#ifdef HAS_LORA // Basic Config #include "globals.h" #include "rcommand.h" #ifdef MCP_24AA02E64_I2C_ADDRESS #include // Needed for 24AA02E64, does not hurt anything if included and not used #endif // Local logging Tag static const char TAG[] = "lora"; // LMIC enhanced Pin mapping const lmic_pinmap lmic_pins = {.mosi = PIN_SPI_MOSI, .miso = PIN_SPI_MISO, .sck = PIN_SPI_SCK, .nss = PIN_SPI_SS, .rxtx = LMIC_UNUSED_PIN, .rst = RST, .dio = {DIO0, DIO1, DIO2}}; // DevEUI generator using devices's MAC address void gen_lora_deveui(uint8_t *pdeveui) { uint8_t *p = pdeveui, dmac[6]; int i = 0; esp_efuse_mac_get_default(dmac); // deveui is LSB, we reverse it so TTN DEVEUI display // will remain the same as MAC address // MAC is 6 bytes, devEUI 8, set first 2 ones // with an arbitrary value *p++ = 0xFF; *p++ = 0xFE; // Then next 6 bytes are mac address reversed for (i = 0; i < 6; i++) { *p++ = dmac[5 - i]; } } // Function to do a byte swap in a byte array void RevBytes(unsigned char *b, size_t c) { u1_t i; for (i = 0; i < c / 2; i++) { unsigned char t = b[i]; b[i] = b[c - 1 - i]; b[c - 1 - i] = t; } } // LMIC callback functions void os_getDevKey(u1_t *buf) { memcpy(buf, APPKEY, 16); } void os_getArtEui(u1_t *buf) { memcpy(buf, APPEUI, 8); RevBytes(buf, 8); // TTN requires it in LSB First order, so we swap bytes } void os_getDevEui(u1_t *buf) { int i = 0, k = 0; memcpy(buf, DEVEUI, 8); // get fixed DEVEUI from loraconf.h for (i = 0; i < 8; i++) { k += buf[i]; } if (k) { RevBytes(buf, 8); // use fixed DEVEUI and swap bytes to LSB format } else { gen_lora_deveui(buf); // generate DEVEUI from device's MAC } // Get MCP 24AA02E64 hardware DEVEUI (override default settings if found) #ifdef MCP_24AA02E64_I2C_ADDRESS get_hard_deveui(buf); RevBytes(buf, 8); // swap bytes to LSB format #endif } void get_hard_deveui(uint8_t *pdeveui) { // read DEVEUI from Microchip 24AA02E64 2Kb serial eeprom if present #ifdef MCP_24AA02E64_I2C_ADDRESS uint8_t i2c_ret; // Init this just in case, no more to 100KHz Wire.begin(OLED_SDA, OLED_SCL, 100000); Wire.beginTransmission(MCP_24AA02E64_I2C_ADDRESS); Wire.write(MCP_24AA02E64_MAC_ADDRESS); i2c_ret = Wire.endTransmission(); // check if device seen on i2c bus if (i2c_ret == 0) { char deveui[32] = ""; uint8_t data; Wire.beginTransmission(MCP_24AA02E64_I2C_ADDRESS); Wire.write(MCP_24AA02E64_MAC_ADDRESS); Wire.requestFrom(MCP_24AA02E64_I2C_ADDRESS, 8); while (Wire.available()) { data = Wire.read(); sprintf(deveui + strlen(deveui), "%02X ", data); *pdeveui++ = data; } i2c_ret = Wire.endTransmission(); ESP_LOGI(TAG, "Serial EEPROM 24AA02E64 found, read DEVEUI %s", deveui); } else { ESP_LOGI(TAG, "Serial EEPROM 24AA02E64 not found ret=%d", i2c_ret); } // Set back to 400KHz to speed up OLED Wire.setClock(400000); #endif // MCP 24AA02E64 } #ifdef VERBOSE // Display OTAA keys void showLoraKeys(void) { // LMIC may not have used callback to fill // all EUI buffer so we do it here to a temp // buffer to be able to display them uint8_t buf[32]; os_getDevEui((u1_t *)buf); printKey("DevEUI", buf, 8, true); os_getArtEui((u1_t *)buf); printKey("AppEUI", buf, 8, true); os_getDevKey((u1_t *)buf); printKey("AppKey", buf, 16, false); } #endif // VERBOSE void onEvent(ev_t ev) { char buff[24] = ""; switch (ev) { case EV_SCAN_TIMEOUT: strcpy_P(buff, PSTR("SCAN TIMEOUT")); break; case EV_BEACON_FOUND: strcpy_P(buff, PSTR("BEACON FOUND")); break; case EV_BEACON_MISSED: strcpy_P(buff, PSTR("BEACON MISSED")); break; case EV_BEACON_TRACKED: strcpy_P(buff, PSTR("BEACON TRACKED")); break; case EV_JOINING: strcpy_P(buff, PSTR("JOINING")); break; case EV_LOST_TSYNC: strcpy_P(buff, PSTR("LOST TSYNC")); break; case EV_RESET: strcpy_P(buff, PSTR("RESET")); break; case EV_RXCOMPLETE: strcpy_P(buff, PSTR("RX COMPLETE")); break; case EV_LINK_DEAD: strcpy_P(buff, PSTR("LINK DEAD")); break; case EV_LINK_ALIVE: strcpy_P(buff, PSTR("LINK ALIVE")); break; case EV_RFU1: strcpy_P(buff, PSTR("RFUI")); break; case EV_JOIN_FAILED: strcpy_P(buff, PSTR("JOIN FAILED")); break; case EV_REJOIN_FAILED: strcpy_P(buff, PSTR("REJOIN FAILED")); break; case EV_JOINED: strcpy_P(buff, PSTR("JOINED")); sprintf(display_line6, " "); // clear previous lmic status // set data rate adaptation LMIC_setAdrMode(cfg.adrmode); // Set data rate and transmit power (note: txpower seems to be ignored by // the library) switch_lora(cfg.lorasf, cfg.txpower); // show effective LoRa parameters after join ESP_LOGI(TAG, "ADR=%d, SF=%d, TXPOWER=%d", cfg.adrmode, cfg.lorasf, cfg.txpower); break; case EV_TXCOMPLETE: strcpy_P(buff, (LMIC.txrxFlags & TXRX_ACK) ? PSTR("RECEIVED ACK") : PSTR("TX COMPLETE")); sprintf(display_line6, " "); // clear previous lmic status if (LMIC.dataLen) { ESP_LOGI(TAG, "Received %d bytes of payload, RSSI %d SNR %d", LMIC.dataLen, LMIC.rssi, (signed char)LMIC.snr / 4); // LMIC.snr = SNR twos compliment [dB] * 4 // LMIC.rssi = RSSI [dBm] (-196...+63) sprintf(display_line6, "RSSI %d SNR %d", LMIC.rssi, (signed char)LMIC.snr / 4); // check if command is received on command port, then call interpreter if ((LMIC.txrxFlags & TXRX_PORT) && (LMIC.frame[LMIC.dataBeg - 1] == RCMDPORT)) rcommand(LMIC.frame + LMIC.dataBeg, LMIC.dataLen); } break; default: sprintf_P(buff, PSTR("UNKNOWN EVENT %d"), ev); break; } // Log & Display if asked if (*buff) { ESP_LOGI(TAG, "EV_%s", buff); sprintf(display_line7, buff); } } // onEvent() // LMIC FreeRTos Task void lorawan_loop(void *pvParameters) { configASSERT(((uint32_t)pvParameters) == 1); // FreeRTOS check while (1) { os_runloop_once(); // execute LMIC jobs vTaskDelay(1 / portTICK_PERIOD_MS); // reset watchdog } } #endif // HAS_LORA