power LED if we have 2 LEDs, else use it for status #ifdef HAS_RGB_LED switch_LED(LED_ON); strcat_P(features, " RGB"); rgb_set_color(COLOR_PINK); #endif #endif #if (HAS_LED != NOT_A_PIN) || defined(HAS_RGB_LED) // start led loop ESP_LOGI(TAG, "Starting LED Controller..."); xTaskCreatePinnedToCore(ledLoop, // task function "ledloop", // name of task 1024, // stack size of task (void *)1, // parameter of the task 3, // priority of the task &ledLoopTask, // task handle 0); // CPU core #endif // initialize wifi antenna #ifdef HAS_ANTENNA_SWITCH strcat_P(features, " ANT"); antenna_init(); antenna_select(cfg.wifiant); #endif // initialize battery status #ifdef HAS_BATTERY_PROBE strcat_P(features, " BATT"); calibrate_voltage(); batt_voltage = read_voltage(); #endif #if (USE_OTA) strcat_P(features, " OTA"); // reboot to firmware update mode if ota trigger switch is set if (cfg.runmode == 1) { cfg.runmode = 0; saveConfig(); start_ota_update(); } #endif // start BLE scan callback if BLE function is enabled in NVRAM configuration // or switch off bluetooth, if not compiled #if (BLECOUNTER) strcat_P(features, " BLE"); if (cfg.blescan) { ESP_LOGI(TAG, "Starting Bluetooth..."); start_BLEscan(); } else btStop(); #else // remove bluetooth stack to gain more free memory btStop(); ESP_ERROR_CHECK(esp_bt_mem_release(ESP_BT_MODE_BTDM)); ESP_ERROR_CHECK(esp_coex_preference_set(( esp_coex_prefer_t)ESP_COEX_PREFER_WIFI)); // configure Wifi/BT coexist lib #endif // initialize button #ifdef HAS_BUTTON strcat_P(features, " BTN_"); #ifdef BUTTON_PULLUP strcat_P(features, "PU"); // install button interrupt (pullup mode) pinMode(HAS_BUTTON, INPUT_PULLUP); #else strcat_P(features, "PD"); // install button interrupt (pulldown mode) pinMode(HAS_BUTTON, INPUT_PULLDOWN); #endif // BUTTON_PULLUP #endif // HAS_BUTTON // initialize gps #if(HAS_GPS) strcat_P(features, " GPS"); if (gps_init()) { ESP_LOGI(TAG, "Starting GPS Feed..."); xTaskCreatePinnedToCore(gps_loop, // task function "gpsloop", // name of task 2048, // stack size of task (void *)1, // parameter of the task 2, // priority of the task &GpsTask, // task handle 1); // CPU core } #endif // initialize sensors #if(HAS_SENSORS) strcat_P(features, " SENS"); sensor_init(); #endif // initialize LoRa #if(HAS_LORA) strcat_P(features, " LORA"); assert(lora_stack_init() == ESP_OK); #endif // initialize SPI #ifdef HAS_SPI strcat_P(features, " SPI"); assert(spi_init() == ESP_OK); #endif #if (VENDORFILTER) strcat_P(features, " OUIFLT"); #endif // initialize display #ifdef HAS_DISPLAY strcat_P(features, " OLED"); DisplayState = cfg.screenon; init_display(PRODUCTNAME, PROGVERSION); // note: blocking call #endif // show payload encoder #if PAYLOAD_ENCODER == 1 strcat_P(features, " PLAIN"); #elif PAYLOAD_ENCODER == 2 strcat_P(features, " PACKED"); #elif PAYLOAD_ENCODER == 3 strcat_P(features, " LPPDYN"); #elif PAYLOAD_ENCODER == 4 strcat_P(features, " LPPPKD"); #endif // initialize RTC #ifdef HAS_RTC strcat_P(features, " RTC"); assert(rtc_init()); #endif #if defined HAS_DCF77 strcat_P(features, " DCF77"); #endif #if defined HAS_IF482 strcat_P(features, " IF482"); #endif // show compiled features ESP_LOGI(TAG, "Features:%s", features); // start wifi in monitor mode and start channel rotation timer ESP_LOGI(TAG, "Starting Wifi..."); wifi_sniffer_init(); // initialize salt value using esp_random() called by random() in // arduino-esp32 core. Note: do this *after* wifi has started, since // function gets it's seed from RF noise get_salt(); // get new 16bit for salting hashes // start state machine ESP_LOGI(TAG, "Starting Interrupt Handler..."); xTaskCreatePinnedToCore(irqHandler, // task function "irqhandler", // name of task 4096, // stack size of task (void *)1, // parameter of the task 1, // priority of the task &irqHandlerTask, // task handle 1); // CPU core // initialize BME sensor (BME280/BME680) #if (HAS_BME) #ifdef HAS_BME680 strcat_P(features, " BME680"); #elif defined HAS_BME280 strcat_P(features, " BME280"); #endif if (bme_init()) { ESP_LOGI(TAG, "Starting BME sensor..."); xTaskCreatePinnedToCore(bme_loop, // task function "bmeloop", // name of task 2048, // stack size of task (void *)1, // parameter of the task 1, // priority of the task &BmeTask, // task handle 1); // CPU core } #endif // starting timers and interrupts assert(irqHandlerTask != NULL); // has interrupt handler task started? ESP_LOGI(TAG, "Starting Timers..."); // display interrupt #ifdef HAS_DISPLAY // https://techtutorialsx.com/2017/10/07/esp32-arduino-timer-interrupts/ // prescaler 80 -> divides 80 MHz CPU freq to 1 MHz, timer 0, count up displayIRQ = timerBegin(0, 80, true); timerAttachInterrupt(displayIRQ, &DisplayIRQ, true); timerAlarmWrite(displayIRQ, DISPLAYREFRESH_MS * 1000, true); timerAlarmEnable(displayIRQ); #endif // cyclic function interrupts sendcycler.attach(SENDCYCLE * 2, sendcycle); housekeeper.attach(HOMECYCLE, housekeeping); // button interrupt #ifdef HAS_BUTTON #ifdef BUTTON_PULLUP attachInterrupt(digitalPinToInterrupt(HAS_BUTTON), ButtonIRQ, RISING); #else attachInterrupt(digitalPinToInterrupt(HAS_BUTTON), ButtonIRQ, FALLING); #endif #endif // HAS_BUTTON #if (TIME_SYNC_INTERVAL) // start pps timepulse ESP_LOGI(TAG, "Starting Timekeeper..."); assert(timepulse_init()); // setup timepulse timepulse_start(); timeSync(); // init systime timesyncer.attach(TIME_SYNC_INTERVAL * 60, timeSync); #endif #if defined HAS_IF482 || defined HAS_DCF77 #if (!TIME_SYNC_INTERVAL) #error for clock controller function TIME_SNYC_INTERVAL must be defined in paxcounter.conf #endif ESP_LOGI(TAG, "Starting Clock Controller..."); clock_init(); #endif } // setup() void loop() { while (1) { #if(HAS_LORA) os_runloop_once(); // execute lmic scheduled jobs and events #endif delay(2); // yield to CPU } vTaskDelete(NULL); // shoud never be reached }