// Basic config #include "globals.h" #include "power.h" // Local logging tag static const char TAG[] = __FILE__; #ifdef HAS_PMU AXP20X_Class pmu; void pover_event_IRQ(void) { // block i2c bus access if (I2C_MUTEX_LOCK()) { pmu.readIRQ(); // put your power event handler code here if (pmu.isVbusOverVoltageIRQ()) ESP_LOGI(TAG, "USB voltage %.1fV too high.", pmu.getVbusVoltage()); if (pmu.isVbusPlugInIRQ()) ESP_LOGI(TAG, "USB plugged, %.0fmAh @ %.1fV", pmu.getVbusCurrent(), pmu.getVbusVoltage()); if (pmu.isVbusRemoveIRQ()) ESP_LOGI(TAG, "USB unplugged."); if (pmu.isBattPlugInIRQ()) ESP_LOGI(TAG, "Battery is connected."); if (pmu.isBattRemoveIRQ()) ESP_LOGI(TAG, "Battery was removed."); if (pmu.isChargingIRQ()) ESP_LOGI(TAG, "Battery charging."); if (pmu.isChargingDoneIRQ()) ESP_LOGI(TAG, "Battery charging done."); if (pmu.isBattTempLowIRQ()) ESP_LOGI(TAG, "Battery high temperature."); if (pmu.isBattTempHighIRQ()) ESP_LOGI(TAG, "Battery low temperature."); // wake up if (pmu.isPEKShortPressIRQ()) { ESP_LOGI(TAG, "Power Button short pressed."); AXP192_power(true); } // enter sleep mode if (pmu.isPEKLongtPressIRQ()) { ESP_LOGI(TAG, "Power Button long pressed."); AXP192_power(false); delay(20); esp_sleep_enable_ext1_wakeup(GPIO_SEL_38, ESP_EXT1_WAKEUP_ALL_LOW); esp_deep_sleep_start(); } pmu.clearIRQ(); I2C_MUTEX_UNLOCK(); // release i2c bus access } else ESP_LOGI(TAG, "Unknown PMU event."); } void AXP192_power(bool on) { if (on) { pmu.setPowerOutPut(AXP192_LDO2, AXP202_ON); pmu.setPowerOutPut(AXP192_LDO3, AXP202_ON); pmu.setPowerOutPut(AXP192_DCDC2, AXP202_ON); pmu.setPowerOutPut(AXP192_EXTEN, AXP202_ON); pmu.setPowerOutPut(AXP192_DCDC1, AXP202_ON); pmu.setChgLEDMode(AXP20X_LED_LOW_LEVEL); } else { pmu.setPowerOutPut(AXP192_DCDC1, AXP202_OFF); pmu.setPowerOutPut(AXP192_EXTEN, AXP202_OFF); pmu.setPowerOutPut(AXP192_DCDC2, AXP202_OFF); pmu.setPowerOutPut(AXP192_LDO3, AXP202_OFF); pmu.setPowerOutPut(AXP192_LDO2, AXP202_OFF); pmu.setChgLEDMode(AXP20X_LED_OFF); } } void AXP192_displaypower(void) { if (pmu.isBatteryConnect()) if (pmu.isChargeing()) ESP_LOGI(TAG, "Battery charging @ %.0fmAh", pmu.getBattChargeCurrent()); else ESP_LOGI(TAG, "Battery discharging @ %0.fmAh", pmu.getBattDischargeCurrent()); else ESP_LOGI(TAG, "No Battery"); } void AXP192_init(void) { // block i2c bus access if (I2C_MUTEX_LOCK()) { if (pmu.begin(Wire, AXP192_PRIMARY_ADDRESS)) ESP_LOGI(TAG, "AXP192 PMU initialization failed"); else { // switch power on pmu.setDCDC1Voltage(3300); pmu.adc1Enable(AXP202_BATT_CUR_ADC1, 1); AXP192_power(true); // I2C access of AXP202X library currently is not mutexable // so we better should disable AXP interrupts... ? #ifdef PMU_INT pinMode(PMU_INT, INPUT_PULLUP); attachInterrupt(digitalPinToInterrupt(PMU_INT), PMUIRQ, FALLING); pmu.enableIRQ(AXP202_VBUS_REMOVED_IRQ | AXP202_VBUS_CONNECT_IRQ | AXP202_BATT_REMOVED_IRQ | AXP202_BATT_CONNECT_IRQ, 1); pmu.clearIRQ(); #endif // PMU_INT ESP_LOGI(TAG, "AXP192 PMU initialized."); AXP192_displaypower(); } I2C_MUTEX_UNLOCK(); // release i2c bus access } else ESP_LOGE(TAG, "I2c bus busy - PMU initialization error"); } #endif // HAS_PMU #ifdef BAT_MEASURE_ADC esp_adc_cal_characteristics_t *adc_characs = (esp_adc_cal_characteristics_t *)calloc( 1, sizeof(esp_adc_cal_characteristics_t)); #ifndef BAT_MEASURE_ADC_UNIT // ADC1 static const adc1_channel_t adc_channel = BAT_MEASURE_ADC; #else // ADC2 static const adc2_channel_t adc_channel = BAT_MEASURE_ADC; #endif static const adc_atten_t atten = ADC_ATTEN_DB_11; static const adc_unit_t unit = ADC_UNIT_1; #endif // BAT_MEASURE_ADC void calibrate_voltage(void) { #ifdef BAT_MEASURE_ADC // configure ADC #ifndef BAT_MEASURE_ADC_UNIT // ADC1 ESP_ERROR_CHECK(adc1_config_width(ADC_WIDTH_BIT_12)); ESP_ERROR_CHECK(adc1_config_channel_atten(adc_channel, atten)); #else // ADC2 // ESP_ERROR_CHECK(adc2_config_width(ADC_WIDTH_BIT_12)); ESP_ERROR_CHECK(adc2_config_channel_atten(adc_channel, atten)); #endif // calibrate ADC esp_adc_cal_value_t val_type = esp_adc_cal_characterize( unit, atten, ADC_WIDTH_BIT_12, DEFAULT_VREF, adc_characs); // show ADC characterization base if (val_type == ESP_ADC_CAL_VAL_EFUSE_TP) { ESP_LOGI(TAG, "ADC characterization based on Two Point values stored in eFuse"); } else if (val_type == ESP_ADC_CAL_VAL_EFUSE_VREF) { ESP_LOGI(TAG, "ADC characterization based on reference voltage stored in eFuse"); } else { ESP_LOGI(TAG, "ADC characterization based on default reference voltage"); } #endif } uint8_t getBattLevel() { /* return values: MCMD_DEVS_EXT_POWER = 0x00, // external power supply MCMD_DEVS_BATT_MIN = 0x01, // min battery value MCMD_DEVS_BATT_MAX = 0xFE, // max battery value MCMD_DEVS_BATT_NOINFO = 0xFF, // unknown battery level */ #if (defined HAS_PMU || defined BAT_MEASURE_ADC) uint16_t voltage = read_voltage(); switch (voltage) { case 0: return MCMD_DEVS_BATT_NOINFO; case 0xffff: return MCMD_DEVS_EXT_POWER; default: return (voltage > OTA_MIN_BATT ? MCMD_DEVS_BATT_MAX : MCMD_DEVS_BATT_MIN); } #else // we don't have any info on battery level return MCMD_DEVS_BATT_NOINFO; #endif } // getBattLevel() // u1_t os_getBattLevel(void) { return getBattLevel(); }; uint16_t read_voltage() { uint16_t voltage = 0; #ifdef HAS_PMU voltage = pmu.isVBUSPlug() ? 0xffff : pmu.getBattVoltage(); #else #ifdef BAT_MEASURE_ADC // multisample ADC uint32_t adc_reading = 0; int adc_buf = 0; for (int i = 0; i < NO_OF_SAMPLES; i++) { #ifndef BAT_MEASURE_ADC_UNIT // ADC1 adc_reading += adc1_get_raw(adc_channel); #else // ADC2 ESP_ERROR_CHECK(adc2_get_raw(adc_channel, ADC_WIDTH_BIT_12, &adc_buf)); adc_reading += adc_buf; #endif } adc_reading /= NO_OF_SAMPLES; // Convert ADC reading to voltage in mV voltage = esp_adc_cal_raw_to_voltage(adc_reading, adc_characs); #endif // BAT_MEASURE_ADC #ifdef BAT_VOLTAGE_DIVIDER voltage *= BAT_VOLTAGE_DIVIDER; #endif // BAT_VOLTAGE_DIVIDER #endif // HAS_PMU return voltage; }