#include "globals.h" // Local logging tag static const char TAG[] = "main"; #ifdef HAS_BATTERY_PROBE esp_adc_cal_characteristics_t *adc_characs = (esp_adc_cal_characteristics_t *)calloc( 1, sizeof(esp_adc_cal_characteristics_t)); static const adc1_channel_t adc_channel = HAS_BATTERY_PROBE; static const adc_atten_t atten = ADC_ATTEN_DB_11; static const adc_unit_t unit = ADC_UNIT_1; #endif void calibrate_voltage(void) { #ifdef HAS_BATTERY_PROBE // configure ADC ESP_ERROR_CHECK(adc1_config_width(ADC_WIDTH_BIT_12)); ESP_ERROR_CHECK(adc1_config_channel_atten(adc_channel, atten)); // calibrate ADC esp_adc_cal_value_t val_type = esp_adc_cal_characterize( unit, atten, ADC_WIDTH_BIT_12, DEFAULT_VREF, adc_characs); // show ADC characterization base if (val_type == ESP_ADC_CAL_VAL_EFUSE_TP) { ESP_LOGI(TAG, "ADC characterization based on Two Point values stored in eFuse"); } else if (val_type == ESP_ADC_CAL_VAL_EFUSE_VREF) { ESP_LOGI(TAG, "ADC characterization based on reference voltage stored in eFuse"); } else { ESP_LOGI(TAG, "ADC characterization based on default reference voltage"); } #endif } uint16_t read_voltage() { #ifdef HAS_BATTERY_PROBE // multisample ADC uint32_t adc_reading = 0; for (int i = 0; i < NO_OF_SAMPLES; i++) { adc_reading += adc1_get_raw(adc_channel); } adc_reading /= NO_OF_SAMPLES; // Convert ADC reading to voltage in mV uint16_t voltage = (uint16_t)esp_adc_cal_raw_to_voltage(adc_reading, adc_characs); #ifdef BATT_FACTOR voltage *= BATT_FACTOR; #endif ESP_LOGD(TAG, "Raw: %d / Voltage: %dmV", adc_reading, voltage); return voltage; #else return 0; #endif } bool batt_sufficient() { #ifdef HAS_BATTERY_PROBE uint16_t volts = read_voltage(); return ((volts < 1000) || (volts > OTA_MIN_BATT)); // no battery or battery sufficient #else return true; #endif }