timesync timings adjusted

This commit is contained in:
Verkehrsrot 2019-04-07 21:54:19 +02:00
parent 0f32911b2d
commit f337366fb3
3 changed files with 21 additions and 20 deletions

View File

@ -17,7 +17,7 @@ Copyright 2018 Klaus Wilting <verkehrsrot@arcor.de>
See the License for the specific language governing permissions and
limitations under the License.
NOTICE:
NOTE:
Parts of the source files in this repository are made available under different
licenses. Refer to LICENSE.txt file in repository for more details.
@ -31,8 +31,8 @@ ledloop 0 3 blinks LEDs
spiloop 0 2 reads/writes data on spi interface
IDLE 0 0 ESP32 arduino scheduler -> runs wifi sniffer
timesync_req 1 4 processes realtime time sync requests
clockloop 1 3 generates realtime telegrams for external clock
clockloop 1 4 generates realtime telegrams for external clock
timesync_req 1 3 processes realtime time sync requests
irqhandler 1 2 display, timesync, etc. tasks triggered by timer
gpsloop 1 2 reads data from GPS via serial or i2c
bmeloop 1 1 reads data from BME sensor via i2c
@ -44,6 +44,9 @@ Low priority numbers denote low priority tasks.
Tasks using i2c bus all must have same priority, because using mutex semaphore
(irqhandler, bmeloop)
NOTE: Changing any timings will have impact on time accuracy of whole code.
So don't do it if you do not own a digital oscilloscope.
// ESP32 hardware timers
-------------------------------------------------------------------------------
0 displayIRQ -> display refresh -> 40ms (DISPLAYREFRESH_MS)

View File

@ -196,7 +196,7 @@ void clock_init(void) {
"clockloop", // name of task
2048, // stack size of task
(void *)&userUTCTime, // start time as task parameter
3, // priority of the task
4, // priority of the task
&ClockTask, // task handle
1); // CPU core
@ -213,7 +213,6 @@ void clock_loop(void *taskparameter) { // ClockTask
static bool led1_state = false;
uint32_t printtime;
time_t t = *((time_t *)taskparameter), last_printtime = 0; // UTC time seconds
TickType_t startTime;
#ifdef HAS_DCF77
uint8_t *DCFpulse; // pointer on array with DCF pulse bits
@ -229,8 +228,6 @@ void clock_loop(void *taskparameter) { // ClockTask
xTaskNotifyWait(0x00, ULONG_MAX, &printtime,
portMAX_DELAY); // wait for timepulse
startTime = xTaskGetTickCount();
t = time_t(printtime); // UTC time seconds
// no confident or no recent time -> suppress clock output
@ -251,7 +248,7 @@ void clock_loop(void *taskparameter) { // ClockTask
#if defined HAS_IF482
vTaskDelayUntil(&startTime, txDelay); // wait until moment to fire
vTaskDelay(txDelay); // wait until moment to fire
IF482.print(IF482_Frame(t + 1)); // note: if482 telegram for *next* second
#elif defined HAS_DCF77

View File

@ -54,7 +54,7 @@ void process_timesync_req(void *taskparameter) {
while (1) {
// clear timestamp array before next sync run
// reset all timestamps before next sync run
time_offset_ms = myClock_msecTick::zero();
for (uint8_t i = 0; i < TIME_SYNC_SAMPLES; i++)
time_sync_tx[i] = time_sync_rx[i] = myClock_timepoint();
@ -69,21 +69,22 @@ void process_timesync_req(void *taskparameter) {
payload.addByte(time_sync_seqNo);
SendPayload(TIMEPORT, prio_high);
// process answer, wait for notification from recv_timesync_ans()
// wait for notification from recv_timesync_ans()
if ((xTaskNotifyWait(0x00, ULONG_MAX, &seq_no,
pdMS_TO_TICKS(TIME_SYNC_TIMEOUT * 1000)) ==
pdFALSE) ||
(seq_no != time_sync_seqNo))
goto error; // no valid sequence received before timeout
else { // calculate time diff from collected timestamps
// process answer
else {
k = seq_no % TIME_SYNC_SAMPLES;
// cumulate timepoint diffs
// calculate time diff from collected timestamps
time_offset_ms += time_point_cast<milliseconds>(time_sync_rx[k]) -
time_point_cast<milliseconds>(time_sync_tx[k]);
// wrap around seqNo keeping it in time port range
// wrap around seqNo, keeping it in time port range
time_sync_seqNo = (time_sync_seqNo < TIMEANSWERPORT_MAX)
? time_sync_seqNo + 1
: TIMEANSWERPORT_MIN;
@ -100,18 +101,18 @@ void process_timesync_req(void *taskparameter) {
// LMIC_sendAlive();
}
}
} // end for() collect timestamp samples
} // end of for loop to collect timestamp samples
// begin of time critical section: lock I2C bus to ensure accurate timing
// begin of time critical section: lock app irq's and I2C bus
if (!mask_user_IRQ())
goto error; // failure
// average time offset from collected diffs
// average time offset over all collected diffs
time_offset_ms /= TIME_SYNC_SAMPLES;
// calculate time offset with millisecond precision using LMIC's time base,
// since we use LMIC's ostime_t txEnd as tx timestamp.
// Finally apply calibration const for processing time.
// Also apply calibration const to compensate processing time.
time_offset_ms +=
milliseconds(osticks2ms(os_getTime())) + milliseconds(TIME_SYNC_FIXUP);
@ -123,7 +124,7 @@ void process_timesync_req(void *taskparameter) {
setMyTime(time_to_set, time_to_set_fraction_msec);
// end of time critical section: release I2C bus
// end of time critical section: release I2C bus and re-enable app irq's
unmask_user_IRQ();
goto finish;
@ -187,7 +188,7 @@ int recv_timesync_ans(uint8_t seq_no, uint8_t buf[], uint8_t buf_len) {
// construct the timepoint when message was seen on gateway
time_sync_rx[k] += seconds(timestamp_sec) + milliseconds(timestamp_msec);
// guess timepoint is recent if newer than code compile date
// we guess timepoint is recent if it newer than code compile date
if (timeIsValid(myClock::to_time_t(time_sync_rx[k]))) {
ESP_LOGD(TAG, "[%0.3f] Timesync request #%d rcvd at %d.%03d",
millis() / 1000.0, k, timestamp_sec, timestamp_msec);
@ -246,7 +247,7 @@ void timesync_init() {
"timesync_req", // name of task
2048, // stack size of task
(void *)1, // task parameter
4, // priority of the task
3, // priority of the task
&timeSyncReqTask, // task handle
1); // CPU core
}