/* //////////////////////// ESP32-Paxcounter \\\\\\\\\\\\\\\\\\\\\\\\\\ Copyright 2018 Oliver Brandmueller Copyright 2018 Klaus Wilting Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. NOTICE: Parts of the source files in this repository are made available under different licenses. Refer to LICENSE.txt file in repository for more details. //////////////////////// ESP32-Paxcounter \\\\\\\\\\\\\\\\\\\\\\\\\\ Uused tasks and timers: Task Core Prio Purpose ==================================================================================== IDLE 0 0 ESP32 arduino scheduler -> runs wifi sniffer task gpsloop 0 2 read data from GPS over serial or i2c IDLE 1 0 Arduino loop() -> used for LED switching loraloop 1 3 runs the LMIC stack statemachine 1 1 switches application process logic wifiloop 0 4 rotates wifi channels ESP32 hardware timers ========================== 0 Display-Refresh 1 Wifi Channel Switch 2 Send Cycle 3 Housekeeping */ // Basic Config #include "main.h" configData_t cfg; // struct holds current device configuration char display_line6[16], display_line7[16]; // display buffers uint8_t volatile channel = 0; // channel rotation counter uint16_t volatile macs_total = 0, macs_wifi = 0, macs_ble = 0, batt_voltage = 0; // globals for display // hardware timer for cyclic tasks hw_timer_t *channelSwitch, *displaytimer, *sendCycle, *homeCycle; // this variables will be changed in the ISR, and read in main loop uint8_t volatile ButtonPressedIRQ = 0, ChannelTimerIRQ = 0, SendCycleTimerIRQ = 0, DisplayTimerIRQ = 0, HomeCycleIRQ = 0; TaskHandle_t stateMachineTask, wifiSwitchTask; SemaphoreHandle_t xWifiChannelSwitchSemaphore; // RTos send queues for payload transmit #ifdef HAS_LORA QueueHandle_t LoraSendQueue; TaskHandle_t LoraTask = NULL; #endif #ifdef HAS_SPI QueueHandle_t SPISendQueue; #endif #ifdef HAS_GPS TaskHandle_t GpsTask = NULL; #endif // sync main loop and ISR when modifying IRQ handler shared variables portMUX_TYPE mutexButton = portMUX_INITIALIZER_UNLOCKED; portMUX_TYPE mutexDisplay = portMUX_INITIALIZER_UNLOCKED; portMUX_TYPE mutexHomeCycle = portMUX_INITIALIZER_UNLOCKED; portMUX_TYPE mutexSendCycle = portMUX_INITIALIZER_UNLOCKED; std::set macs; // container holding unique MAC adress hashes // initialize payload encoder PayloadConvert payload(PAYLOAD_BUFFER_SIZE); // local Tag for logging static const char TAG[] = "main"; void setup() { // disable the default wifi logging esp_log_level_set("wifi", ESP_LOG_NONE); char features[100] = ""; // disable brownout detection #ifdef DISABLE_BROWNOUT // register with brownout is at address DR_REG_RTCCNTL_BASE + 0xd4 (*((uint32_t volatile *)ETS_UNCACHED_ADDR((DR_REG_RTCCNTL_BASE + 0xd4)))) = 0; #endif // setup debug output or silence device #ifdef VERBOSE Serial.begin(115200); esp_log_level_set("*", ESP_LOG_VERBOSE); #else // mute logs completely by redirecting them to silence function esp_log_level_set("*", ESP_LOG_NONE); esp_log_set_vprintf(redirect_log); #endif // read (and initialize on first run) runtime settings from NVRAM loadConfig(); // includes initialize if necessary // initialize leds #if (HAS_LED != NOT_A_PIN) pinMode(HAS_LED, OUTPUT); strcat_P(features, " LED"); #endif #ifdef HAS_RGB_LED rgb_set_color(COLOR_PINK); strcat_P(features, " RGB"); #endif // initialize wifi antenna #ifdef HAS_ANTENNA_SWITCH strcat_P(features, " ANT"); antenna_init(); antenna_select(cfg.wifiant); #endif // switch off bluetooth, if not compiled #ifdef BLECOUNTER strcat_P(features, " BLE"); #else bool btstop = btStop(); #endif // initialize battery status #ifdef HAS_BATTERY_PROBE strcat_P(features, " BATT"); calibrate_voltage(); batt_voltage = read_voltage(); #endif #ifdef USE_OTA strcat_P(features, " OTA"); // reboot to firmware update mode if ota trigger switch is set if (cfg.runmode == 1) { cfg.runmode = 0; saveConfig(); start_ota_update(); } #endif // initialize button #ifdef HAS_BUTTON strcat_P(features, " BTN_"); #ifdef BUTTON_PULLUP strcat_P(features, "PU"); // install button interrupt (pullup mode) pinMode(HAS_BUTTON, INPUT_PULLUP); attachInterrupt(digitalPinToInterrupt(HAS_BUTTON), ButtonIRQ, RISING); #else strcat_P(features, "PD"); // install button interrupt (pulldown mode) pinMode(HAS_BUTTON, INPUT_PULLDOWN); attachInterrupt(digitalPinToInterrupt(HAS_BUTTON), ButtonIRQ, FALLING); #endif // BUTTON_PULLUP #endif // HAS_BUTTON // initialize gps #ifdef HAS_GPS strcat_P(features, " GPS"); #endif // initialize LoRa #ifdef HAS_LORA strcat_P(features, " LORA"); LoraSendQueue = xQueueCreate(SEND_QUEUE_SIZE, sizeof(MessageBuffer_t)); if (LoraSendQueue == 0) { ESP_LOGE(TAG, "Could not create LORA send queue. Aborting."); exit(0); } else ESP_LOGI(TAG, "LORA send queue created, size %d Bytes", SEND_QUEUE_SIZE * PAYLOAD_BUFFER_SIZE); #endif // initialize SPI #ifdef HAS_SPI strcat_P(features, " SPI"); SPISendQueue = xQueueCreate(SEND_QUEUE_SIZE, sizeof(MessageBuffer_t)); if (SPISendQueue == 0) { ESP_LOGE(TAG, "Could not create SPI send queue. Aborting."); exit(0); } else ESP_LOGI(TAG, "SPI send queue created, size %d Bytes", SEND_QUEUE_SIZE * PAYLOAD_BUFFER_SIZE); #endif #ifdef VENDORFILTER strcat_P(features, " OUIFLT"); #endif ESP_LOGI(TAG, "Starting %s v%s", PRODUCTNAME, PROGVERSION); // print chip information on startup if in verbose mode #ifdef VERBOSE esp_chip_info_t chip_info; esp_chip_info(&chip_info); ESP_LOGI(TAG, "This is ESP32 chip with %d CPU cores, WiFi%s%s, silicon revision " "%d, %dMB %s Flash", chip_info.cores, (chip_info.features & CHIP_FEATURE_BT) ? "/BT" : "", (chip_info.features & CHIP_FEATURE_BLE) ? "/BLE" : "", chip_info.revision, spi_flash_get_chip_size() / (1024 * 1024), (chip_info.features & CHIP_FEATURE_EMB_FLASH) ? "embedded" : "external"); ESP_LOGI(TAG, "ESP32 SDK: %s", ESP.getSdkVersion()); ESP_LOGI(TAG, "Free RAM: %d bytes", ESP.getFreeHeap()); #ifdef HAS_GPS ESP_LOGI(TAG, "TinyGPS+ v%s", TinyGPSPlus::libraryVersion()); #endif #endif // verbose // initialize display #ifdef HAS_DISPLAY strcat_P(features, " OLED"); DisplayState = cfg.screenon; init_display(PRODUCTNAME, PROGVERSION); // setup display refresh trigger IRQ using esp32 hardware timer // https://techtutorialsx.com/2017/10/07/esp32-arduino-timer-interrupts/ // prescaler 80 -> divides 80 MHz CPU freq to 1 MHz, timer 0, count up displaytimer = timerBegin(0, 80, true); // interrupt handler DisplayIRQ, triggered by edge timerAttachInterrupt(displaytimer, &DisplayIRQ, true); // reload interrupt after each trigger of display refresh cycle timerAlarmWrite(displaytimer, DISPLAYREFRESH_MS * 1000, true); // enable display interrupt yield(); timerAlarmEnable(displaytimer); #endif // setup send cycle trigger IRQ using esp32 hardware timer 2 sendCycle = timerBegin(2, 8000, true); timerAttachInterrupt(sendCycle, &SendCycleIRQ, true); timerAlarmWrite(sendCycle, cfg.sendcycle * 2 * 10000, true); // setup house keeping cycle trigger IRQ using esp32 hardware timer 3 homeCycle = timerBegin(3, 8000, true); timerAttachInterrupt(homeCycle, &homeCycleIRQ, true); timerAlarmWrite(homeCycle, HOMECYCLE * 10000, true); // setup channel rotation trigger IRQ using esp32 hardware timer 1 xWifiChannelSwitchSemaphore = xSemaphoreCreateBinary(); channelSwitch = timerBegin(1, 800, true); timerAttachInterrupt(channelSwitch, &ChannelSwitchIRQ, true); timerAlarmWrite(channelSwitch, cfg.wifichancycle * 1000, true); // enable timers // caution, see: https://github.com/espressif/arduino-esp32/issues/1313 yield(); timerAlarmEnable(homeCycle); yield(); timerAlarmEnable(sendCycle); yield(); timerAlarmEnable(channelSwitch); // show payload encoder #if PAYLOAD_ENCODER == 1 strcat_P(features, " PLAIN"); #elif PAYLOAD_ENCODER == 2 strcat_P(features, " PACKED"); #elif PAYLOAD_ENCODER == 3 strcat_P(features, " LPPDYN"); #elif PAYLOAD_ENCODER == 4 strcat_P(features, " LPPPKD"); #endif // show compiled features ESP_LOGI(TAG, "Features:%s", features); #ifdef HAS_LORA // output LoRaWAN keys to console #ifdef VERBOSE showLoraKeys(); #endif // initialize LoRaWAN LMIC run-time environment os_init(); // reset LMIC MAC state LMIC_reset(); // This tells LMIC to make the receive windows bigger, in case your clock is // 1% faster or slower. LMIC_setClockError(MAX_CLOCK_ERROR * 1 / 100); // join network LMIC_startJoining(); // start lmic runloop in rtos task on core 1 // (note: arduino main loop runs on core 1, too) // https://techtutorialsx.com/2017/05/09/esp32-get-task-execution-core/ ESP_LOGI(TAG, "Starting Lora..."); xTaskCreatePinnedToCore(lorawan_loop, /* task function */ "loraloop", /* name of task */ 2560, /* stack size of task */ (void *)1, /* parameter of the task */ 3, /* priority of the task */ &LoraTask, /* task handle*/ 1); /* CPU core */ #endif // if device has GPS and it is enabled, start GPS reader task on core 0 with // higher priority than wifi channel rotation task since we process serial // streaming NMEA data #ifdef HAS_GPS ESP_LOGI(TAG, "Starting GPS..."); xTaskCreatePinnedToCore(gps_loop, /* task function */ "gpsloop", /* name of task */ 1024, /* stack size of task */ (void *)1, /* parameter of the task */ 2, /* priority of the task */ &GpsTask, /* task handle*/ 0); /* CPU core */ #endif // start BLE scan callback if BLE function is enabled in NVRAM configuration #ifdef BLECOUNTER if (cfg.blescan) { ESP_LOGI(TAG, "Starting Bluetooth..."); start_BLEscan(); } #endif // start wifi in monitor mode and start channel rotation task on core 0 ESP_LOGI(TAG, "Starting Wifi..."); wifi_sniffer_init(); // initialize salt value using esp_random() called by random() in // arduino-esp32 core. Note: do this *after* wifi has started, since // function gets it's seed from RF noise get_salt(); // get new 16bit for salting hashes // start wifi channel rotation task xTaskCreatePinnedToCore(switchWifiChannel, /* task function */ "wifiloop", /* name of task */ 1536, /* stack size of task */ NULL, /* parameter of the task */ 4, /* priority of the task */ &wifiSwitchTask, /* task handle*/ 0); /* CPU core */ // start state machine ESP_LOGI(TAG, "Starting Statemachine..."); xTaskCreatePinnedToCore(stateMachine, /* task function */ "stateloop", /* name of task */ 2048, /* stack size of task */ (void *)1, /* parameter of the task */ 1, /* priority of the task */ &stateMachineTask, /* task handle */ 1); /* CPU core */ } // setup() void loop() { // switch LED state if device has LED(s) #if (HAS_LED != NOT_A_PIN) || defined(HAS_RGB_LED) led_loop(); #endif // give yield to CPU vTaskDelay(2 / portTICK_PERIOD_MS); }