/*

//////////////////////// ESP32-Paxcounter \\\\\\\\\\\\\\\\\\\\\\\\\\

Copyright  2018 Oliver Brandmueller <ob@sysadm.in>
Copyright  2018 Klaus Wilting <verkehrsrot@arcor.de>

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

       http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License.

NOTE:
Parts of the source files in this repository are made available under different
licenses. Refer to LICENSE.txt file in repository for more details.

//////////////////////// ESP32-Paxcounter \\\\\\\\\\\\\\\\\\\\\\\\\\

// Tasks and timers:

Task          Core  Prio  Purpose
-------------------------------------------------------------------------------
ledloop       0     3     blinks LEDs
spiloop       0     2     reads/writes data on spi interface
IDLE          0     0     ESP32 arduino scheduler -> runs wifi sniffer

lmictask      1     2     MCCI LMiC LORAWAN stack
clockloop     1     4     generates realtime telegrams for external clock
timesync_req  1     3     processes realtime time sync requests
irqhandler    1     1     display, timesync, gps, etc. triggered by timers
gpsloop       1     1     reads data from GPS via serial or i2c
lorasendtask  1     1     feed data from lora sendqueue to lmcic
IDLE          1     0     ESP32 arduino scheduler -> runs wifi channel rotator

Low priority numbers denote low priority tasks.

NOTE: Changing any timings will have impact on time accuracy of whole code.
So don't do it if you do not own a digital oscilloscope.

// ESP32 hardware timers
-------------------------------------------------------------------------------
0	displayIRQ -> display refresh -> 40ms (DISPLAYREFRESH_MS)
1 ppsIRQ -> pps clock irq -> 1sec
3	MatrixDisplayIRQ -> matrix mux cycle -> 0,5ms (MATRIX_DISPLAY_SCAN_US)


// Interrupt routines
-------------------------------------------------------------------------------

fired by hardware
DisplayIRQ      -> esp32 timer 0  -> irqHandlerTask (Core 1)
CLOCKIRQ        -> esp32 timer 1  -> ClockTask (Core 1)
ButtonIRQ       -> external gpio  -> irqHandlerTask (Core 1)
PMUIRQ          -> PMU chip gpio  -> irqHandlerTask (Core 1)

fired by software (Ticker.h)
TIMESYNC_IRQ    -> timeSync()     -> irqHandlerTask (Core 1)
CYCLIC_IRQ      -> housekeeping() -> irqHandlerTask (Core 1)
SENDCYCLE_IRQ   -> sendcycle()    -> irqHandlerTask (Core 1)
BME_IRQ         -> bmecycle()     -> irqHandlerTask (Core 1)


// External RTC timer (if present)
-------------------------------------------------------------------------------
triggers pps 1 sec impulse

*/

// Basic Config
#include "main.h"

configData_t cfg; // struct holds current device configuration
char lmic_event_msg[LMIC_EVENTMSG_LEN]; // display buffer for LMIC event message
uint8_t volatile channel = 0;           // channel rotation counter
uint16_t volatile macs_total = 0, macs_wifi = 0, macs_ble = 0,
                  batt_voltage = 0; // globals for display

hw_timer_t *ppsIRQ = NULL, *displayIRQ = NULL, *matrixDisplayIRQ = NULL;

TaskHandle_t irqHandlerTask = NULL, ClockTask = NULL;
SemaphoreHandle_t I2Caccess;
bool volatile TimePulseTick = false;
time_t userUTCTime = 0;
timesource_t timeSource = _unsynced;

// container holding unique MAC address hashes with Memory Alloctor using PSRAM,
// if present
std::set<uint16_t, std::less<uint16_t>, Mallocator<uint16_t>> macs;

// initialize payload encoder
PayloadConvert payload(PAYLOAD_BUFFER_SIZE);

// set Time Zone for user setting from paxcounter.conf
TimeChangeRule myDST = DAYLIGHT_TIME;
TimeChangeRule mySTD = STANDARD_TIME;
Timezone myTZ(myDST, mySTD);

// local Tag for logging
static const char TAG[] = __FILE__;

void setup() {

  char features[100] = "";

  // create some semaphores for syncing / mutexing tasks
  I2Caccess = xSemaphoreCreateMutex(); // for access management of i2c bus
  assert(I2Caccess != NULL);
  I2C_MUTEX_UNLOCK();

  // disable brownout detection
#ifdef DISABLE_BROWNOUT
  // register with brownout is at address DR_REG_RTCCNTL_BASE + 0xd4
  (*((uint32_t volatile *)ETS_UNCACHED_ADDR((DR_REG_RTCCNTL_BASE + 0xd4)))) = 0;
#endif

  // setup debug output or silence device
#if (VERBOSE)
  Serial.begin(115200);
  esp_log_level_set("*", ESP_LOG_VERBOSE);
#else
  // mute logs completely by redirecting them to silence function
  esp_log_level_set("*", ESP_LOG_NONE);
#endif

  do_after_reset(rtc_get_reset_reason(0));

  // print chip information on startup if in verbose mode after coldstart
#if (VERBOSE)

  if (RTC_runmode == RUNMODE_POWERCYCLE) {
    esp_chip_info_t chip_info;
    esp_chip_info(&chip_info);
    ESP_LOGI(TAG,
             "This is ESP32 chip with %d CPU cores, WiFi%s%s, silicon revision "
             "%d, %dMB %s Flash",
             chip_info.cores,
             (chip_info.features & CHIP_FEATURE_BT) ? "/BT" : "",
             (chip_info.features & CHIP_FEATURE_BLE) ? "/BLE" : "",
             chip_info.revision, spi_flash_get_chip_size() / (1024 * 1024),
             (chip_info.features & CHIP_FEATURE_EMB_FLASH) ? "embedded"
                                                           : "external");
    ESP_LOGI(TAG, "Internal Total heap %d, internal Free Heap %d",
             ESP.getHeapSize(), ESP.getFreeHeap());
#ifdef BOARD_HAS_PSRAM
    ESP_LOGI(TAG, "SPIRam Total heap %d, SPIRam Free Heap %d",
             ESP.getPsramSize(), ESP.getFreePsram());
#endif
    ESP_LOGI(TAG, "ChipRevision %d, Cpu Freq %d, SDK Version %s",
             ESP.getChipRevision(), ESP.getCpuFreqMHz(), ESP.getSdkVersion());
    ESP_LOGI(TAG, "Flash Size %d, Flash Speed %d", ESP.getFlashChipSize(),
             ESP.getFlashChipSpeed());
    ESP_LOGI(TAG, "Wifi/BT software coexist version %s",
             esp_coex_version_get());

#if (HAS_LORA)
    ESP_LOGI(TAG, "IBM LMIC version %d.%d.%d", LMIC_VERSION_MAJOR,
             LMIC_VERSION_MINOR, LMIC_VERSION_BUILD);
    ESP_LOGI(TAG, "Arduino LMIC version %d.%d.%d.%d",
             ARDUINO_LMIC_VERSION_GET_MAJOR(ARDUINO_LMIC_VERSION),
             ARDUINO_LMIC_VERSION_GET_MINOR(ARDUINO_LMIC_VERSION),
             ARDUINO_LMIC_VERSION_GET_PATCH(ARDUINO_LMIC_VERSION),
             ARDUINO_LMIC_VERSION_GET_LOCAL(ARDUINO_LMIC_VERSION));
    showLoraKeys();
#endif // HAS_LORA

#if (HAS_GPS)
    ESP_LOGI(TAG, "TinyGPS+ version %s", TinyGPSPlus::libraryVersion());
#endif
  }
#endif // VERBOSE

  // open i2c bus
  i2c_init();

// setup power on boards with power management logic
#ifdef EXT_POWER_SW
  pinMode(EXT_POWER_SW, OUTPUT);
  digitalWrite(EXT_POWER_SW, EXT_POWER_ON);
  strcat_P(features, " VEXT");
#endif
#ifdef HAS_PMU
  AXP192_init();
  strcat_P(features, " PMU");
#endif

  // read (and initialize on first run) runtime settings from NVRAM
  loadConfig(); // includes initialize if necessary

// initialize display
#ifdef HAS_DISPLAY
  strcat_P(features, " OLED");
  DisplayIsOn = cfg.screenon;
  // display verbose info only after a coldstart (note: blocking call!)
  init_display(RTC_runmode == RUNMODE_POWERCYCLE ? true : false);
#endif

  // scan i2c bus for devices
  i2c_scan();

#ifdef BOARD_HAS_PSRAM
  assert(psramFound());
  ESP_LOGI(TAG, "PSRAM found and initialized");
  strcat_P(features, " PSRAM");
#endif

#ifdef BAT_MEASURE_EN
  pinMode(BAT_MEASURE_EN, OUTPUT);
#endif

// initialize leds
#if (HAS_LED != NOT_A_PIN)
  pinMode(HAS_LED, OUTPUT);
  strcat_P(features, " LED");

#ifdef LED_POWER_SW
  pinMode(LED_POWER_SW, OUTPUT);
  digitalWrite(LED_POWER_SW, LED_POWER_ON);
#endif

#ifdef HAS_TWO_LED
  pinMode(HAS_TWO_LED, OUTPUT);
  strcat_P(features, " LED1");
#endif

// use LED for power display if we have additional RGB LED, else for status
#ifdef HAS_RGB_LED
  switch_LED(LED_ON);
  strcat_P(features, " RGB");
  rgb_set_color(COLOR_PINK);
#endif

#endif // HAS_LED

#if (HAS_LED != NOT_A_PIN) || defined(HAS_RGB_LED)
  // start led loop
  ESP_LOGI(TAG, "Starting LED Controller...");
  xTaskCreatePinnedToCore(ledLoop,      // task function
                          "ledloop",    // name of task
                          1024,         // stack size of task
                          (void *)1,    // parameter of the task
                          3,            // priority of the task
                          &ledLoopTask, // task handle
                          0);           // CPU core
#endif

// initialize wifi antenna
#ifdef HAS_ANTENNA_SWITCH
  strcat_P(features, " ANT");
  antenna_init();
  antenna_select(cfg.wifiant);
#endif

// initialize battery status
#if (defined BAT_MEASURE_ADC || defined HAS_PMU)
  strcat_P(features, " BATT");
  calibrate_voltage();
  batt_voltage = read_voltage();
#endif

#if (USE_OTA)
  strcat_P(features, " OTA");
  // reboot to firmware update mode if ota trigger switch is set
  if (RTC_runmode == RUNMODE_UPDATE)
    start_ota_update();
#endif

// start BLE scan callback if BLE function is enabled in NVRAM configuration
// or switch off bluetooth, if not compiled
#if (BLECOUNTER)
  strcat_P(features, " BLE");
  if (cfg.blescan) {
    ESP_LOGI(TAG, "Starting Bluetooth...");
    start_BLEscan();
  } else
    btStop();
#else
  // remove bluetooth stack to gain more free memory
  btStop();
  ESP_ERROR_CHECK(esp_bt_mem_release(ESP_BT_MODE_BTDM));
  ESP_ERROR_CHECK(esp_coex_preference_set(
      ESP_COEX_PREFER_WIFI)); // configure Wifi/BT coexist lib
#endif

// initialize gps
#if (HAS_GPS)
  strcat_P(features, " GPS");
  if (gps_init()) {
    ESP_LOGI(TAG, "Starting GPS Feed...");
    xTaskCreatePinnedToCore(gps_loop,  // task function
                            "gpsloop", // name of task
                            2048,      // stack size of task
                            (void *)1, // parameter of the task
                            1,         // priority of the task
                            &GpsTask,  // task handle
                            1);        // CPU core
  }
#endif

// initialize sensors
#if (HAS_SENSORS)
  strcat_P(features, " SENS");
  sensor_init();
#endif

// initialize LoRa
#if (HAS_LORA)
  strcat_P(features, " LORA");
  // kick off join, except we come from sleep
  assert(lora_stack_init(RTC_runmode == RUNMODE_WAKEUP ? false : true) ==
         ESP_OK);
#endif

// initialize SPI
#ifdef HAS_SPI
  strcat_P(features, " SPI");
  assert(spi_init() == ESP_OK);
#endif

#if (VENDORFILTER)
  strcat_P(features, " FILTER");
#endif

// initialize matrix display
#ifdef HAS_MATRIX_DISPLAY
  strcat_P(features, " LED_MATRIX");
  MatrixDisplayIsOn = cfg.screenon;
  init_matrix_display(); // note: blocking call
#endif

// show payload encoder
#if PAYLOAD_ENCODER == 1
  strcat_P(features, " PLAIN");
#elif PAYLOAD_ENCODER == 2
  strcat_P(features, " PACKED");
#elif PAYLOAD_ENCODER == 3
  strcat_P(features, " LPPDYN");
#elif PAYLOAD_ENCODER == 4
  strcat_P(features, " LPPPKD");
#endif

// initialize RTC
#ifdef HAS_RTC
  strcat_P(features, " RTC");
  assert(rtc_init());
#endif

#if defined HAS_DCF77
  strcat_P(features, " DCF77");
#endif

#if defined HAS_IF482
  strcat_P(features, " IF482");
#endif

#if (WIFICOUNTER)
  strcat_P(features, " WIFI");
  // start wifi in monitor mode and start channel rotation timer
  ESP_LOGI(TAG, "Starting Wifi...");
  wifi_sniffer_init();
#else
  // switch off wifi
  esp_wifi_deinit();
#endif

  // initialize salt value using esp_random() called by random() in
  // arduino-esp32 core. Note: do this *after* wifi has started, since
  // function gets it's seed from RF noise
  get_salt(); // get new 16bit for salting hashes

  // start state machine
  ESP_LOGI(TAG, "Starting Interrupt Handler...");
  xTaskCreatePinnedToCore(irqHandler,      // task function
                          "irqhandler",    // name of task
                          4096,            // stack size of task
                          (void *)1,       // parameter of the task
                          2,               // priority of the task
                          &irqHandlerTask, // task handle
                          1);              // CPU core

// initialize BME sensor (BME280/BME680)
#if (HAS_BME)
#ifdef HAS_BME680
  strcat_P(features, " BME680");
#elif defined HAS_BME280
  strcat_P(features, " BME280");
#endif
  if (bme_init())
    ESP_LOGI(TAG, "Starting BME sensor...");
#endif

  // starting timers and interrupts
  assert(irqHandlerTask != NULL); // has interrupt handler task started?
  ESP_LOGI(TAG, "Starting Timers...");

// display interrupt
#ifdef HAS_DISPLAY
  // https://techtutorialsx.com/2017/10/07/esp32-arduino-timer-interrupts/
  // prescaler 80 -> divides 80 MHz CPU freq to 1 MHz, timer 0, count up
  displayIRQ = timerBegin(0, 80, true);
  timerAttachInterrupt(displayIRQ, &DisplayIRQ, true);
  timerAlarmWrite(displayIRQ, DISPLAYREFRESH_MS * 1000, true);
  timerAlarmEnable(displayIRQ);
#endif

// LED Matrix display interrupt
#ifdef HAS_MATRIX_DISPLAY
  // https://techtutorialsx.com/2017/10/07/esp32-arduino-timer-interrupts/
  // prescaler 80 -> divides 80 MHz CPU freq to 1 MHz, timer 3, count up
  matrixDisplayIRQ = timerBegin(3, 80, true);
  timerAttachInterrupt(matrixDisplayIRQ, &MatrixDisplayIRQ, true);
  timerAlarmWrite(matrixDisplayIRQ, MATRIX_DISPLAY_SCAN_US, true);
  timerAlarmEnable(matrixDisplayIRQ);
#endif

// initialize button
#ifdef HAS_BUTTON
  strcat_P(features, " BTN_");
#ifdef BUTTON_PULLUP
  strcat_P(features, "PU");
#else
  strcat_P(features, "PD");
#endif // BUTTON_PULLUP
  button_init(HAS_BUTTON);
#endif // HAS_BUTTON

  // cyclic function interrupts
  sendcycler.attach(SENDCYCLE * 2, sendcycle);
  housekeeper.attach(HOMECYCLE, housekeeping);

#if (TIME_SYNC_INTERVAL)

#if (!(TIME_SYNC_LORAWAN) && !(TIME_SYNC_LORASERVER) && !defined HAS_GPS &&    \
     !defined HAS_RTC)
#warning you did not specify a time source, time will not be synched
#endif

// initialize gps time
#if (HAS_GPS)
  fetch_gpsTime();
#endif

#if (defined HAS_IF482 || defined HAS_DCF77)
  ESP_LOGI(TAG, "Starting Clock Controller...");
  clock_init();
#endif

#if (TIME_SYNC_LORASERVER)
  timesync_init(); // create loraserver time sync task
#endif

  ESP_LOGI(TAG, "Starting Timekeeper...");
  assert(timepulse_init()); // setup pps timepulse
  timepulse_start();        // starts pps and cyclic time sync

#endif // TIME_SYNC_INTERVAL

  // show compiled features
  ESP_LOGI(TAG, "Features:%s", features);

  // set runmode to normal
  RTC_runmode = RUNMODE_NORMAL;

  vTaskDelete(NULL);

} // setup()

void loop() { vTaskDelete(NULL); }