/* // Emulate a DCF77 radio receiver to control an external clock // // a nice & free logic test program for DCF77 can be found here: https://www-user.tu-chemnitz.de/~heha/viewzip.cgi/hs/Funkuhr.zip/ // // a DCF77 digital scope for Arduino boards can be found here: https://github.com/udoklein/dcf77 // */ #ifdef HAS_DCF77 #include "dcf77.h" // Local logging tag static const char TAG[] = "main"; // array of dcf pulses for one minute, secs 0..16 and 20 are never touched, so // we initialize them statically to avoid dumb recalculation every minute static uint8_t DCFpulse[DCF77_FRAME_SIZE] = { dcf_zero, dcf_zero, dcf_zero, dcf_zero, dcf_zero, dcf_zero, dcf_zero, dcf_zero, dcf_zero, dcf_zero, dcf_zero, dcf_zero, dcf_zero, dcf_zero, dcf_zero, dcf_zero, dcf_zero, dcf_zero, dcf_zero, dcf_zero, dcf_one}; // triggered by 1 second timepulse to ticker out DCF signal void DCF_Pulse(time_t t) { TickType_t startTime = xTaskGetTickCount(); uint8_t sec = second(t); ESP_LOGD(TAG, "DCF77 sec %d", sec); // induce 10 pulses for (uint8_t pulse = 0; pulse <= 9; pulse++) { switch (pulse) { case 0: // start of second -> start of timeframe for logic signal if (DCFpulse[sec] != dcf_off) digitalWrite(HAS_DCF77, dcf_low); else // 59th second reached, nothing more to do return; break; case 1: // 100ms after start of second -> end of timeframe for logic 0 if (DCFpulse[sec] == dcf_zero) digitalWrite(HAS_DCF77, dcf_high); break; case 2: // 200ms after start of second -> end of timeframe for logic 1 digitalWrite(HAS_DCF77, dcf_high); break; case 9: // 900ms after start -> last pulse return; } // switch // impulse period pause vTaskDelayUntil(&startTime, pdMS_TO_TICKS(DCF77_PULSE_LENGTH)); } // for } // DCF_Pulse() uint8_t IRAM_ATTR DCF77_Frame(time_t tt) { uint8_t Parity; time_t t = myTZ.toLocal(tt); // convert to local time // ENCODE DST CHANGE ANNOUNCEMENT (Sec 16) DCFpulse[16] = dcf_zero; // not yet implemented // ENCODE DAYLIGHTSAVING (secs 17..18) DCFpulse[17] = myTZ.locIsDST(t) ? dcf_one : dcf_zero; DCFpulse[18] = myTZ.locIsDST(t) ? dcf_zero : dcf_one; // ENCODE MINUTE (secs 21..28) Parity = dec2bcd(minute(t), 21, 27, DCFpulse); DCFpulse[28] = setParityBit(Parity); // ENCODE HOUR (secs 29..35) Parity = dec2bcd(hour(t), 29, 34, DCFpulse); DCFpulse[35] = setParityBit(Parity); // ENCODE DATE (secs 36..58) Parity = dec2bcd(day(t), 36, 41, DCFpulse); Parity += dec2bcd((weekday(t) - 1) ? (weekday(t) - 1) : 7, 42, 44, DCFpulse); Parity += dec2bcd(month(t), 45, 49, DCFpulse); Parity += dec2bcd(year(t) - 2000, 50, 57, DCFpulse); // yes, we have a millenium 3000 bug here ;-) DCFpulse[58] = setParityBit(Parity); // ENCODE MARK (sec 59) DCFpulse[59] = dcf_off; // !! missing code here for leap second !! // return the minute for which this frame is generated return minute(t); } // DCF77_Frame() // helper function to encode parity uint8_t IRAM_ATTR setParityBit(uint8_t p) { return ((p & 1) ? dcf_one : dcf_zero); } // helper function to convert decimal to bcd digit uint8_t IRAM_ATTR dec2bcd(uint8_t dec, uint8_t startpos, uint8_t endpos, uint8_t pArray[]) { uint8_t data = (dec < 10) ? dec : ((dec / 10) << 4) + (dec % 10); uint8_t parity = 0; for (uint8_t n = startpos; n <= endpos; n++) { pArray[n] = (data & 1) ? dcf_one : dcf_zero; parity += (data & 1); data >>= 1; } return parity; } #endif // HAS_DCF77