// Basic config #include "globals.h" #include "power.h" // Local logging tag static const char TAG[] = __FILE__; #ifdef HAS_PMU AXP20X_Class pmu; void power_event_IRQ(void) { pmu.readIRQ(); if (pmu.isVbusOverVoltageIRQ()) ESP_LOGI(TAG, "USB voltage %.2fV too high.", pmu.getVbusVoltage() / 1000); if (pmu.isVbusPlugInIRQ()) ESP_LOGI(TAG, "USB plugged, %.2fV @ %.0mA", pmu.getVbusVoltage() / 1000, pmu.getVbusCurrent()); if (pmu.isVbusRemoveIRQ()) ESP_LOGI(TAG, "USB unplugged."); if (pmu.isBattPlugInIRQ()) ESP_LOGI(TAG, "Battery is connected."); if (pmu.isBattRemoveIRQ()) ESP_LOGI(TAG, "Battery was removed."); if (pmu.isChargingIRQ()) ESP_LOGI(TAG, "Battery charging."); if (pmu.isChargingDoneIRQ()) ESP_LOGI(TAG, "Battery charging done."); if (pmu.isBattTempLowIRQ()) ESP_LOGI(TAG, "Battery high temperature."); if (pmu.isBattTempHighIRQ()) ESP_LOGI(TAG, "Battery low temperature."); // display on/off // if (pmu.isPEKShortPressIRQ()) { // cfg.screenon = !cfg.screenon; //} // shutdown power if (pmu.isPEKLongtPressIRQ()) { AXP192_power(false); // switch off Lora, GPS, display pmu.shutdown(); // switch off device } pmu.clearIRQ(); // refresh stored voltage value read_voltage(); } void AXP192_power(bool on) { if (on) { pmu.setPowerOutPut(AXP192_LDO2, AXP202_ON); // Lora on T-Beam V1.0 pmu.setPowerOutPut(AXP192_LDO3, AXP202_ON); // Gps on T-Beam V1.0 pmu.setPowerOutPut(AXP192_DCDC1, AXP202_ON); // OLED on T-Beam v1.0 // pmu.setChgLEDMode(AXP20X_LED_LOW_LEVEL); pmu.setChgLEDMode(AXP20X_LED_BLINK_1HZ); } else { pmu.setChgLEDMode(AXP20X_LED_OFF); pmu.setPowerOutPut(AXP192_DCDC1, AXP202_OFF); pmu.setPowerOutPut(AXP192_LDO3, AXP202_OFF); pmu.setPowerOutPut(AXP192_LDO2, AXP202_OFF); } } void AXP192_showstatus(void) { if (pmu.isBatteryConnect()) if (pmu.isChargeing()) ESP_LOGI(TAG, "Battery charging, %.2fV @ %.0fmAh", pmu.getBattVoltage() / 1000, pmu.getBattChargeCurrent()); else ESP_LOGI(TAG, "Battery not charging"); else ESP_LOGI(TAG, "No Battery"); if (pmu.isVBUSPlug()) ESP_LOGI(TAG, "USB powered, %.0fmW", pmu.getVbusVoltage() / 1000 * pmu.getVbusCurrent()); else ESP_LOGI(TAG, "USB not present"); } void AXP192_init(void) { if (pmu.begin(i2c_readBytes, i2c_writeBytes, AXP192_PRIMARY_ADDRESS) == AXP_FAIL) ESP_LOGI(TAG, "AXP192 PMU initialization failed"); else { // configure AXP192 pmu.setDCDC1Voltage(3300); // for external OLED display pmu.setTimeOutShutdown(false); // no automatic shutdown pmu.setTSmode(AXP_TS_PIN_MODE_DISABLE); // TS pin mode off to save power // switch ADCs on pmu.adc1Enable(AXP202_BATT_VOL_ADC1, true); pmu.adc1Enable(AXP202_BATT_CUR_ADC1, true); pmu.adc1Enable(AXP202_VBUS_VOL_ADC1, true); pmu.adc1Enable(AXP202_VBUS_CUR_ADC1, true); // switch power rails on AXP192_power(true); #ifdef PMU_INT pinMode(PMU_INT, INPUT_PULLUP); attachInterrupt(digitalPinToInterrupt(PMU_INT), PMUIRQ, FALLING); pmu.enableIRQ(AXP202_VBUS_REMOVED_IRQ | AXP202_VBUS_CONNECT_IRQ | AXP202_BATT_REMOVED_IRQ | AXP202_BATT_CONNECT_IRQ | AXP202_CHARGING_FINISHED_IRQ, 1); pmu.clearIRQ(); #endif // PMU_INT ESP_LOGI(TAG, "AXP192 PMU initialized"); } } // helper functions for mutexing i2c access uint8_t i2c_readBytes(uint8_t addr, uint8_t reg, uint8_t *data, uint8_t len) { if (I2C_MUTEX_LOCK()) { uint8_t ret = 0; Wire.beginTransmission(addr); Wire.write(reg); Wire.endTransmission(false); uint8_t cnt = Wire.requestFrom(addr, (uint8_t)len, (uint8_t)1); if (!cnt) ret = 0xFF; uint16_t index = 0; while (Wire.available()) { if (index > len) { ret = 0xFF; goto finish; } data[index++] = Wire.read(); } finish: I2C_MUTEX_UNLOCK(); // release i2c bus access return ret; } else { ESP_LOGW(TAG, "[%0.3f] i2c mutex lock failed", millis() / 1000.0); return 0xFF; } } uint8_t i2c_writeBytes(uint8_t addr, uint8_t reg, uint8_t *data, uint8_t len) { if (I2C_MUTEX_LOCK()) { uint8_t ret = 0; Wire.beginTransmission(addr); Wire.write(reg); for (uint16_t i = 0; i < len; i++) { Wire.write(data[i]); } ret = Wire.endTransmission(); I2C_MUTEX_UNLOCK(); // release i2c bus access // return ret ? 0xFF : ret; return ret ? ret : 0xFF; } else { ESP_LOGW(TAG, "[%0.3f] i2c mutex lock failed", millis() / 1000.0); return 0xFF; } } #endif // HAS_PMU #ifdef BAT_MEASURE_ADC esp_adc_cal_characteristics_t *adc_characs = (esp_adc_cal_characteristics_t *)calloc( 1, sizeof(esp_adc_cal_characteristics_t)); #ifndef BAT_MEASURE_ADC_UNIT // ADC1 static const adc1_channel_t adc_channel = BAT_MEASURE_ADC; #else // ADC2 static const adc2_channel_t adc_channel = BAT_MEASURE_ADC; #endif static const adc_atten_t atten = ADC_ATTEN_DB_11; static const adc_unit_t unit = ADC_UNIT_1; #endif // BAT_MEASURE_ADC void calibrate_voltage(void) { #ifdef BAT_MEASURE_ADC // configure ADC #ifndef BAT_MEASURE_ADC_UNIT // ADC1 ESP_ERROR_CHECK(adc1_config_width(ADC_WIDTH_BIT_12)); ESP_ERROR_CHECK(adc1_config_channel_atten(adc_channel, atten)); #else // ADC2 // ESP_ERROR_CHECK(adc2_config_width(ADC_WIDTH_BIT_12)); ESP_ERROR_CHECK(adc2_config_channel_atten(adc_channel, atten)); #endif // calibrate ADC esp_adc_cal_value_t val_type = esp_adc_cal_characterize( unit, atten, ADC_WIDTH_BIT_12, DEFAULT_VREF, adc_characs); // show ADC characterization base if (val_type == ESP_ADC_CAL_VAL_EFUSE_TP) { ESP_LOGI(TAG, "ADC characterization based on Two Point values stored in eFuse"); } else if (val_type == ESP_ADC_CAL_VAL_EFUSE_VREF) { ESP_LOGI(TAG, "ADC characterization based on reference voltage stored in eFuse"); } else { ESP_LOGI(TAG, "ADC characterization based on default reference voltage"); } #endif } bool batt_sufficient() { #if (defined HAS_PMU || defined BAT_MEASURE_ADC) uint16_t volts = read_voltage(); return ((volts < 1000) || (volts > OTA_MIN_BATT)); // no battery or battery sufficient #else return true; #endif } uint16_t read_voltage() { uint16_t voltage = 0; #ifdef HAS_PMU voltage = pmu.isVBUSPlug() ? 0xffff : pmu.getBattVoltage(); #else #ifdef BAT_MEASURE_ADC // multisample ADC uint32_t adc_reading = 0; #ifndef BAT_MEASURE_ADC_UNIT // ADC1 for (int i = 0; i < NO_OF_SAMPLES; i++) { adc_reading += adc1_get_raw(adc_channel); } #else // ADC2 int adc_buf = 0; for (int i = 0; i < NO_OF_SAMPLES; i++) { ESP_ERROR_CHECK(adc2_get_raw(adc_channel, ADC_WIDTH_BIT_12, &adc_buf)); adc_reading += adc_buf; } #endif // BAT_MEASURE_ADC_UNIT adc_reading /= NO_OF_SAMPLES; // Convert ADC reading to voltage in mV voltage = esp_adc_cal_raw_to_voltage(adc_reading, adc_characs); #endif // BAT_MEASURE_ADC #ifdef BAT_VOLTAGE_DIVIDER voltage *= BAT_VOLTAGE_DIVIDER; #endif // BAT_VOLTAGE_DIVIDER #endif // HAS_PMU return voltage; }