DCF77 optimizations
This commit is contained in:
parent
f5e5bf798a
commit
e1b6d9a04c
@ -17,5 +17,6 @@ void DCF_Out(uint8_t startsec);
|
||||
void generateTimeframe(time_t t);
|
||||
void set_DCF77_pin(dcf_pinstate state);
|
||||
uint8_t dec2bcd(uint8_t dec, uint8_t startpos, uint8_t endpos, uint8_t pArray[]);
|
||||
uint8_t sync_clock(time_t t);
|
||||
|
||||
#endif
|
215
src/dcf77.cpp
215
src/dcf77.cpp
@ -44,8 +44,7 @@ int dcf77_init(void) {
|
||||
|
||||
assert(DCF77Task); // has dcf77 task started?
|
||||
|
||||
// if we have hardware pps signal we use it as precise time base
|
||||
#ifdef RTC_INT
|
||||
#ifdef RTC_INT // if we have hardware pps signal we use it as precise time base
|
||||
|
||||
#ifndef RTC_CLK // assure we know external clock freq
|
||||
#error "External clock cycle not defined in board hal file"
|
||||
@ -65,24 +64,20 @@ int dcf77_init(void) {
|
||||
return 0; // failure
|
||||
}
|
||||
|
||||
// if we don't have pps signal from RTC we emulate it using ESP32 hardware timer
|
||||
#else
|
||||
#else // if we don't have pps signal from RTC we use ESP32 hardware timer
|
||||
|
||||
#define RTC_CLK (DCF77_PULSE_DURATION) // setup clock cycle
|
||||
ESP_LOGI(TAG, "Time base ESP32 clock");
|
||||
dcfCycle = timerBegin(1, 8000, true); // set 80 MHz prescaler to 1/10000 sec
|
||||
timerAttachInterrupt(dcfCycle, &DCF77IRQ, true);
|
||||
timerAlarmWrite(dcfCycle, 10 * RTC_CLK, true); // RTC_CLK / 1sec = 100ms
|
||||
timerAlarmWrite(dcfCycle, 10 * RTC_CLK, true); // 100ms
|
||||
|
||||
#endif
|
||||
|
||||
// wait until beginning of next second, then kick off first DCF pulse and
|
||||
// start clock signal
|
||||
|
||||
t = tt = now();
|
||||
do {
|
||||
tt = now();
|
||||
} while (t == tt);
|
||||
|
||||
DCF_Out(second(tt));
|
||||
DCF_Out(sync_clock(now()));
|
||||
|
||||
#ifdef RTC_INT // start external clock
|
||||
attachInterrupt(digitalPinToInterrupt(RTC_INT), DCF77IRQ, FALLING);
|
||||
@ -93,6 +88,103 @@ int dcf77_init(void) {
|
||||
return 1; // success
|
||||
} // ifdcf77_init
|
||||
|
||||
// called every 100msec by hardware timer to pulse out DCF signal
|
||||
void DCF_Out(uint8_t startOffset) {
|
||||
|
||||
static uint8_t bit = startOffset;
|
||||
static uint8_t pulse = 0;
|
||||
#ifdef TIME_SYNC_INTERVAL_DCF
|
||||
static uint32_t nextDCFsync = millis() + TIME_SYNC_INTERVAL_DCF * 60000;
|
||||
#endif
|
||||
|
||||
if (!BitsPending) {
|
||||
// prepare frame to send for next minute
|
||||
generateTimeframe(now() + DCF77_FRAME_SIZE + 1);
|
||||
// start blinking symbol on display and kick off timer
|
||||
BitsPending = true;
|
||||
}
|
||||
|
||||
// ticker out current DCF frame
|
||||
if (BitsPending) {
|
||||
switch (pulse++) {
|
||||
|
||||
case 0: // start of second -> start of timeframe for logic signal
|
||||
if (DCFtimeframe[bit] != dcf_off)
|
||||
set_DCF77_pin(dcf_low);
|
||||
break;
|
||||
|
||||
case 1: // 100ms after start of second -> end of timeframe for logic 0
|
||||
if (DCFtimeframe[bit] == dcf_zero)
|
||||
set_DCF77_pin(dcf_high);
|
||||
break;
|
||||
|
||||
case 2: // 200ms after start of second -> end of timeframe for logic 1
|
||||
set_DCF77_pin(dcf_high);
|
||||
break;
|
||||
|
||||
case 9: // 900ms after start -> last pulse before next second starts
|
||||
pulse = 0;
|
||||
if (bit++ == (DCF77_FRAME_SIZE - 1)) // end of DCF77 frame (59th second)
|
||||
{
|
||||
bit = 0;
|
||||
BitsPending = false;
|
||||
// recalibrate clock after a fixed timespan, do this in 59th second
|
||||
#ifdef TIME_SYNC_INTERVAL_DCF
|
||||
if ((millis() >= nextDCFsync)) {
|
||||
sync_clock(now()); // in second 58,90x -> waiting for second 59
|
||||
nextDCFsync = millis() + TIME_SYNC_INTERVAL_DCF *
|
||||
60000; // set up next time sync period
|
||||
}
|
||||
#endif
|
||||
};
|
||||
break;
|
||||
|
||||
}; // switch
|
||||
}; // if
|
||||
} // DCF_Out()
|
||||
|
||||
void dcf77_loop(void *pvParameters) {
|
||||
|
||||
configASSERT(((uint32_t)pvParameters) == 1); // FreeRTOS check
|
||||
|
||||
TickType_t wakeTime;
|
||||
|
||||
// task remains in blocked state until it is notified by isr
|
||||
for (;;) {
|
||||
xTaskNotifyWait(
|
||||
0x00, // don't clear any bits on entry
|
||||
ULONG_MAX, // clear all bits on exit
|
||||
&wakeTime, // receives moment of call from isr
|
||||
portMAX_DELAY); // wait forever (missing error handling here...)
|
||||
|
||||
#if (RTC_CLK == DCF77_PULSE_DURATION)
|
||||
DCF_Out(0); // we don't need clock rescaling
|
||||
|
||||
#else // we need clock rescaling by software timer
|
||||
for (uint8_t i = 1; i <= RTC_CLK / DCF77_PULSE_DURATION; i++) {
|
||||
DCF_Out(0);
|
||||
vTaskDelayUntil(&wakeTime, pdMS_TO_TICKS(DCF77_PULSE_DURATION));
|
||||
}
|
||||
#endif
|
||||
} // for
|
||||
} // dcf77_loop()
|
||||
|
||||
// helper function to convert decimal to bcd digit
|
||||
uint8_t dec2bcd(uint8_t dec, uint8_t startpos, uint8_t endpos,
|
||||
uint8_t pArray[]) {
|
||||
|
||||
uint8_t data = (dec < 10) ? dec : ((dec / 10) << 4) + (dec % 10);
|
||||
uint8_t parity = 0;
|
||||
|
||||
for (uint8_t n = startpos; n <= endpos; n++) {
|
||||
pArray[n] = (data & 1) ? dcf_one : dcf_zero;
|
||||
parity += (data & 1);
|
||||
data >>= 1;
|
||||
}
|
||||
|
||||
return parity;
|
||||
}
|
||||
|
||||
void generateTimeframe(time_t tt) {
|
||||
|
||||
uint8_t ParityCount;
|
||||
@ -141,93 +233,6 @@ void generateTimeframe(time_t tt) {
|
||||
*/
|
||||
}
|
||||
|
||||
// called every 100msec by hardware timer to pulse out DCF signal
|
||||
void DCF_Out(uint8_t startOffset) {
|
||||
|
||||
static uint8_t bit = startOffset;
|
||||
static uint8_t pulse = 0;
|
||||
|
||||
if (!BitsPending) {
|
||||
// prepare frame to send for next minute
|
||||
generateTimeframe(now() + 61);
|
||||
// start blinking symbol on display and kick off timer
|
||||
BitsPending = true;
|
||||
}
|
||||
|
||||
// ticker out current DCF frame
|
||||
if (BitsPending) {
|
||||
switch (pulse++) {
|
||||
|
||||
case 0: // start of second -> start of timeframe for logic signal
|
||||
if (DCFtimeframe[bit] != dcf_off)
|
||||
set_DCF77_pin(dcf_low);
|
||||
break;
|
||||
|
||||
case 1: // 100ms after start of second -> end of timeframe for logic 0
|
||||
if (DCFtimeframe[bit] == dcf_zero)
|
||||
set_DCF77_pin(dcf_high);
|
||||
break;
|
||||
|
||||
case 2: // 200ms after start of second -> end of timeframe for logic 1
|
||||
set_DCF77_pin(dcf_high);
|
||||
break;
|
||||
|
||||
case 9: // 900ms after start -> last pulse before next second starts
|
||||
pulse = 0;
|
||||
if (bit++ == (DCF77_FRAME_SIZE - 1)) // end of DCF77 frame (59th second)
|
||||
{
|
||||
bit = 0;
|
||||
BitsPending = false;
|
||||
};
|
||||
break;
|
||||
|
||||
}; // switch
|
||||
}; // if
|
||||
} // DCF_Out()
|
||||
|
||||
void dcf77_loop(void *pvParameters) {
|
||||
|
||||
configASSERT(((uint32_t)pvParameters) == 1); // FreeRTOS check
|
||||
|
||||
TickType_t wakeTime;
|
||||
|
||||
// task remains in blocked state until it is notified by isr
|
||||
for (;;) {
|
||||
xTaskNotifyWait(
|
||||
0x00, // don't clear any bits on entry
|
||||
ULONG_MAX, // clear all bits on exit
|
||||
&wakeTime, // receives moment of call from isr
|
||||
portMAX_DELAY); // wait forever (missing error handling here...)
|
||||
|
||||
#if (!defined RTC_INT) || (RTC_CLK == DCF77_PULSE_DURATION)
|
||||
DCF_Out(0); // we don't need clock rescaling
|
||||
|
||||
#else // we need clock rescaling by software timer
|
||||
for (uint8_t i = 1; i <= RTC_CLK / DCF77_PULSE_DURATION; i++) {
|
||||
DCF_Out(0);
|
||||
vTaskDelayUntil(&wakeTime, pdMS_TO_TICKS(DCF77_PULSE_DURATION));
|
||||
} // for
|
||||
#endif
|
||||
|
||||
} // for
|
||||
} // dcf77_loop()
|
||||
|
||||
// helper function to convert decimal to bcd digit
|
||||
uint8_t dec2bcd(uint8_t dec, uint8_t startpos, uint8_t endpos,
|
||||
uint8_t pArray[]) {
|
||||
|
||||
uint8_t data = (dec < 10) ? dec : ((dec / 10) << 4) + (dec % 10);
|
||||
uint8_t parity = 0;
|
||||
|
||||
for (uint8_t n = startpos; n <= endpos; n++) {
|
||||
pArray[n] = (data & 1) ? dcf_one : dcf_zero;
|
||||
parity += (data & 1);
|
||||
data >>= 1;
|
||||
}
|
||||
|
||||
return parity;
|
||||
}
|
||||
|
||||
// helper function to switch GPIO line with DCF77 signal
|
||||
void set_DCF77_pin(dcf_pinstate state) {
|
||||
switch (state) {
|
||||
@ -248,6 +253,20 @@ void set_DCF77_pin(dcf_pinstate state) {
|
||||
} // switch
|
||||
} // DCF77_pulse
|
||||
|
||||
// helper function to sync phase of DCF output signal to start of second t
|
||||
uint8_t sync_clock(time_t t) {
|
||||
time_t tt = t;
|
||||
|
||||
// delay until start of next second
|
||||
do {
|
||||
tt = now();
|
||||
} while (t == tt);
|
||||
|
||||
ESP_LOGI(TAG, "Sync on Sec %d", second(tt));
|
||||
|
||||
return second(tt);
|
||||
}
|
||||
|
||||
// interrupt service routine triggered by external interrupt or internal timer
|
||||
void IRAM_ATTR DCF77IRQ() {
|
||||
xTaskNotifyFromISR(DCF77Task, xTaskGetTickCountFromISR(), eSetBits, NULL);
|
||||
|
@ -86,6 +86,7 @@
|
||||
#define TIME_SYNC_INTERVAL_RTC 60 // sync time each .. minutes from RTC [default = 60], comment out means off
|
||||
#define TIME_WRITE_INTERVAL_RTC 60 // write time each .. minutes from GPS/LORA to RTC [default = 60], comment out means off
|
||||
//#define TIME_SYNC_INTERVAL_LORA 60 // sync time each .. minutes from LORA network [default = 60], comment out means off
|
||||
#define TIME_SYNC_INTERVAL_DCF 60 // sync DCF signal time each .. minutes from internal time [default = 60], comment out means off
|
||||
#define IF482_OFFSET 16 // IF482 serial transmit time [ms]: e.g. 9 bits * 17 bytes * 1/9600 bps = 16ms
|
||||
|
||||
// time zone, see https://github.com/JChristensen/Timezone/blob/master/examples/WorldClock/WorldClock.ino
|
||||
|
Loading…
Reference in New Issue
Block a user