/* ///--> IMPORTANT LICENSE NOTE for this file <--/// PLEASE NOTE: There is a patent filed for the time sync algorithm used in the code of this file. The shown implementation example is covered by the repository's licencse, but you may not be eligible to deploy the applied algorithm in applications without granted license by the patent holder. */ #if (TIME_SYNC_LORASERVER) && (HAS_LORA) #include "timesync.h" // Local logging tag static const char TAG[] = __FILE__; using namespace std::chrono; typedef std::chrono::system_clock myClock; typedef myClock::time_point myClock_timepoint; typedef std::chrono::duration> myClock_msecTick; TaskHandle_t timeSyncReqTask = NULL; static uint8_t time_sync_seqNo = random(TIMEANSWERPORT_MIN, TIMEANSWERPORT_MAX); static bool timeSyncPending = false; static myClock_timepoint time_sync_tx[TIME_SYNC_SAMPLES]; static myClock_timepoint time_sync_rx[TIME_SYNC_SAMPLES]; // send time request message void send_timesync_req() { // if a timesync handshake is pending then exit if (timeSyncPending) return; // else unblock timesync task else { ESP_LOGI(TAG, "[%0.3f] Timeserver sync request started", millis() / 1000.0); xTaskNotifyGive(timeSyncReqTask); } } // task for sending time sync requests void process_timesync_req(void *taskparameter) { uint8_t k; uint16_t time_to_set_fraction_msec; uint32_t seq_no = 0, time_to_set; auto time_offset_ms = myClock_msecTick::zero(); while (1) { // reset all timestamps before next sync run time_offset_ms = myClock_msecTick::zero(); for (uint8_t i = 0; i < TIME_SYNC_SAMPLES; i++) time_sync_tx[i] = time_sync_rx[i] = myClock_timepoint(); // wait for kickoff ulTaskNotifyTake(pdFALSE, portMAX_DELAY); timeSyncPending = true; // wait until we are joined if we are not while (!LMIC.devaddr) { vTaskDelay(5000); } // collect timestamp samples for (uint8_t i = 0; i < TIME_SYNC_SAMPLES; i++) { // send sync request to server payload.reset(); payload.addByte(time_sync_seqNo); SendPayload(TIMEPORT, prio_high); // wait for a valid timestamp from recv_timesync_ans() while (seq_no != time_sync_seqNo) { if (xTaskNotifyWait(0x00, ULONG_MAX, &seq_no, pdMS_TO_TICKS(TIME_SYNC_TIMEOUT * 1000)) == pdFALSE) { ESP_LOGW(TAG, "[%0.3f] Timesync handshake error: timeout", millis() / 1000.0); goto finish; // no valid sequence received before timeout } } // process answer k = seq_no % TIME_SYNC_SAMPLES; // calculate time diff from collected timestamps time_offset_ms += time_point_cast(time_sync_rx[k]) - time_point_cast(time_sync_tx[k]); // wrap around seqNo, keeping it in time port range time_sync_seqNo = (time_sync_seqNo < TIMEANSWERPORT_MAX) ? time_sync_seqNo + 1 : TIMEANSWERPORT_MIN; if (i < TIME_SYNC_SAMPLES - 1) { // wait until next cycle vTaskDelay(pdMS_TO_TICKS(TIME_SYNC_CYCLE * 1000)); } else { // before sending last time sample... // ...send flush to open a receive window for last time_sync_answer payload.reset(); payload.addByte(0x99); SendPayload(RCMDPORT, prio_high); // ...send a alive open a receive window for last time_sync_answer // LMIC_sendAlive(); } } // end of for loop to collect timestamp samples // begin of time critical section: lock app irq's and I2C bus if (!mask_user_IRQ()) { ESP_LOGW(TAG, "[%0.3f] Timesync handshake error: irq / i2c masking failed", millis() / 1000.0); goto finish; // failure } // average time offset over all collected diffs time_offset_ms /= TIME_SYNC_SAMPLES; // calculate time offset with millisecond precision using LMIC's time base, // since we use LMIC's ostime_t txEnd as tx timestamp. // Also apply calibration const to compensate processing time. time_offset_ms += milliseconds(osticks2ms(os_getTime())) + milliseconds(TIME_SYNC_FIXUP); // calculate absolute time in UTC epoch: convert to whole seconds, round to // ceil, and calculate fraction milliseconds time_to_set = (uint32_t)(time_offset_ms.count() / 1000) + 1; // calculate fraction milliseconds time_to_set_fraction_msec = (uint16_t)(time_offset_ms.count() % 1000); setMyTime(time_to_set, time_to_set_fraction_msec); // end of time critical section: release I2C bus and re-enable app irq's unmask_user_IRQ(); finish: timeSyncPending = false; } // infinite while(1) } // called from lorawan.cpp after time_sync_req was sent void store_time_sync_req(uint32_t timestamp) { // if no timesync handshake is pending then exit if (!timeSyncPending) return; uint8_t k = time_sync_seqNo % TIME_SYNC_SAMPLES; time_sync_tx[k] += milliseconds(timestamp); ESP_LOGD(TAG, "[%0.3f] Timesync request #%d of %d sent at %d.%03d", millis() / 1000.0, k + 1, TIME_SYNC_SAMPLES, timestamp / 1000, timestamp % 1000); } // process timeserver timestamp answer, called from lorawan.cpp int recv_timesync_ans(uint8_t seq_no, uint8_t buf[], uint8_t buf_len) { // if no timesync handshake is pending then exit if (!timeSyncPending) return 0; // failure // if no time is available or spurious buffer then exit if (buf_len != TIME_SYNC_FRAME_LENGTH) { if (buf[0] == 0xff) ESP_LOGI(TAG, "[%0.3f] Timeserver error: no confident time available", millis() / 1000.0); else ESP_LOGW(TAG, "[%0.3f] Timeserver error: spurious data received", millis() / 1000.0); return 0; // failure } else { // we received a probably valid time frame uint8_t k = seq_no % TIME_SYNC_SAMPLES; uint16_t timestamp_msec; // convert 1/250th sec fractions to ms uint32_t timestamp_sec; // fetch timeserver time from 4 bytes containing the UTC seconds since // unix epoch. Octet order is big endian. Casts are necessary, because buf // is an array of single byte values, and they might overflow when shifted timestamp_sec = ((uint32_t)buf[3]) | (((uint32_t)buf[2]) << 8) | (((uint32_t)buf[1]) << 16) | (((uint32_t)buf[0]) << 24); // the 5th byte contains the fractional seconds in 2^-8 second steps timestamp_msec = 4 * buf[4]; // construct the timepoint when message was seen on gateway time_sync_rx[k] += seconds(timestamp_sec) + milliseconds(timestamp_msec); // we guess timepoint is recent if it newer than code compile date if (timeIsValid(myClock::to_time_t(time_sync_rx[k]))) { ESP_LOGD(TAG, "[%0.3f] Timesync request #%d of %d rcvd at %d.%03d", millis() / 1000.0, k + 1, TIME_SYNC_SAMPLES, timestamp_sec, timestamp_msec); // inform processing task xTaskNotify(timeSyncReqTask, seq_no, eSetBits); return 1; // success } else { ESP_LOGW(TAG, "[%0.3f] Timeserver error: outdated time received", millis() / 1000.0); return 0; // failure } } } // adjust system time, calibrate RTC and RTC_INT pps void IRAM_ATTR setMyTime(uint32_t t_sec, uint16_t t_msec) { time_t time_to_set = (time_t)(t_sec + 1); ESP_LOGD(TAG, "[%0.3f] Calculated UTC epoch time: %d.%03d sec", millis() / 1000.0, time_to_set, t_msec); if (timeIsValid(time_to_set)) { // wait until top of second with millisecond precision vTaskDelay(pdMS_TO_TICKS(1000 - t_msec)); // set RTC time and calibrate RTC_INT pulse on top of second #ifdef HAS_RTC set_rtctime(time_to_set, no_mutex); #endif // sync pps timer to top of second #if (!defined GPS_INT && !defined RTC_INT) timerWrite(ppsIRQ, 0); // reset pps timer CLOCKIRQ(); // fire clock pps, this advances time 1 sec #endif setTime(time_to_set); // set the time on top of second timeSource = _lora; timesyncer.attach(TIME_SYNC_INTERVAL * 60, timeSync); // regular repeat ESP_LOGI(TAG, "[%0.3f] Timesync finished, time was adjusted", millis() / 1000.0); } else ESP_LOGW(TAG, "[%0.3f] Timesync failed, outdated time calculated", millis() / 1000.0); } void timesync_init() { // create task for timeserver handshake processing, called from main.cpp xTaskCreatePinnedToCore(process_timesync_req, // task function "timesync_req", // name of task 2048, // stack size of task (void *)1, // task parameter 3, // priority of the task &timeSyncReqTask, // task handle 1); // CPU core } #endif