timeserver (experimental)

This commit is contained in:
Verkehrsrot 2019-03-12 23:50:02 +01:00
parent bd8718f23f
commit edb2c822c8
7 changed files with 97 additions and 93 deletions

View File

@ -5,7 +5,7 @@
#include <Arduino.h> #include <Arduino.h>
// Time functions // Time functions
#include <Time.h> #include "microTime.h"
#include <Timezone.h> #include <Timezone.h>
#include <RtcDateTime.h> #include <RtcDateTime.h>
#include <Ticker.h> #include <Ticker.h>

View File

@ -1,24 +1,21 @@
#ifndef _TIME_SYNC_TIMESERVER_H #ifndef _TIME_SYNC_TIMESERVER_H
#define _TIME_SYNC_TIMESERVER_H #define _TIME_SYNC_TIMESERVER_H
#include <ctime>
#include <chrono>
#include "globals.h" #include "globals.h"
#include "timesync.h" #include "timesync.h"
#include "timekeeper.h" #include "timekeeper.h"
#define TIME_SYNC_SAMPLES 3 // number of time requests for averaging #define TIME_SYNC_SAMPLES 3 // number of time requests for averaging
#define TIME_SYNC_CYCLE 30 // seconds between two time requests #define TIME_SYNC_CYCLE 20 // seconds between two time requests
#define TIME_SYNC_TIMEOUT 120 // timeout seconds waiting for timeserver answer #define TIME_SYNC_TIMEOUT 120 // timeout seconds waiting for timeserver answer
#define TIME_SYNC_TRIGGER 1.0f // time deviation threshold triggering time sync #define TIME_SYNC_TRIGGER 1 // time deviation threshold triggering time sync
#define TIME_SYNC_FRAME_LENGTH 0x06 // timeserver answer frame length #define TIME_SYNC_FRAME_LENGTH 0x06 // timeserver answer frame length
typedef struct { void send_timesync_req(void);
uint32_t seconds; void recv_timesync_ans(uint8_t buf[], uint8_t buf_len);
uint8_t fractions; // 1/250ths second = 4 milliseconds resolution void process_timesync_req(void *taskparameter);
} time_sync_message_t;
void send_Servertime_req(void);
void recv_Servertime_ans(uint8_t buf[], uint8_t buf_len);
void process_Servertime_sync_req(void *taskparameter);
void store_time_sync_req(time_t secs, uint32_t micros); void store_time_sync_req(time_t secs, uint32_t micros);
#endif #endif

View File

@ -175,7 +175,7 @@ void showLoraKeys(void) {
void onEvent(ev_t ev) { void onEvent(ev_t ev) {
char buff[24] = ""; char buff[24] = "";
uint32_t now_micros; uint32_t now_micros = 0;
switch (ev) { switch (ev) {
@ -238,21 +238,27 @@ void onEvent(ev_t ev) {
: PSTR("TX_COMPLETE")); : PSTR("TX_COMPLETE"));
sprintf(display_line6, " "); // clear previous lmic status sprintf(display_line6, " "); // clear previous lmic status
if (LMIC.dataLen) { if (LMIC.dataLen) { // did we receive data -> display info
ESP_LOGI(TAG, "Received %d bytes of payload, RSSI -%d SNR %d", ESP_LOGI(TAG, "Received %d bytes of payload, RSSI -%d SNR %d",
LMIC.dataLen, LMIC.rssi, LMIC.snr / 4); LMIC.dataLen, LMIC.rssi, LMIC.snr / 4);
sprintf(display_line6, "RSSI -%d SNR %d", LMIC.rssi, LMIC.snr / 4); sprintf(display_line6, "RSSI -%d SNR %d", LMIC.rssi, LMIC.snr / 4);
// check if this is a timesync answer, then call timesync processor if (LMIC.txrxFlags & TXRX_PORT) { // FPort -> use to switch
switch (LMIC.frame[LMIC.dataBeg - 1]) {
#if (TIME_SYNC_TIMESERVER) #if (TIME_SYNC_TIMESERVER)
if ((LMIC.txrxFlags & TXRX_PORT) && case TIMEPORT: // timesync answer -> call timesync processor
(LMIC.frame[LMIC.dataBeg - 1] == TIMEPORT)) recv_timesync_ans(LMIC.frame + LMIC.dataBeg, LMIC.dataLen);
recv_Servertime_ans(LMIC.frame + LMIC.dataBeg, LMIC.dataLen); break;
#endif #endif
// check if this an opcode, then call rcommand interpreter case RCMDPORT: // opcode -> call rcommand interpreter
if ((LMIC.txrxFlags & TXRX_PORT) && rcommand(LMIC.frame + LMIC.dataBeg, LMIC.dataLen);
(LMIC.frame[LMIC.dataBeg - 1] == RCMDPORT)) break;
rcommand(LMIC.frame + LMIC.dataBeg, LMIC.dataLen); default: // unknown port -> display info
ESP_LOGI(TAG, "Received data on unsupported port #%d",
LMIC.frame[LMIC.dataBeg - 1]);
break;
}
}
} }
break; break;

View File

@ -45,7 +45,7 @@ time_t timeProvider(void) {
// kick off asychronous Lora timeserver timesync if we have // kick off asychronous Lora timeserver timesync if we have
#if (TIME_SYNC_TIMESERVER) #if (TIME_SYNC_TIMESERVER)
send_Servertime_req(); send_timesync_req();
// kick off asychronous lora network sync if we have // kick off asychronous lora network sync if we have
#elif (TIME_SYNC_LORAWAN) #elif (TIME_SYNC_LORAWAN)
LMIC_requestNetworkTime(user_request_network_time_callback, &userUTCTime); LMIC_requestNetworkTime(user_request_network_time_callback, &userUTCTime);
@ -116,7 +116,7 @@ void timepulse_start(void) {
void IRAM_ATTR CLOCKIRQ(void) { void IRAM_ATTR CLOCKIRQ(void) {
BaseType_t xHigherPriorityTaskWoken; BaseType_t xHigherPriorityTaskWoken;
SyncToPPS(); // calibrates UTC systime, see Time.h SyncToPPS(); // calibrates UTC systime, see microTime.h
xHigherPriorityTaskWoken = pdFALSE; xHigherPriorityTaskWoken = pdFALSE;
if (ClockTask != NULL) if (ClockTask != NULL)
@ -149,7 +149,7 @@ time_t compiledUTC(void) {
time_t tmConvert(uint16_t YYYY, uint8_t MM, uint8_t DD, uint8_t hh, uint8_t mm, time_t tmConvert(uint16_t YYYY, uint8_t MM, uint8_t DD, uint8_t hh, uint8_t mm,
uint8_t ss) { uint8_t ss) {
tmElements_t tm; tmElements_t tm;
tm.Year = CalendarYrToTm(YYYY); // year offset from 1970 in time.h tm.Year = CalendarYrToTm(YYYY); // year offset from 1970 in microTime.h
tm.Month = MM; tm.Month = MM;
tm.Day = DD; tm.Day = DD;
tm.Hour = hh; tm.Hour = hh;

View File

@ -17,60 +17,67 @@ algorithm in applications without granted license by the patent holder.
static const char TAG[] = __FILE__; static const char TAG[] = __FILE__;
TaskHandle_t timeSyncReqTask; TaskHandle_t timeSyncReqTask;
time_sync_message_t time_sync_messages[TIME_SYNC_SAMPLES] = {0},
time_sync_answers[TIME_SYNC_SAMPLES] = {0};
static uint8_t time_sync_seqNo = 0; static uint8_t time_sync_seqNo = 0;
static bool time_sync_pending = false; static bool lora_time_sync_pending = false;
typedef std::chrono::system_clock myClock;
typedef myClock::time_point myClock_timepoint;
typedef std::chrono::duration<long long int, std::ratio<1, 1000>>
myClock_msecTick;
// 32bit millisec resolution from epoch until year 2038
myClock_timepoint time_sync_tx[TIME_SYNC_SAMPLES];
myClock_timepoint time_sync_rx[TIME_SYNC_SAMPLES];
// send time request message // send time request message
void send_Servertime_req() { void send_timesync_req() {
// if a timesync handshake is pending then exit // if a timesync handshake is pending then exit
if (time_sync_pending) { if (lora_time_sync_pending) {
ESP_LOGI(TAG, "Timeserver sync request already pending"); ESP_LOGI(TAG, "Timeserver sync request already pending");
return; return;
} else { } else {
ESP_LOGI(TAG, "Timeserver sync request started"); ESP_LOGI(TAG, "Timeserver sync request started");
time_sync_pending = true; lora_time_sync_pending = true;
// clear timestamp array // clear timestamp array
for (uint8_t i = 0; i <= TIME_SYNC_SAMPLES + 1; i++) { for (uint8_t i = 0; i < TIME_SYNC_SAMPLES; i++) {
time_sync_messages[i].seconds = time_sync_answers[i].seconds = time_sync_tx[i] = time_sync_rx[i] = myClock_timepoint(); // set to epoch
time_sync_messages[i].fractions = time_sync_answers[i].fractions = 0;
} }
// kick off temporary task for timeserver handshake processing // kick off temporary task for timeserver handshake processing
if (!timeSyncReqTask) if (!timeSyncReqTask)
xTaskCreatePinnedToCore(process_Servertime_sync_req, // task function xTaskCreatePinnedToCore(process_timesync_req, // task function
"timesync_req", // name of task "timesync_req", // name of task
2048, // stack size of task 2048, // stack size of task
(void *)1, // task parameter (void *)1, // task parameter
0, // priority of the task 0, // priority of the task
&timeSyncReqTask, // task handle &timeSyncReqTask, // task handle
1); // CPU core 1); // CPU core
} }
} }
// process timeserver timestamp response, called from rcommand.cpp // process timeserver timestamp answer, called from lorawan.cpp
void recv_Servertime_ans(uint8_t buf[], uint8_t buf_len) { void recv_timesync_ans(uint8_t buf[], uint8_t buf_len) {
// if no timesync handshake is pending or invalid buffer then exit // if no timesync handshake is pending or spurious buffer then exit
if ((!time_sync_pending) || (buf_len != TIME_SYNC_FRAME_LENGTH)) if ((!lora_time_sync_pending) || (buf_len != TIME_SYNC_FRAME_LENGTH))
return; return;
uint8_t seq_no = buf[0], k = seq_no % TIME_SYNC_SAMPLES; uint8_t seq_no = buf[0], k = seq_no % TIME_SYNC_SAMPLES;
uint32_t timestamp_sec = 0; uint16_t timestamp_msec = 4 * buf[5]; // convert 1/250th sec fractions to ms
uint32_t timestamp_sec = 0, tmp_sec = 0;
for (uint8_t i = 1; i <= 4; i++) { for (uint8_t i = 1; i <= 4; i++) {
time_sync_answers[k].seconds = (timestamp_sec <<= 8) |= buf[i]; timestamp_sec = (tmp_sec <<= 8) |= buf[i];
} }
time_sync_answers[k].fractions = buf[5];
ESP_LOGD(TAG, "Timeserver answer:"); time_sync_rx[k] += std::chrono::seconds(timestamp_sec) +
std::chrono::milliseconds(timestamp_msec);
ESP_LOGD(TAG, "ans.sec(%d)=%d / ans.ms(%d)=%d", k, ESP_LOGD(TAG, "Timesync answer #%d rcvd at %d", seq_no,
time_sync_answers[k].seconds, k, time_sync_answers[k].fractions); myClock::to_time_t(time_sync_rx[k]));
// inform processing task // inform processing task
if (timeSyncReqTask) if (timeSyncReqTask)
@ -78,15 +85,15 @@ void recv_Servertime_ans(uint8_t buf[], uint8_t buf_len) {
} }
// task for sending time sync requests // task for sending time sync requests
void process_Servertime_sync_req(void *taskparameter) { void process_timesync_req(void *taskparameter) {
time_t t = 0, time_to_set = 0; time_t time_to_set = 0;
uint32_t seq_no = 0, k = 0; uint8_t k = 0, i = 0;
int time_diff_frac = 0, time_diff_ms = 0; uint32_t seq_no = 0;
long time_diff_sec = 0, time_offset = 0; auto time_offset = myClock_msecTick::zero();
// enqueue timestamp samples in lora sendqueue // enqueue timestamp samples in lora sendqueue
for (uint8_t i = 1; i <= TIME_SYNC_SAMPLES; i++) { for (uint8_t i = 0; i < TIME_SYNC_SAMPLES; i++) {
// wrap around seqNo 0 .. 254 // wrap around seqNo 0 .. 254
time_sync_seqNo = (time_sync_seqNo >= 255) ? 0 : time_sync_seqNo + 1; time_sync_seqNo = (time_sync_seqNo >= 255) ? 0 : time_sync_seqNo + 1;
@ -96,55 +103,48 @@ void process_Servertime_sync_req(void *taskparameter) {
payload.addByte(time_sync_seqNo); payload.addByte(time_sync_seqNo);
SendPayload(TIMEPORT, prio_high); SendPayload(TIMEPORT, prio_high);
/* -> do we really need this? maybe for SF9 up?
// send dummy packet to trigger receive answer
payload.reset();
payload.addByte(0x99); // flush
SendPayload(RCMDPORT, prio_low); // to open receive slot for answer
*/
// process answer // process answer
if ((xTaskNotifyWait(0x00, ULONG_MAX, &seq_no, if ((xTaskNotifyWait(0x00, ULONG_MAX, &seq_no,
TIME_SYNC_TIMEOUT * 1000 / portTICK_PERIOD_MS) == pdMS_TO_TICKS(TIME_SYNC_TIMEOUT * 1000)) == pdFALSE) ||
pdFALSE) ||
(seq_no != time_sync_seqNo)) { (seq_no != time_sync_seqNo)) {
ESP_LOGW(TAG, "Timeserver handshake failed"); ESP_LOGW(TAG, "Timeserver handshake failed");
goto finish; goto finish;
} // no valid sequence received before timeout } // no valid sequence received before timeout
else { // calculate time diff from set of collected timestamps else { // calculate time diff from collected timestamps
k = seq_no % TIME_SYNC_SAMPLES; k = seq_no % TIME_SYNC_SAMPLES;
time_diff_sec += auto t_tx = std::chrono::time_point_cast<std::chrono::milliseconds>(
((time_sync_messages[k].seconds - time_sync_answers[k].seconds) / TIME_SYNC_SAMPLES); time_sync_tx[k]); // timepoint node after TX_completed
auto t_rx = std::chrono::time_point_cast<std::chrono::milliseconds>(
time_sync_rx[k]); // timepoint when message was seen on gateway
time_diff_frac += time_offset += t_rx - t_tx;
((time_sync_messages[k].fractions - time_sync_answers[k].fractions) / TIME_SYNC_SAMPLES);
ESP_LOGD(TAG, "time_diff_sec=%d / time_diff_frac=%d", time_diff_sec, if (i < TIME_SYNC_SAMPLES - 1)
time_diff_frac); vTaskDelay(pdMS_TO_TICKS(TIME_SYNC_CYCLE * 1000));
} }
} // for } // for
// calculate time offset and set time if necessary // calculate time offset from collected diffs and set time if necessary
time_diff_ms = 4 * time_diff_frac; time_offset /= TIME_SYNC_SAMPLES;
time_offset = (time_diff_sec + (long) (time_diff_ms / 1000)); ESP_LOGD(TAG, "Avg time diff: %lldms", time_offset.count());
ESP_LOGD(TAG, "Timesync time offset=%d", time_offset); if (abs(time_offset.count()) >= TIME_SYNC_TRIGGER) {
t = now(); /*
if (labs(time_offset) >= (t + TIME_SYNC_TRIGGER)) {
// wait until top of second // wait until top of second
if (time_diff_ms > 0) // clock is fast if (time_offset_ms > 0) // clock is fast
vTaskDelay(pdMS_TO_TICKS(time_diff_ms)); vTaskDelay(pdMS_TO_TICKS(time_diff_ms));
else if (time_diff_ms < 0) // clock is slow else if (time_offset_ms < 0) // clock is slow
vTaskDelay(pdMS_TO_TICKS(1000 + time_diff_ms)); vTaskDelay(pdMS_TO_TICKS(1000 + time_offset_ms));
time_diff_sec++; time_to_set = t - time_t(time_offset_sec + 1);
time_to_set = t - time_t(time_diff_sec); */
ESP_LOGD(TAG, "Now()=%d, Time to set = %d", t, time_to_set);
time_t time_to_set = myClock::to_time_t(myClock::now() + time_offset);
ESP_LOGD(TAG, "New UTC epoch time: %d", time_to_set);
// adjust system time // adjust system time
if (timeIsValid(time_to_set)) { if (timeIsValid(time_to_set)) {
@ -161,20 +161,21 @@ void process_Servertime_sync_req(void *taskparameter) {
finish: finish:
time_sync_pending = false; lora_time_sync_pending = false;
timeSyncReqTask = NULL; timeSyncReqTask = NULL;
vTaskDelete(NULL); // end task vTaskDelete(NULL); // end task
} }
// called from lorawan.cpp after time_sync_req was sent // called from lorawan.cpp after time_sync_req was sent
void store_time_sync_req(time_t secs, uint32_t micros) { void store_time_sync_req(time_t t_sec, uint32_t t_microsec) {
uint8_t k = time_sync_seqNo % TIME_SYNC_SAMPLES; uint8_t k = time_sync_seqNo % TIME_SYNC_SAMPLES;
time_sync_messages[k].seconds = (uint32_t) secs; time_sync_tx[k] +=
time_sync_messages[k].fractions = (uint8_t) (micros / 4000); // 4ms resolution std::chrono::seconds(t_sec) + std::chrono::microseconds(t_microsec);
ESP_LOGD(TAG, "Timeserver request #%d sent at %d.%03d", time_sync_seqNo, ESP_LOGD(TAG, "Timesync request #%d sent at %d", time_sync_seqNo,
time_sync_messages[k].seconds, time_sync_messages[k].fractions); myClock::to_time_t(time_sync_tx[k]));
} }
#endif #endif