commit
d257a36f97
@ -103,59 +103,4 @@ private:
|
|||||||
|
|
||||||
extern PayloadConvert payload;
|
extern PayloadConvert payload;
|
||||||
|
|
||||||
#endif // _PAYLOAD_H_
|
|
||||||
void addCount(uint16_t value, uint8_t sniffytpe);
|
|
||||||
void addConfig(configData_t value);
|
|
||||||
void addStatus(uint16_t voltage, uint64_t uptime, float cputemp, uint32_t mem,
|
|
||||||
uint8_t reset1, uint8_t reset2);
|
|
||||||
void addAlarm(int8_t rssi, uint8_t message);
|
|
||||||
void addVoltage(uint16_t value);
|
|
||||||
void addGPS(gpsStatus_t value);
|
|
||||||
void addBME(bmeStatus_t value);
|
|
||||||
void addButton(uint8_t value);
|
|
||||||
void addSensor(uint8_t[]);
|
|
||||||
void addTime(time_t value);
|
|
||||||
void addPM10(float value);
|
|
||||||
void addPM25(float value);
|
|
||||||
void addChars( char* string, int len);
|
|
||||||
|
|
||||||
#if (PAYLOAD_ENCODER == 1) // format plain
|
|
||||||
|
|
||||||
private:
|
|
||||||
uint8_t *buffer;
|
|
||||||
uint8_t cursor;
|
|
||||||
|
|
||||||
#elif (PAYLOAD_ENCODER == 2) // format packed
|
|
||||||
|
|
||||||
private:
|
|
||||||
uint8_t *buffer;
|
|
||||||
uint8_t cursor;
|
|
||||||
void uintToBytes(uint64_t i, uint8_t byteSize);
|
|
||||||
void writeUptime(uint64_t unixtime);
|
|
||||||
void writeLatLng(double latitude, double longitude);
|
|
||||||
void writeUint64(uint64_t i);
|
|
||||||
void writeUint32(uint32_t i);
|
|
||||||
void writeUint16(uint16_t i);
|
|
||||||
void writeUint8(uint8_t i);
|
|
||||||
void writeFloat(float value);
|
|
||||||
void writeUFloat(float value);
|
|
||||||
void writePressure(float value);
|
|
||||||
void writeVersion(char *version);
|
|
||||||
void writeBitmap(bool a, bool b, bool c, bool d, bool e, bool f, bool g,
|
|
||||||
bool h);
|
|
||||||
|
|
||||||
#elif ((PAYLOAD_ENCODER == 3) || (PAYLOAD_ENCODER == 4)) // format cayenne lpp
|
|
||||||
|
|
||||||
private:
|
|
||||||
uint8_t *buffer;
|
|
||||||
uint8_t maxsize;
|
|
||||||
uint8_t cursor;
|
|
||||||
|
|
||||||
#else
|
|
||||||
#error No valid payload converter defined!
|
|
||||||
#endif
|
|
||||||
};
|
|
||||||
|
|
||||||
extern PayloadConvert payload;
|
|
||||||
|
|
||||||
#endif // _PAYLOAD_H_
|
#endif // _PAYLOAD_H_
|
||||||
|
502
lib/EspSoftwareSerial/LICENSE
Normal file
502
lib/EspSoftwareSerial/LICENSE
Normal file
@ -0,0 +1,502 @@
|
|||||||
|
GNU LESSER GENERAL PUBLIC LICENSE
|
||||||
|
Version 2.1, February 1999
|
||||||
|
|
||||||
|
Copyright (C) 1991, 1999 Free Software Foundation, Inc.
|
||||||
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||||
|
Everyone is permitted to copy and distribute verbatim copies
|
||||||
|
of this license document, but changing it is not allowed.
|
||||||
|
|
||||||
|
[This is the first released version of the Lesser GPL. It also counts
|
||||||
|
as the successor of the GNU Library Public License, version 2, hence
|
||||||
|
the version number 2.1.]
|
||||||
|
|
||||||
|
Preamble
|
||||||
|
|
||||||
|
The licenses for most software are designed to take away your
|
||||||
|
freedom to share and change it. By contrast, the GNU General Public
|
||||||
|
Licenses are intended to guarantee your freedom to share and change
|
||||||
|
free software--to make sure the software is free for all its users.
|
||||||
|
|
||||||
|
This license, the Lesser General Public License, applies to some
|
||||||
|
specially designated software packages--typically libraries--of the
|
||||||
|
Free Software Foundation and other authors who decide to use it. You
|
||||||
|
can use it too, but we suggest you first think carefully about whether
|
||||||
|
this license or the ordinary General Public License is the better
|
||||||
|
strategy to use in any particular case, based on the explanations below.
|
||||||
|
|
||||||
|
When we speak of free software, we are referring to freedom of use,
|
||||||
|
not price. Our General Public Licenses are designed to make sure that
|
||||||
|
you have the freedom to distribute copies of free software (and charge
|
||||||
|
for this service if you wish); that you receive source code or can get
|
||||||
|
it if you want it; that you can change the software and use pieces of
|
||||||
|
it in new free programs; and that you are informed that you can do
|
||||||
|
these things.
|
||||||
|
|
||||||
|
To protect your rights, we need to make restrictions that forbid
|
||||||
|
distributors to deny you these rights or to ask you to surrender these
|
||||||
|
rights. These restrictions translate to certain responsibilities for
|
||||||
|
you if you distribute copies of the library or if you modify it.
|
||||||
|
|
||||||
|
For example, if you distribute copies of the library, whether gratis
|
||||||
|
or for a fee, you must give the recipients all the rights that we gave
|
||||||
|
you. You must make sure that they, too, receive or can get the source
|
||||||
|
code. If you link other code with the library, you must provide
|
||||||
|
complete object files to the recipients, so that they can relink them
|
||||||
|
with the library after making changes to the library and recompiling
|
||||||
|
it. And you must show them these terms so they know their rights.
|
||||||
|
|
||||||
|
We protect your rights with a two-step method: (1) we copyright the
|
||||||
|
library, and (2) we offer you this license, which gives you legal
|
||||||
|
permission to copy, distribute and/or modify the library.
|
||||||
|
|
||||||
|
To protect each distributor, we want to make it very clear that
|
||||||
|
there is no warranty for the free library. Also, if the library is
|
||||||
|
modified by someone else and passed on, the recipients should know
|
||||||
|
that what they have is not the original version, so that the original
|
||||||
|
author's reputation will not be affected by problems that might be
|
||||||
|
introduced by others.
|
||||||
|
|
||||||
|
Finally, software patents pose a constant threat to the existence of
|
||||||
|
any free program. We wish to make sure that a company cannot
|
||||||
|
effectively restrict the users of a free program by obtaining a
|
||||||
|
restrictive license from a patent holder. Therefore, we insist that
|
||||||
|
any patent license obtained for a version of the library must be
|
||||||
|
consistent with the full freedom of use specified in this license.
|
||||||
|
|
||||||
|
Most GNU software, including some libraries, is covered by the
|
||||||
|
ordinary GNU General Public License. This license, the GNU Lesser
|
||||||
|
General Public License, applies to certain designated libraries, and
|
||||||
|
is quite different from the ordinary General Public License. We use
|
||||||
|
this license for certain libraries in order to permit linking those
|
||||||
|
libraries into non-free programs.
|
||||||
|
|
||||||
|
When a program is linked with a library, whether statically or using
|
||||||
|
a shared library, the combination of the two is legally speaking a
|
||||||
|
combined work, a derivative of the original library. The ordinary
|
||||||
|
General Public License therefore permits such linking only if the
|
||||||
|
entire combination fits its criteria of freedom. The Lesser General
|
||||||
|
Public License permits more lax criteria for linking other code with
|
||||||
|
the library.
|
||||||
|
|
||||||
|
We call this license the "Lesser" General Public License because it
|
||||||
|
does Less to protect the user's freedom than the ordinary General
|
||||||
|
Public License. It also provides other free software developers Less
|
||||||
|
of an advantage over competing non-free programs. These disadvantages
|
||||||
|
are the reason we use the ordinary General Public License for many
|
||||||
|
libraries. However, the Lesser license provides advantages in certain
|
||||||
|
special circumstances.
|
||||||
|
|
||||||
|
For example, on rare occasions, there may be a special need to
|
||||||
|
encourage the widest possible use of a certain library, so that it becomes
|
||||||
|
a de-facto standard. To achieve this, non-free programs must be
|
||||||
|
allowed to use the library. A more frequent case is that a free
|
||||||
|
library does the same job as widely used non-free libraries. In this
|
||||||
|
case, there is little to gain by limiting the free library to free
|
||||||
|
software only, so we use the Lesser General Public License.
|
||||||
|
|
||||||
|
In other cases, permission to use a particular library in non-free
|
||||||
|
programs enables a greater number of people to use a large body of
|
||||||
|
free software. For example, permission to use the GNU C Library in
|
||||||
|
non-free programs enables many more people to use the whole GNU
|
||||||
|
operating system, as well as its variant, the GNU/Linux operating
|
||||||
|
system.
|
||||||
|
|
||||||
|
Although the Lesser General Public License is Less protective of the
|
||||||
|
users' freedom, it does ensure that the user of a program that is
|
||||||
|
linked with the Library has the freedom and the wherewithal to run
|
||||||
|
that program using a modified version of the Library.
|
||||||
|
|
||||||
|
The precise terms and conditions for copying, distribution and
|
||||||
|
modification follow. Pay close attention to the difference between a
|
||||||
|
"work based on the library" and a "work that uses the library". The
|
||||||
|
former contains code derived from the library, whereas the latter must
|
||||||
|
be combined with the library in order to run.
|
||||||
|
|
||||||
|
GNU LESSER GENERAL PUBLIC LICENSE
|
||||||
|
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
|
||||||
|
|
||||||
|
0. This License Agreement applies to any software library or other
|
||||||
|
program which contains a notice placed by the copyright holder or
|
||||||
|
other authorized party saying it may be distributed under the terms of
|
||||||
|
this Lesser General Public License (also called "this License").
|
||||||
|
Each licensee is addressed as "you".
|
||||||
|
|
||||||
|
A "library" means a collection of software functions and/or data
|
||||||
|
prepared so as to be conveniently linked with application programs
|
||||||
|
(which use some of those functions and data) to form executables.
|
||||||
|
|
||||||
|
The "Library", below, refers to any such software library or work
|
||||||
|
which has been distributed under these terms. A "work based on the
|
||||||
|
Library" means either the Library or any derivative work under
|
||||||
|
copyright law: that is to say, a work containing the Library or a
|
||||||
|
portion of it, either verbatim or with modifications and/or translated
|
||||||
|
straightforwardly into another language. (Hereinafter, translation is
|
||||||
|
included without limitation in the term "modification".)
|
||||||
|
|
||||||
|
"Source code" for a work means the preferred form of the work for
|
||||||
|
making modifications to it. For a library, complete source code means
|
||||||
|
all the source code for all modules it contains, plus any associated
|
||||||
|
interface definition files, plus the scripts used to control compilation
|
||||||
|
and installation of the library.
|
||||||
|
|
||||||
|
Activities other than copying, distribution and modification are not
|
||||||
|
covered by this License; they are outside its scope. The act of
|
||||||
|
running a program using the Library is not restricted, and output from
|
||||||
|
such a program is covered only if its contents constitute a work based
|
||||||
|
on the Library (independent of the use of the Library in a tool for
|
||||||
|
writing it). Whether that is true depends on what the Library does
|
||||||
|
and what the program that uses the Library does.
|
||||||
|
|
||||||
|
1. You may copy and distribute verbatim copies of the Library's
|
||||||
|
complete source code as you receive it, in any medium, provided that
|
||||||
|
you conspicuously and appropriately publish on each copy an
|
||||||
|
appropriate copyright notice and disclaimer of warranty; keep intact
|
||||||
|
all the notices that refer to this License and to the absence of any
|
||||||
|
warranty; and distribute a copy of this License along with the
|
||||||
|
Library.
|
||||||
|
|
||||||
|
You may charge a fee for the physical act of transferring a copy,
|
||||||
|
and you may at your option offer warranty protection in exchange for a
|
||||||
|
fee.
|
||||||
|
|
||||||
|
2. You may modify your copy or copies of the Library or any portion
|
||||||
|
of it, thus forming a work based on the Library, and copy and
|
||||||
|
distribute such modifications or work under the terms of Section 1
|
||||||
|
above, provided that you also meet all of these conditions:
|
||||||
|
|
||||||
|
a) The modified work must itself be a software library.
|
||||||
|
|
||||||
|
b) You must cause the files modified to carry prominent notices
|
||||||
|
stating that you changed the files and the date of any change.
|
||||||
|
|
||||||
|
c) You must cause the whole of the work to be licensed at no
|
||||||
|
charge to all third parties under the terms of this License.
|
||||||
|
|
||||||
|
d) If a facility in the modified Library refers to a function or a
|
||||||
|
table of data to be supplied by an application program that uses
|
||||||
|
the facility, other than as an argument passed when the facility
|
||||||
|
is invoked, then you must make a good faith effort to ensure that,
|
||||||
|
in the event an application does not supply such function or
|
||||||
|
table, the facility still operates, and performs whatever part of
|
||||||
|
its purpose remains meaningful.
|
||||||
|
|
||||||
|
(For example, a function in a library to compute square roots has
|
||||||
|
a purpose that is entirely well-defined independent of the
|
||||||
|
application. Therefore, Subsection 2d requires that any
|
||||||
|
application-supplied function or table used by this function must
|
||||||
|
be optional: if the application does not supply it, the square
|
||||||
|
root function must still compute square roots.)
|
||||||
|
|
||||||
|
These requirements apply to the modified work as a whole. If
|
||||||
|
identifiable sections of that work are not derived from the Library,
|
||||||
|
and can be reasonably considered independent and separate works in
|
||||||
|
themselves, then this License, and its terms, do not apply to those
|
||||||
|
sections when you distribute them as separate works. But when you
|
||||||
|
distribute the same sections as part of a whole which is a work based
|
||||||
|
on the Library, the distribution of the whole must be on the terms of
|
||||||
|
this License, whose permissions for other licensees extend to the
|
||||||
|
entire whole, and thus to each and every part regardless of who wrote
|
||||||
|
it.
|
||||||
|
|
||||||
|
Thus, it is not the intent of this section to claim rights or contest
|
||||||
|
your rights to work written entirely by you; rather, the intent is to
|
||||||
|
exercise the right to control the distribution of derivative or
|
||||||
|
collective works based on the Library.
|
||||||
|
|
||||||
|
In addition, mere aggregation of another work not based on the Library
|
||||||
|
with the Library (or with a work based on the Library) on a volume of
|
||||||
|
a storage or distribution medium does not bring the other work under
|
||||||
|
the scope of this License.
|
||||||
|
|
||||||
|
3. You may opt to apply the terms of the ordinary GNU General Public
|
||||||
|
License instead of this License to a given copy of the Library. To do
|
||||||
|
this, you must alter all the notices that refer to this License, so
|
||||||
|
that they refer to the ordinary GNU General Public License, version 2,
|
||||||
|
instead of to this License. (If a newer version than version 2 of the
|
||||||
|
ordinary GNU General Public License has appeared, then you can specify
|
||||||
|
that version instead if you wish.) Do not make any other change in
|
||||||
|
these notices.
|
||||||
|
|
||||||
|
Once this change is made in a given copy, it is irreversible for
|
||||||
|
that copy, so the ordinary GNU General Public License applies to all
|
||||||
|
subsequent copies and derivative works made from that copy.
|
||||||
|
|
||||||
|
This option is useful when you wish to copy part of the code of
|
||||||
|
the Library into a program that is not a library.
|
||||||
|
|
||||||
|
4. You may copy and distribute the Library (or a portion or
|
||||||
|
derivative of it, under Section 2) in object code or executable form
|
||||||
|
under the terms of Sections 1 and 2 above provided that you accompany
|
||||||
|
it with the complete corresponding machine-readable source code, which
|
||||||
|
must be distributed under the terms of Sections 1 and 2 above on a
|
||||||
|
medium customarily used for software interchange.
|
||||||
|
|
||||||
|
If distribution of object code is made by offering access to copy
|
||||||
|
from a designated place, then offering equivalent access to copy the
|
||||||
|
source code from the same place satisfies the requirement to
|
||||||
|
distribute the source code, even though third parties are not
|
||||||
|
compelled to copy the source along with the object code.
|
||||||
|
|
||||||
|
5. A program that contains no derivative of any portion of the
|
||||||
|
Library, but is designed to work with the Library by being compiled or
|
||||||
|
linked with it, is called a "work that uses the Library". Such a
|
||||||
|
work, in isolation, is not a derivative work of the Library, and
|
||||||
|
therefore falls outside the scope of this License.
|
||||||
|
|
||||||
|
However, linking a "work that uses the Library" with the Library
|
||||||
|
creates an executable that is a derivative of the Library (because it
|
||||||
|
contains portions of the Library), rather than a "work that uses the
|
||||||
|
library". The executable is therefore covered by this License.
|
||||||
|
Section 6 states terms for distribution of such executables.
|
||||||
|
|
||||||
|
When a "work that uses the Library" uses material from a header file
|
||||||
|
that is part of the Library, the object code for the work may be a
|
||||||
|
derivative work of the Library even though the source code is not.
|
||||||
|
Whether this is true is especially significant if the work can be
|
||||||
|
linked without the Library, or if the work is itself a library. The
|
||||||
|
threshold for this to be true is not precisely defined by law.
|
||||||
|
|
||||||
|
If such an object file uses only numerical parameters, data
|
||||||
|
structure layouts and accessors, and small macros and small inline
|
||||||
|
functions (ten lines or less in length), then the use of the object
|
||||||
|
file is unrestricted, regardless of whether it is legally a derivative
|
||||||
|
work. (Executables containing this object code plus portions of the
|
||||||
|
Library will still fall under Section 6.)
|
||||||
|
|
||||||
|
Otherwise, if the work is a derivative of the Library, you may
|
||||||
|
distribute the object code for the work under the terms of Section 6.
|
||||||
|
Any executables containing that work also fall under Section 6,
|
||||||
|
whether or not they are linked directly with the Library itself.
|
||||||
|
|
||||||
|
6. As an exception to the Sections above, you may also combine or
|
||||||
|
link a "work that uses the Library" with the Library to produce a
|
||||||
|
work containing portions of the Library, and distribute that work
|
||||||
|
under terms of your choice, provided that the terms permit
|
||||||
|
modification of the work for the customer's own use and reverse
|
||||||
|
engineering for debugging such modifications.
|
||||||
|
|
||||||
|
You must give prominent notice with each copy of the work that the
|
||||||
|
Library is used in it and that the Library and its use are covered by
|
||||||
|
this License. You must supply a copy of this License. If the work
|
||||||
|
during execution displays copyright notices, you must include the
|
||||||
|
copyright notice for the Library among them, as well as a reference
|
||||||
|
directing the user to the copy of this License. Also, you must do one
|
||||||
|
of these things:
|
||||||
|
|
||||||
|
a) Accompany the work with the complete corresponding
|
||||||
|
machine-readable source code for the Library including whatever
|
||||||
|
changes were used in the work (which must be distributed under
|
||||||
|
Sections 1 and 2 above); and, if the work is an executable linked
|
||||||
|
with the Library, with the complete machine-readable "work that
|
||||||
|
uses the Library", as object code and/or source code, so that the
|
||||||
|
user can modify the Library and then relink to produce a modified
|
||||||
|
executable containing the modified Library. (It is understood
|
||||||
|
that the user who changes the contents of definitions files in the
|
||||||
|
Library will not necessarily be able to recompile the application
|
||||||
|
to use the modified definitions.)
|
||||||
|
|
||||||
|
b) Use a suitable shared library mechanism for linking with the
|
||||||
|
Library. A suitable mechanism is one that (1) uses at run time a
|
||||||
|
copy of the library already present on the user's computer system,
|
||||||
|
rather than copying library functions into the executable, and (2)
|
||||||
|
will operate properly with a modified version of the library, if
|
||||||
|
the user installs one, as long as the modified version is
|
||||||
|
interface-compatible with the version that the work was made with.
|
||||||
|
|
||||||
|
c) Accompany the work with a written offer, valid for at
|
||||||
|
least three years, to give the same user the materials
|
||||||
|
specified in Subsection 6a, above, for a charge no more
|
||||||
|
than the cost of performing this distribution.
|
||||||
|
|
||||||
|
d) If distribution of the work is made by offering access to copy
|
||||||
|
from a designated place, offer equivalent access to copy the above
|
||||||
|
specified materials from the same place.
|
||||||
|
|
||||||
|
e) Verify that the user has already received a copy of these
|
||||||
|
materials or that you have already sent this user a copy.
|
||||||
|
|
||||||
|
For an executable, the required form of the "work that uses the
|
||||||
|
Library" must include any data and utility programs needed for
|
||||||
|
reproducing the executable from it. However, as a special exception,
|
||||||
|
the materials to be distributed need not include anything that is
|
||||||
|
normally distributed (in either source or binary form) with the major
|
||||||
|
components (compiler, kernel, and so on) of the operating system on
|
||||||
|
which the executable runs, unless that component itself accompanies
|
||||||
|
the executable.
|
||||||
|
|
||||||
|
It may happen that this requirement contradicts the license
|
||||||
|
restrictions of other proprietary libraries that do not normally
|
||||||
|
accompany the operating system. Such a contradiction means you cannot
|
||||||
|
use both them and the Library together in an executable that you
|
||||||
|
distribute.
|
||||||
|
|
||||||
|
7. You may place library facilities that are a work based on the
|
||||||
|
Library side-by-side in a single library together with other library
|
||||||
|
facilities not covered by this License, and distribute such a combined
|
||||||
|
library, provided that the separate distribution of the work based on
|
||||||
|
the Library and of the other library facilities is otherwise
|
||||||
|
permitted, and provided that you do these two things:
|
||||||
|
|
||||||
|
a) Accompany the combined library with a copy of the same work
|
||||||
|
based on the Library, uncombined with any other library
|
||||||
|
facilities. This must be distributed under the terms of the
|
||||||
|
Sections above.
|
||||||
|
|
||||||
|
b) Give prominent notice with the combined library of the fact
|
||||||
|
that part of it is a work based on the Library, and explaining
|
||||||
|
where to find the accompanying uncombined form of the same work.
|
||||||
|
|
||||||
|
8. You may not copy, modify, sublicense, link with, or distribute
|
||||||
|
the Library except as expressly provided under this License. Any
|
||||||
|
attempt otherwise to copy, modify, sublicense, link with, or
|
||||||
|
distribute the Library is void, and will automatically terminate your
|
||||||
|
rights under this License. However, parties who have received copies,
|
||||||
|
or rights, from you under this License will not have their licenses
|
||||||
|
terminated so long as such parties remain in full compliance.
|
||||||
|
|
||||||
|
9. You are not required to accept this License, since you have not
|
||||||
|
signed it. However, nothing else grants you permission to modify or
|
||||||
|
distribute the Library or its derivative works. These actions are
|
||||||
|
prohibited by law if you do not accept this License. Therefore, by
|
||||||
|
modifying or distributing the Library (or any work based on the
|
||||||
|
Library), you indicate your acceptance of this License to do so, and
|
||||||
|
all its terms and conditions for copying, distributing or modifying
|
||||||
|
the Library or works based on it.
|
||||||
|
|
||||||
|
10. Each time you redistribute the Library (or any work based on the
|
||||||
|
Library), the recipient automatically receives a license from the
|
||||||
|
original licensor to copy, distribute, link with or modify the Library
|
||||||
|
subject to these terms and conditions. You may not impose any further
|
||||||
|
restrictions on the recipients' exercise of the rights granted herein.
|
||||||
|
You are not responsible for enforcing compliance by third parties with
|
||||||
|
this License.
|
||||||
|
|
||||||
|
11. If, as a consequence of a court judgment or allegation of patent
|
||||||
|
infringement or for any other reason (not limited to patent issues),
|
||||||
|
conditions are imposed on you (whether by court order, agreement or
|
||||||
|
otherwise) that contradict the conditions of this License, they do not
|
||||||
|
excuse you from the conditions of this License. If you cannot
|
||||||
|
distribute so as to satisfy simultaneously your obligations under this
|
||||||
|
License and any other pertinent obligations, then as a consequence you
|
||||||
|
may not distribute the Library at all. For example, if a patent
|
||||||
|
license would not permit royalty-free redistribution of the Library by
|
||||||
|
all those who receive copies directly or indirectly through you, then
|
||||||
|
the only way you could satisfy both it and this License would be to
|
||||||
|
refrain entirely from distribution of the Library.
|
||||||
|
|
||||||
|
If any portion of this section is held invalid or unenforceable under any
|
||||||
|
particular circumstance, the balance of the section is intended to apply,
|
||||||
|
and the section as a whole is intended to apply in other circumstances.
|
||||||
|
|
||||||
|
It is not the purpose of this section to induce you to infringe any
|
||||||
|
patents or other property right claims or to contest validity of any
|
||||||
|
such claims; this section has the sole purpose of protecting the
|
||||||
|
integrity of the free software distribution system which is
|
||||||
|
implemented by public license practices. Many people have made
|
||||||
|
generous contributions to the wide range of software distributed
|
||||||
|
through that system in reliance on consistent application of that
|
||||||
|
system; it is up to the author/donor to decide if he or she is willing
|
||||||
|
to distribute software through any other system and a licensee cannot
|
||||||
|
impose that choice.
|
||||||
|
|
||||||
|
This section is intended to make thoroughly clear what is believed to
|
||||||
|
be a consequence of the rest of this License.
|
||||||
|
|
||||||
|
12. If the distribution and/or use of the Library is restricted in
|
||||||
|
certain countries either by patents or by copyrighted interfaces, the
|
||||||
|
original copyright holder who places the Library under this License may add
|
||||||
|
an explicit geographical distribution limitation excluding those countries,
|
||||||
|
so that distribution is permitted only in or among countries not thus
|
||||||
|
excluded. In such case, this License incorporates the limitation as if
|
||||||
|
written in the body of this License.
|
||||||
|
|
||||||
|
13. The Free Software Foundation may publish revised and/or new
|
||||||
|
versions of the Lesser General Public License from time to time.
|
||||||
|
Such new versions will be similar in spirit to the present version,
|
||||||
|
but may differ in detail to address new problems or concerns.
|
||||||
|
|
||||||
|
Each version is given a distinguishing version number. If the Library
|
||||||
|
specifies a version number of this License which applies to it and
|
||||||
|
"any later version", you have the option of following the terms and
|
||||||
|
conditions either of that version or of any later version published by
|
||||||
|
the Free Software Foundation. If the Library does not specify a
|
||||||
|
license version number, you may choose any version ever published by
|
||||||
|
the Free Software Foundation.
|
||||||
|
|
||||||
|
14. If you wish to incorporate parts of the Library into other free
|
||||||
|
programs whose distribution conditions are incompatible with these,
|
||||||
|
write to the author to ask for permission. For software which is
|
||||||
|
copyrighted by the Free Software Foundation, write to the Free
|
||||||
|
Software Foundation; we sometimes make exceptions for this. Our
|
||||||
|
decision will be guided by the two goals of preserving the free status
|
||||||
|
of all derivatives of our free software and of promoting the sharing
|
||||||
|
and reuse of software generally.
|
||||||
|
|
||||||
|
NO WARRANTY
|
||||||
|
|
||||||
|
15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
|
||||||
|
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
|
||||||
|
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
|
||||||
|
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
|
||||||
|
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
|
||||||
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||||
|
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
|
||||||
|
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
|
||||||
|
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
||||||
|
|
||||||
|
16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
|
||||||
|
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
|
||||||
|
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
|
||||||
|
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
|
||||||
|
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
|
||||||
|
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
|
||||||
|
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
|
||||||
|
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
|
||||||
|
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
|
||||||
|
DAMAGES.
|
||||||
|
|
||||||
|
END OF TERMS AND CONDITIONS
|
||||||
|
|
||||||
|
How to Apply These Terms to Your New Libraries
|
||||||
|
|
||||||
|
If you develop a new library, and you want it to be of the greatest
|
||||||
|
possible use to the public, we recommend making it free software that
|
||||||
|
everyone can redistribute and change. You can do so by permitting
|
||||||
|
redistribution under these terms (or, alternatively, under the terms of the
|
||||||
|
ordinary General Public License).
|
||||||
|
|
||||||
|
To apply these terms, attach the following notices to the library. It is
|
||||||
|
safest to attach them to the start of each source file to most effectively
|
||||||
|
convey the exclusion of warranty; and each file should have at least the
|
||||||
|
"copyright" line and a pointer to where the full notice is found.
|
||||||
|
|
||||||
|
<one line to give the library's name and a brief idea of what it does.>
|
||||||
|
Copyright (C) <year> <name of author>
|
||||||
|
|
||||||
|
This library is free software; you can redistribute it and/or
|
||||||
|
modify it under the terms of the GNU Lesser General Public
|
||||||
|
License as published by the Free Software Foundation; either
|
||||||
|
version 2.1 of the License, or (at your option) any later version.
|
||||||
|
|
||||||
|
This library is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||||
|
Lesser General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU Lesser General Public
|
||||||
|
License along with this library; if not, write to the Free Software
|
||||||
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||||
|
|
||||||
|
Also add information on how to contact you by electronic and paper mail.
|
||||||
|
|
||||||
|
You should also get your employer (if you work as a programmer) or your
|
||||||
|
school, if any, to sign a "copyright disclaimer" for the library, if
|
||||||
|
necessary. Here is a sample; alter the names:
|
||||||
|
|
||||||
|
Yoyodyne, Inc., hereby disclaims all copyright interest in the
|
||||||
|
library `Frob' (a library for tweaking knobs) written by James Random Hacker.
|
||||||
|
|
||||||
|
<signature of Ty Coon>, 1 April 1990
|
||||||
|
Ty Coon, President of Vice
|
||||||
|
|
||||||
|
That's all there is to it!
|
124
lib/EspSoftwareSerial/README.md
Normal file
124
lib/EspSoftwareSerial/README.md
Normal file
@ -0,0 +1,124 @@
|
|||||||
|
# EspSoftwareSerial
|
||||||
|
|
||||||
|
## Implementation of the Arduino software serial library for the ESP8266 / ESP32
|
||||||
|
|
||||||
|
This fork implements interrupt service routine best practice.
|
||||||
|
In the receive interrupt, instead of blocking for whole bytes
|
||||||
|
at a time - voiding any near-realtime behavior of the CPU - only level
|
||||||
|
change and timestamp are recorded. The more time consuming phase
|
||||||
|
detection and byte assembly are done in the main code.
|
||||||
|
|
||||||
|
Except at high bitrates, depending on other ongoing activity,
|
||||||
|
interrupts in particular, this software serial adapter
|
||||||
|
supports full duplex receive and send. At high bitrates (115200bps)
|
||||||
|
send bit timing can be improved at the expense of blocking concurrent
|
||||||
|
full duplex receives, with the ``SoftwareSerial::enableIntTx(false)`` function call.
|
||||||
|
|
||||||
|
The same functionality is given as the corresponding AVR library but
|
||||||
|
several instances can be active at the same time. Speed up to 115200 baud
|
||||||
|
is supported. Besides a constructor compatible to the AVR SoftwareSerial class,
|
||||||
|
and updated constructor that takes no arguments exists, instead the ``begin()``
|
||||||
|
function can handle the pin assignments and logic inversion.
|
||||||
|
It also has optional input buffer capacity arguments for byte buffer and ISR bit buffer.
|
||||||
|
This way, it is a better drop-in replacement for the hardware serial APIs on the ESP MCUs.
|
||||||
|
|
||||||
|
Please note that due to the fact that the ESPs always have other activities
|
||||||
|
ongoing, there will be some inexactness in interrupt timings. This may
|
||||||
|
lead to inevitable, but few, bit errors when having heavy data traffic
|
||||||
|
at high baud rates.
|
||||||
|
|
||||||
|
## Resource optimization
|
||||||
|
|
||||||
|
The memory footprint can be optimized to just fit the amount of expected
|
||||||
|
incoming asynchronous data.
|
||||||
|
For this, the ``SoftwareSerial`` constructor provides two arguments. First, the
|
||||||
|
octet buffer capacity for assembled received octets can be set. Read calls are
|
||||||
|
satisfied from this buffer, freeing it in return.
|
||||||
|
Second, the signal edge detection buffer of 32bit fields can be resized.
|
||||||
|
One octet may require up to to 10 fields, but fewer may be needed,
|
||||||
|
depending on the bit pattern. Any read or write calls check this buffer
|
||||||
|
to assemble received octets, thus promoting completed octets to the octet
|
||||||
|
buffer, freeing fields in the edge detection buffer.
|
||||||
|
|
||||||
|
Look at the swsertest.ino example. There, on reset, ASCII characters ' ' to 'z'
|
||||||
|
are sent. This happens not as a block write, but in a single write call per
|
||||||
|
character. As the example uses a local loopback wire, every outgoing bit is
|
||||||
|
immediately received back. Therefore, any single write call causes up to
|
||||||
|
10 fields - depending on the exact bit pattern - to be occupied in the signal
|
||||||
|
edge detection buffer. In turn, as explained before, each single write call
|
||||||
|
also causes received bit assembly to be performed, promoting these bits from
|
||||||
|
the signal edge detection buffer to the octet buffer as soon as possible.
|
||||||
|
Explaining by way of contrast, if during a a single write call, perhaps because
|
||||||
|
of using block writing, more than a single octet is received, there will be a
|
||||||
|
need for more than 10 fields in the signal edge detection buffer.
|
||||||
|
The necessary capacity of the octet buffer only depends on the amount of incoming
|
||||||
|
data until the next read call.
|
||||||
|
|
||||||
|
For the swsertest.ino example, this results in the following optimized
|
||||||
|
constructor arguments to spend only the minimum RAM on buffers required:
|
||||||
|
|
||||||
|
The octet buffer capacity (``bufCapacity``) is 93 (91 characters net plus two tolerance).
|
||||||
|
The signal edge detection buffer capacity (``isrBufCapacity``) is 10, as each octet has
|
||||||
|
10 bits on the wire, which are immediately received during the write, and each
|
||||||
|
write call causes the signal edge detection to promote the previously sent and
|
||||||
|
received bits to the octet buffer.
|
||||||
|
|
||||||
|
In a more generalized scenario, calculate the bits (use message size in octets
|
||||||
|
times 10) that may be asynchronously received to determine the value for
|
||||||
|
``isrBufCapacity`` in the constructor. Also use the number of received octets
|
||||||
|
that must be buffered for reading as the value of ``bufCapacity``.
|
||||||
|
The more frequently your code calls write or read functions, the greater the
|
||||||
|
chances are that you can reduce the ``isrBufCapacity`` footprint without losing data,
|
||||||
|
and each time you call read to fetch from the octet buffer, you reduce the
|
||||||
|
need for space there.
|
||||||
|
|
||||||
|
## SoftwareSerialConfig and parity
|
||||||
|
The configuration of the data stream is done via a ``SoftwareSerialConfig``
|
||||||
|
argument to ``begin()``. Word lengths can be set to between 5 and 8 bits, parity
|
||||||
|
can be N(one), O(dd) or E(ven) and 1 or 2 stop bits can be used. The default is
|
||||||
|
``SWSERIAL_8N1`` using 8 bits, no parity and 1 stop bit but any combination can
|
||||||
|
be used, e.g. ``SWSERIAL_7E2``. If using EVEN or ODD parity, any parity errors
|
||||||
|
can be detected with the ``peekParityError()`` function. Note that parity
|
||||||
|
checking must be done before ``read()``, as the parity information is removed
|
||||||
|
from the buffer when reading the corresponding byte.
|
||||||
|
|
||||||
|
To allow flexible 9-bit and data/addressing protocols, the additional parity
|
||||||
|
modes MARK and SPACE are also available. Furthermore, the parity mode can be
|
||||||
|
individually set in each call to ``write()``.
|
||||||
|
|
||||||
|
This allows a simple implementation of protocols where the parity bit is used to
|
||||||
|
distinguish between data and addresses/commands ("9-bit" protocols). First set
|
||||||
|
up SoftwareSerial with parity mode SPACE, e.g. ``SWSERIAL_8S1``. This will add a
|
||||||
|
parity bit to every byte sent, setting it to logical zero (SPACE parity).
|
||||||
|
|
||||||
|
To detect incoming bytes with the parity bit set (MARK parity), use the
|
||||||
|
``peekParityError()`` function. To send a byte with the parity bit set, just add
|
||||||
|
``MARK`` as the second argument when writing, e.g. ``write(ch, MARK)``.
|
||||||
|
|
||||||
|
## Using and updating EspSoftwareSerial in the esp8266com/esp8266 Arduino build environment
|
||||||
|
|
||||||
|
EspSoftwareSerial is both part of the BSP download for ESP8266 in Arduino,
|
||||||
|
and it is set up as a Git submodule in the esp8266 source tree,
|
||||||
|
specifically in ``.../esp8266/libraries/SoftwareSerial`` when using a Github
|
||||||
|
repository clone in your Arduino sketchbook hardware directory.
|
||||||
|
This supersedes any version of EspSoftwareSerial installed for instance via
|
||||||
|
the Arduino library manager, it is not required to install EspSoftwareSerial
|
||||||
|
for the ESP8266 separately at all, but doing so has ill effect.
|
||||||
|
|
||||||
|
The responsible maintainer of the esp8266 repository has kindly shared the
|
||||||
|
following command line instructions to use, if one wishes to manually
|
||||||
|
update EspSoftwareSerial to a newer release than pulled in via the ESP8266 Arduino BSP:
|
||||||
|
|
||||||
|
To update esp8266/arduino SoftwareSerial submodule to lastest master:
|
||||||
|
|
||||||
|
Clean it (optional):
|
||||||
|
```shell
|
||||||
|
$ rm -rf libraries/SoftwareSerial
|
||||||
|
$ git submodule update --init
|
||||||
|
```
|
||||||
|
Now update it:
|
||||||
|
```shell
|
||||||
|
$ cd libraries/SoftwareSerial
|
||||||
|
$ git checkout master
|
||||||
|
$ git pull
|
||||||
|
```
|
263
lib/EspSoftwareSerial/examples/loopback/loopback.ino
Normal file
263
lib/EspSoftwareSerial/examples/loopback/loopback.ino
Normal file
@ -0,0 +1,263 @@
|
|||||||
|
#include <SoftwareSerial.h>
|
||||||
|
|
||||||
|
// On ESP8266:
|
||||||
|
// Local SoftwareSerial loopback, connect D5 (rx) and D6 (tx).
|
||||||
|
// For local hardware loopback, connect D5 to D8 (tx), D6 to D7 (rx).
|
||||||
|
// For hardware send/sink, connect D7 (rx) and D8 (tx).
|
||||||
|
// Hint: The logger is run at 9600bps such that enableIntTx(true) can remain unchanged. Blocking
|
||||||
|
// interrupts severely impacts the ability of the SoftwareSerial devices to operate concurrently
|
||||||
|
// and/or in duplex mode.
|
||||||
|
// Operating in software serial full duplex mode, runs at 19200bps and few errors (~2.5%).
|
||||||
|
// Operating in software serial half duplex mode (both loopback and repeater),
|
||||||
|
// runs at 57600bps with nearly no errors.
|
||||||
|
// Operating loopback in full duplex, and repeater in half duplex, runs at 38400bps with nearly no errors.
|
||||||
|
// On ESP32:
|
||||||
|
// For SoftwareSerial or hardware send/sink, connect D5 (rx) and D6 (tx).
|
||||||
|
// Hardware Serial2 defaults to D4 (rx), D3 (tx).
|
||||||
|
// For local hardware loopback, connect D5 (rx) to D3 (tx), D6 (tx) to D4 (rx).
|
||||||
|
|
||||||
|
#if defined(ESP8266) && !defined(D5)
|
||||||
|
#define D5 (14)
|
||||||
|
#define D6 (12)
|
||||||
|
#define D7 (13)
|
||||||
|
#define D8 (15)
|
||||||
|
#define TX (1)
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// Pick only one of HWLOOPBACK, HWSOURCESWSINK, or HWSOURCESINK
|
||||||
|
//#define HWLOOPBACK 1
|
||||||
|
//#define HWSOURCESWSINK 1
|
||||||
|
//#define HWSOURCESINK 1
|
||||||
|
#define HALFDUPLEX 1
|
||||||
|
|
||||||
|
#ifdef ESP32
|
||||||
|
constexpr int IUTBITRATE = 19200;
|
||||||
|
#else
|
||||||
|
constexpr int IUTBITRATE = 19200;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#if defined(ESP8266)
|
||||||
|
constexpr SoftwareSerialConfig swSerialConfig = SWSERIAL_8E1;
|
||||||
|
constexpr SerialConfig hwSerialConfig = SERIAL_8E1;
|
||||||
|
#elif defined(ESP32)
|
||||||
|
constexpr SoftwareSerialConfig swSerialConfig = SWSERIAL_8E1;
|
||||||
|
constexpr uint32_t hwSerialConfig = SERIAL_8E1;
|
||||||
|
#else
|
||||||
|
constexpr unsigned swSerialConfig = 3;
|
||||||
|
#endif
|
||||||
|
constexpr bool invert = false;
|
||||||
|
|
||||||
|
constexpr int BLOCKSIZE = 16; // use fractions of 256
|
||||||
|
|
||||||
|
unsigned long start;
|
||||||
|
String effTxTxt("eff. tx: ");
|
||||||
|
String effRxTxt("eff. rx: ");
|
||||||
|
int txCount;
|
||||||
|
int rxCount;
|
||||||
|
int expected;
|
||||||
|
int rxErrors;
|
||||||
|
int rxParityErrors;
|
||||||
|
constexpr int ReportInterval = IUTBITRATE / 8;
|
||||||
|
|
||||||
|
#if defined(ESP8266)
|
||||||
|
#if defined(HWLOOPBACK) || defined(HWSOURCESWSINK)
|
||||||
|
HardwareSerial& hwSerial(Serial);
|
||||||
|
SoftwareSerial serialIUT;
|
||||||
|
SoftwareSerial logger;
|
||||||
|
#elif defined(HWSOURCESINK)
|
||||||
|
HardwareSerial& serialIUT(Serial);
|
||||||
|
SoftwareSerial logger;
|
||||||
|
#else
|
||||||
|
SoftwareSerial serialIUT;
|
||||||
|
HardwareSerial& logger(Serial);
|
||||||
|
#endif
|
||||||
|
#elif defined(ESP32)
|
||||||
|
#if defined(HWLOOPBACK) || defined (HWSOURCESWSINK)
|
||||||
|
HardwareSerial& hwSerial(Serial2);
|
||||||
|
SoftwareSerial serialIUT;
|
||||||
|
#elif defined(HWSOURCESINK)
|
||||||
|
HardwareSerial& serialIUT(Serial2);
|
||||||
|
#else
|
||||||
|
SoftwareSerial serialIUT;
|
||||||
|
#endif
|
||||||
|
HardwareSerial& logger(Serial);
|
||||||
|
#else
|
||||||
|
SoftwareSerial serialIUT(14, 12);
|
||||||
|
HardwareSerial& logger(Serial);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
void setup() {
|
||||||
|
#if defined(ESP8266)
|
||||||
|
#if defined(HWLOOPBACK) || defined(HWSOURCESINK) || defined(HWSOURCESWSINK)
|
||||||
|
Serial.begin(IUTBITRATE, hwSerialConfig, SERIAL_FULL, 1, invert);
|
||||||
|
Serial.swap();
|
||||||
|
Serial.setRxBufferSize(2 * BLOCKSIZE);
|
||||||
|
logger.begin(9600, SWSERIAL_8N1, -1, TX);
|
||||||
|
#else
|
||||||
|
logger.begin(9600);
|
||||||
|
#endif
|
||||||
|
#if !defined(HWSOURCESINK)
|
||||||
|
serialIUT.begin(IUTBITRATE, swSerialConfig, D5, D6, invert, 2 * BLOCKSIZE);
|
||||||
|
#ifdef HALFDUPLEX
|
||||||
|
serialIUT.enableIntTx(false);
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
#elif defined(ESP32)
|
||||||
|
#if defined(HWLOOPBACK) || defined(HWSOURCESWSINK)
|
||||||
|
Serial2.begin(IUTBITRATE, hwSerialConfig, D4, D3, invert);
|
||||||
|
Serial2.setRxBufferSize(2 * BLOCKSIZE);
|
||||||
|
#elif defined(HWSOURCESINK)
|
||||||
|
serialIUT.begin(IUTBITRATE, hwSerialConfig, D5, D6, invert);
|
||||||
|
serialIUT.setRxBufferSize(2 * BLOCKSIZE);
|
||||||
|
#endif
|
||||||
|
#if !defined(HWSOURCESINK)
|
||||||
|
serialIUT.begin(IUTBITRATE, swSerialConfig, D5, D6, invert, 2 * BLOCKSIZE);
|
||||||
|
#ifdef HALFDUPLEX
|
||||||
|
serialIUT.enableIntTx(false);
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
logger.begin(9600);
|
||||||
|
#else
|
||||||
|
#if !defined(HWSOURCESINK)
|
||||||
|
serialIUT.begin(IUTBITRATE);
|
||||||
|
#endif
|
||||||
|
logger.begin(9600);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
logger.println("Loopback example for EspSoftwareSerial");
|
||||||
|
|
||||||
|
start = micros();
|
||||||
|
txCount = 0;
|
||||||
|
rxCount = 0;
|
||||||
|
rxErrors = 0;
|
||||||
|
rxParityErrors = 0;
|
||||||
|
expected = -1;
|
||||||
|
}
|
||||||
|
|
||||||
|
unsigned char c = 0;
|
||||||
|
|
||||||
|
void loop() {
|
||||||
|
#ifdef HALFDUPLEX
|
||||||
|
char block[BLOCKSIZE];
|
||||||
|
#endif
|
||||||
|
char inBuf[BLOCKSIZE];
|
||||||
|
for (int i = 0; i < BLOCKSIZE; ++i) {
|
||||||
|
#ifndef HALFDUPLEX
|
||||||
|
#ifdef HWSOURCESWSINK
|
||||||
|
hwSerial.write(c);
|
||||||
|
#else
|
||||||
|
serialIUT.write(c);
|
||||||
|
#endif
|
||||||
|
#ifdef HWLOOPBACK
|
||||||
|
int avail = hwSerial.available();
|
||||||
|
while ((0 == (i % 8)) && avail > 0) {
|
||||||
|
int inCnt = hwSerial.read(inBuf, min(avail, min(BLOCKSIZE, hwSerial.availableForWrite())));
|
||||||
|
hwSerial.write(inBuf, inCnt);
|
||||||
|
avail -= inCnt;
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
#else
|
||||||
|
block[i] = c;
|
||||||
|
#endif
|
||||||
|
c = (c + 1) % 256;
|
||||||
|
++txCount;
|
||||||
|
}
|
||||||
|
#ifdef HALFDUPLEX
|
||||||
|
#ifdef HWSOURCESWSINK
|
||||||
|
hwSerial.write(block, BLOCKSIZE);
|
||||||
|
#else
|
||||||
|
serialIUT.write(block, BLOCKSIZE);
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
#ifdef HWSOURCESINK
|
||||||
|
#if defined(ESP8266)
|
||||||
|
if (serialIUT.hasOverrun()) { logger.println("serialIUT.overrun"); }
|
||||||
|
#endif
|
||||||
|
#else
|
||||||
|
if (serialIUT.overflow()) { logger.println("serialIUT.overflow"); }
|
||||||
|
#endif
|
||||||
|
|
||||||
|
int inCnt;
|
||||||
|
uint32_t deadlineStart;
|
||||||
|
|
||||||
|
#ifdef HWLOOPBACK
|
||||||
|
// starting deadline for the first bytes to become readable
|
||||||
|
deadlineStart = ESP.getCycleCount();
|
||||||
|
inCnt = 0;
|
||||||
|
while ((ESP.getCycleCount() - deadlineStart) < (1000000UL * 12 * BLOCKSIZE) / IUTBITRATE * 24 * ESP.getCpuFreqMHz()) {
|
||||||
|
int avail = hwSerial.available();
|
||||||
|
inCnt += hwSerial.read(&inBuf[inCnt], min(avail, min(BLOCKSIZE - inCnt, hwSerial.availableForWrite())));
|
||||||
|
if (inCnt >= BLOCKSIZE) { break; }
|
||||||
|
// wait for more outstanding bytes to trickle in
|
||||||
|
if (avail) deadlineStart = ESP.getCycleCount();
|
||||||
|
}
|
||||||
|
hwSerial.write(inBuf, inCnt);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// starting deadline for the first bytes to come in
|
||||||
|
deadlineStart = ESP.getCycleCount();
|
||||||
|
inCnt = 0;
|
||||||
|
while ((ESP.getCycleCount() - deadlineStart) < (1000000UL * 12 * BLOCKSIZE) / IUTBITRATE * 8 * ESP.getCpuFreqMHz()) {
|
||||||
|
int avail;
|
||||||
|
if (0 != (swSerialConfig & 070))
|
||||||
|
avail = serialIUT.available();
|
||||||
|
else
|
||||||
|
avail = serialIUT.read(inBuf, BLOCKSIZE);
|
||||||
|
for (int i = 0; i < avail; ++i)
|
||||||
|
{
|
||||||
|
unsigned char r;
|
||||||
|
if (0 != (swSerialConfig & 070))
|
||||||
|
r = serialIUT.read();
|
||||||
|
else
|
||||||
|
r = inBuf[i];
|
||||||
|
if (expected == -1) { expected = r; }
|
||||||
|
else {
|
||||||
|
expected = (expected + 1) % (1UL << (5 + swSerialConfig % 4));
|
||||||
|
}
|
||||||
|
if (r != expected) {
|
||||||
|
++rxErrors;
|
||||||
|
expected = -1;
|
||||||
|
}
|
||||||
|
#ifndef HWSOURCESINK
|
||||||
|
if (serialIUT.readParity() != (static_cast<bool>(swSerialConfig & 010) ? serialIUT.parityOdd(r) : serialIUT.parityEven(r)))
|
||||||
|
{
|
||||||
|
++rxParityErrors;
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
++rxCount;
|
||||||
|
++inCnt;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (inCnt >= BLOCKSIZE) { break; }
|
||||||
|
// wait for more outstanding bytes to trickle in
|
||||||
|
if (avail) deadlineStart = ESP.getCycleCount();
|
||||||
|
}
|
||||||
|
|
||||||
|
const uint32_t interval = micros() - start;
|
||||||
|
if (txCount >= ReportInterval && interval) {
|
||||||
|
uint8_t wordBits = (5 + swSerialConfig % 4) + static_cast<bool>(swSerialConfig & 070) + 1 + ((swSerialConfig & 0300) ? 1 : 0);
|
||||||
|
logger.println(String("tx/rx: ") + txCount + "/" + rxCount);
|
||||||
|
const long txCps = txCount * (1000000.0 / interval);
|
||||||
|
const long rxCps = rxCount * (1000000.0 / interval);
|
||||||
|
logger.print(effTxTxt + wordBits * txCps + "bps, "
|
||||||
|
+ effRxTxt + wordBits * rxCps + "bps, "
|
||||||
|
+ rxErrors + " errors (" + 100.0 * rxErrors / (!rxErrors ? 1 : rxCount) + "%)");
|
||||||
|
if (0 != (swSerialConfig & 070))
|
||||||
|
{
|
||||||
|
logger.print(" ("); logger.print(rxParityErrors); logger.println(" parity errors)");
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
logger.println();
|
||||||
|
}
|
||||||
|
txCount = 0;
|
||||||
|
rxCount = 0;
|
||||||
|
rxErrors = 0;
|
||||||
|
rxParityErrors = 0;
|
||||||
|
expected = -1;
|
||||||
|
// resync
|
||||||
|
delay(1000UL * 12 * BLOCKSIZE / IUTBITRATE * 16);
|
||||||
|
serialIUT.flush();
|
||||||
|
start = micros();
|
||||||
|
}
|
||||||
|
}
|
48
lib/EspSoftwareSerial/examples/onewiretest/onewiretest.ino
Normal file
48
lib/EspSoftwareSerial/examples/onewiretest/onewiretest.ino
Normal file
@ -0,0 +1,48 @@
|
|||||||
|
#include <ESP8266WiFi.h>
|
||||||
|
#include "SoftwareSerial.h"
|
||||||
|
|
||||||
|
SoftwareSerial swSer1;
|
||||||
|
SoftwareSerial swSer2;
|
||||||
|
|
||||||
|
void setup() {
|
||||||
|
delay(2000);
|
||||||
|
Serial.begin(115200);
|
||||||
|
Serial.println("\nOne Wire Half Duplex Serial Tester");
|
||||||
|
swSer1.begin(115200, SWSERIAL_8N1, 12, 12, false, 256);
|
||||||
|
swSer1.enableIntTx(true);
|
||||||
|
swSer2.begin(115200, SWSERIAL_8N1, 14, 14, false, 256);
|
||||||
|
swSer2.enableIntTx(true);
|
||||||
|
}
|
||||||
|
|
||||||
|
void loop() {
|
||||||
|
Serial.println("\n\nTesting on swSer1");
|
||||||
|
Serial.print("Enter something to send using swSer1.");
|
||||||
|
checkSwSerial(&swSer1);
|
||||||
|
|
||||||
|
Serial.println("\n\nTesting on swSer2");
|
||||||
|
Serial.print("Enter something to send using swSer2.");
|
||||||
|
checkSwSerial(&swSer2);
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
void checkSwSerial(SoftwareSerial* ss) {
|
||||||
|
byte ch;
|
||||||
|
while (!Serial.available());
|
||||||
|
ss->enableTx(true);
|
||||||
|
while (Serial.available()) {
|
||||||
|
ch = Serial.read();
|
||||||
|
ss->write(ch);
|
||||||
|
}
|
||||||
|
ss->enableTx(false);
|
||||||
|
// wait 1 second for the reply from SOftwareSerial if any
|
||||||
|
delay(1000);
|
||||||
|
if (ss->available()) {
|
||||||
|
Serial.print("\nResult:");
|
||||||
|
while (ss->available()) {
|
||||||
|
ch = (byte)ss->read();
|
||||||
|
Serial.print(ch < 0x01 ? " 0" : " ");
|
||||||
|
Serial.print(ch, HEX);
|
||||||
|
}
|
||||||
|
Serial.println();
|
||||||
|
}
|
||||||
|
}
|
183
lib/EspSoftwareSerial/examples/repeater/repeater.ino
Normal file
183
lib/EspSoftwareSerial/examples/repeater/repeater.ino
Normal file
@ -0,0 +1,183 @@
|
|||||||
|
#include <SoftwareSerial.h>
|
||||||
|
|
||||||
|
// On ESP8266:
|
||||||
|
// SoftwareSerial loopback for remote source (loopback.ino), or hardware loopback.
|
||||||
|
// Connect source D5 (rx) to local D8 (tx), source D6 (tx) to local D7 (rx).
|
||||||
|
// Hint: The logger is run at 9600bps such that enableIntTx(true) can remain unchanged. Blocking
|
||||||
|
// interrupts severely impacts the ability of the SoftwareSerial devices to operate concurrently
|
||||||
|
// and/or in duplex mode.
|
||||||
|
// On ESP32:
|
||||||
|
// For software or hardware loopback, connect source rx to local D8 (tx), source tx to local D7 (rx).
|
||||||
|
|
||||||
|
#if defined(ESP8266) && !defined(D5)
|
||||||
|
#define D5 (14)
|
||||||
|
#define D6 (12)
|
||||||
|
#define D7 (13)
|
||||||
|
#define D8 (15)
|
||||||
|
#define TX (1)
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#define HWLOOPBACK 1
|
||||||
|
#define HALFDUPLEX 1
|
||||||
|
|
||||||
|
#ifdef ESP32
|
||||||
|
constexpr int IUTBITRATE = 19200;
|
||||||
|
#else
|
||||||
|
constexpr int IUTBITRATE = 19200;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#if defined(ESP8266)
|
||||||
|
constexpr SoftwareSerialConfig swSerialConfig = SWSERIAL_8E1;
|
||||||
|
constexpr SerialConfig hwSerialConfig = SERIAL_8E1;
|
||||||
|
#elif defined(ESP32)
|
||||||
|
constexpr SoftwareSerialConfig swSerialConfig = SWSERIAL_8E1;
|
||||||
|
constexpr uint32_t hwSerialConfig = SERIAL_8E1;
|
||||||
|
#else
|
||||||
|
constexpr unsigned swSerialConfig = 3;
|
||||||
|
#endif
|
||||||
|
constexpr bool invert = false;
|
||||||
|
|
||||||
|
constexpr int BLOCKSIZE = 16; // use fractions of 256
|
||||||
|
|
||||||
|
unsigned long start;
|
||||||
|
String bitRateTxt("Effective data rate: ");
|
||||||
|
int rxCount;
|
||||||
|
int seqErrors;
|
||||||
|
int parityErrors;
|
||||||
|
int expected;
|
||||||
|
constexpr int ReportInterval = IUTBITRATE / 8;
|
||||||
|
|
||||||
|
#if defined(ESP8266)
|
||||||
|
#if defined(HWLOOPBACK)
|
||||||
|
HardwareSerial& repeater(Serial);
|
||||||
|
SoftwareSerial logger;
|
||||||
|
#else
|
||||||
|
SoftwareSerial repeater;
|
||||||
|
HardwareSerial& logger(Serial);
|
||||||
|
#endif
|
||||||
|
#elif defined(ESP32)
|
||||||
|
#if defined(HWLOOPBACK)
|
||||||
|
HardwareSerial& repeater(Serial2);
|
||||||
|
#else
|
||||||
|
SoftwareSerial repeater;
|
||||||
|
#endif
|
||||||
|
HardwareSerial& logger(Serial);
|
||||||
|
#else
|
||||||
|
SoftwareSerial repeater(14, 12);
|
||||||
|
HardwareSerial& logger(Serial);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
void setup() {
|
||||||
|
#if defined(ESP8266)
|
||||||
|
#if defined(HWLOOPBACK)
|
||||||
|
repeater.begin(IUTBITRATE, hwSerialConfig, SERIAL_FULL, 1, invert);
|
||||||
|
repeater.swap();
|
||||||
|
repeater.setRxBufferSize(2 * BLOCKSIZE);
|
||||||
|
logger.begin(9600, SWSERIAL_8N1, -1, TX);
|
||||||
|
#else
|
||||||
|
repeater.begin(IUTBITRATE, swSerialConfig, D7, D8, invert, 4 * BLOCKSIZE);
|
||||||
|
#ifdef HALFDUPLEX
|
||||||
|
repeater.enableIntTx(false);
|
||||||
|
#endif
|
||||||
|
logger.begin(9600);
|
||||||
|
#endif
|
||||||
|
#elif defined(ESP32)
|
||||||
|
#if defined(HWLOOPBACK)
|
||||||
|
repeater.begin(IUTBITRATE, hwSerialConfig, D7, D8, invert);
|
||||||
|
repeater.setRxBufferSize(2 * BLOCKSIZE);
|
||||||
|
#else
|
||||||
|
repeater.begin(IUTBITRATE, swSerialConfig, D7, D8, invert, 4 * BLOCKSIZE);
|
||||||
|
#ifdef HALFDUPLEX
|
||||||
|
repeater.enableIntTx(false);
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
logger.begin(9600);
|
||||||
|
#else
|
||||||
|
repeater.begin(IUTBITRATE);
|
||||||
|
logger.begin(9600);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
logger.println("Repeater example for EspSoftwareSerial");
|
||||||
|
start = micros();
|
||||||
|
rxCount = 0;
|
||||||
|
seqErrors = 0;
|
||||||
|
parityErrors = 0;
|
||||||
|
expected = -1;
|
||||||
|
}
|
||||||
|
|
||||||
|
void loop() {
|
||||||
|
#ifdef HWLOOPBACK
|
||||||
|
#if defined(ESP8266)
|
||||||
|
if (repeater.hasOverrun()) { logger.println("repeater.overrun"); }
|
||||||
|
#endif
|
||||||
|
#else
|
||||||
|
if (repeater.overflow()) { logger.println("repeater.overflow"); }
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#ifdef HALFDUPLEX
|
||||||
|
char block[BLOCKSIZE];
|
||||||
|
#endif
|
||||||
|
// starting deadline for the first bytes to come in
|
||||||
|
uint32_t deadlineStart = ESP.getCycleCount();
|
||||||
|
int inCnt = 0;
|
||||||
|
while ((ESP.getCycleCount() - deadlineStart) < (1000000UL * 12 * BLOCKSIZE) / IUTBITRATE * 24 * ESP.getCpuFreqMHz()) {
|
||||||
|
int avail = repeater.available();
|
||||||
|
for (int i = 0; i < avail; ++i)
|
||||||
|
{
|
||||||
|
int r = repeater.read();
|
||||||
|
if (r == -1) { logger.println("read() == -1"); }
|
||||||
|
if (expected == -1) { expected = r; }
|
||||||
|
else {
|
||||||
|
expected = (expected + 1) % (1UL << (5 + swSerialConfig % 4));
|
||||||
|
}
|
||||||
|
if (r != expected) {
|
||||||
|
++seqErrors;
|
||||||
|
expected = -1;
|
||||||
|
}
|
||||||
|
#ifndef HWLOOPBACK
|
||||||
|
if (repeater.readParity() != (static_cast<bool>(swSerialConfig & 010) ? repeater.parityOdd(r) : repeater.parityEven(r)))
|
||||||
|
{
|
||||||
|
++parityErrors;
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
++rxCount;
|
||||||
|
#ifdef HALFDUPLEX
|
||||||
|
block[inCnt] = r;
|
||||||
|
#else
|
||||||
|
repeater.write(r);
|
||||||
|
#endif
|
||||||
|
if (++inCnt >= BLOCKSIZE) { break; }
|
||||||
|
}
|
||||||
|
if (inCnt >= BLOCKSIZE) { break; }
|
||||||
|
// wait for more outstanding bytes to trickle in
|
||||||
|
if (avail) deadlineStart = ESP.getCycleCount();
|
||||||
|
}
|
||||||
|
|
||||||
|
#ifdef HALFDUPLEX
|
||||||
|
repeater.write(block, inCnt);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
if (rxCount >= ReportInterval) {
|
||||||
|
auto end = micros();
|
||||||
|
unsigned long interval = end - start;
|
||||||
|
long cps = rxCount * (1000000.0 / interval);
|
||||||
|
long seqErrorsps = seqErrors * (1000000.0 / interval);
|
||||||
|
logger.print(bitRateTxt + 10 * cps + "bps, "
|
||||||
|
+ seqErrorsps + "cps seq. errors (" + 100.0 * seqErrors / rxCount + "%)");
|
||||||
|
#ifndef HWLOOPBACK
|
||||||
|
if (0 != (swSerialConfig & 070))
|
||||||
|
{
|
||||||
|
logger.print(" ("); logger.print(parityErrors); logger.print(" parity errors)");
|
||||||
|
}
|
||||||
|
else
|
||||||
|
#endif
|
||||||
|
{
|
||||||
|
logger.println();
|
||||||
|
}
|
||||||
|
start = end;
|
||||||
|
rxCount = 0;
|
||||||
|
seqErrors = 0;
|
||||||
|
parityErrors = 0;
|
||||||
|
expected = -1;
|
||||||
|
}
|
||||||
|
}
|
115
lib/EspSoftwareSerial/examples/servoTester/servoTester.ino
Normal file
115
lib/EspSoftwareSerial/examples/servoTester/servoTester.ino
Normal file
@ -0,0 +1,115 @@
|
|||||||
|
#include <ESP8266WiFi.h>
|
||||||
|
#include <SoftwareSerial.h>
|
||||||
|
|
||||||
|
SoftwareSerial swSer;
|
||||||
|
|
||||||
|
byte buf[10] = { 0xFA, 0xAF,0x00,0x00,0x00, 0x00, 0x00, 0x00, 0x00, 0xED };
|
||||||
|
byte cmd[10] = { 0xFA, 0xAF,0x00,0x00,0x00, 0x00, 0x00, 0x00, 0x00, 0xED };
|
||||||
|
byte ver[10] = { 0xFC, 0xCF,0x00,0xAA,0x41, 0x16, 0x51, 0x01, 0x00, 0xED };
|
||||||
|
|
||||||
|
|
||||||
|
void setup() {
|
||||||
|
delay(2000);
|
||||||
|
Serial.begin(115200);
|
||||||
|
Serial.println("\nAlpha 1S Servo Tester");
|
||||||
|
swSer.begin(115200, SWSERIAL_8N1, 12, 12, false, 256);
|
||||||
|
}
|
||||||
|
|
||||||
|
void loop() {
|
||||||
|
for (int i = 1; i <= 32; i++) {
|
||||||
|
GetVersion(i);
|
||||||
|
delay(100);
|
||||||
|
}
|
||||||
|
SetLED(1, 0);
|
||||||
|
GoPos(1, 0, 50);
|
||||||
|
delay(1000);
|
||||||
|
GoPos(1, 90, 50);
|
||||||
|
delay(1000);
|
||||||
|
GoPos(1, 100, 50);
|
||||||
|
delay(1000);
|
||||||
|
SetLED(1, 1);
|
||||||
|
delay(2000);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
void GetVersion(byte id) {
|
||||||
|
memcpy(buf, cmd, 10);
|
||||||
|
buf[0] = 0xFC;
|
||||||
|
buf[1] = 0xCF;
|
||||||
|
buf[2] = id;
|
||||||
|
buf[3] = 0x01;
|
||||||
|
SendCommand();
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void GoPos(byte id, byte Pos, byte Time) {
|
||||||
|
memcpy(buf, cmd, 10);
|
||||||
|
buf[2] = id;
|
||||||
|
buf[3] = 0x01;
|
||||||
|
buf[4] = Pos;
|
||||||
|
buf[5] = Time;
|
||||||
|
buf[6] = 0x00;
|
||||||
|
buf[7] = Time;
|
||||||
|
SendCommand();
|
||||||
|
}
|
||||||
|
|
||||||
|
void GetPos(byte id) {
|
||||||
|
memcpy(buf, cmd, 10);
|
||||||
|
buf[2] = id;
|
||||||
|
buf[3] = 0x02;
|
||||||
|
SendCommand();
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void SetLED(byte id, byte mode) {
|
||||||
|
memcpy(buf, cmd, 10);
|
||||||
|
buf[2] = id;
|
||||||
|
buf[3] = 0x04;
|
||||||
|
buf[4] = mode;
|
||||||
|
SendCommand();
|
||||||
|
}
|
||||||
|
|
||||||
|
void SendCommand() {
|
||||||
|
SendCommand(true);
|
||||||
|
}
|
||||||
|
|
||||||
|
void SendCommand(bool checkResult) {
|
||||||
|
byte sum = 0;
|
||||||
|
for (int i = 2; i < 8; i++) {
|
||||||
|
sum += buf[i];
|
||||||
|
}
|
||||||
|
buf[8] = sum;
|
||||||
|
ShowCommand();
|
||||||
|
swSer.flush();
|
||||||
|
swSer.enableTx(true);
|
||||||
|
swSer.write(buf, 10);
|
||||||
|
swSer.enableTx(false);
|
||||||
|
if (checkResult) checkReturn();
|
||||||
|
}
|
||||||
|
|
||||||
|
void ShowCommand() {
|
||||||
|
Serial.print(millis());
|
||||||
|
Serial.print(" OUT>>");
|
||||||
|
for (int i = 0; i < 10; i++) {
|
||||||
|
Serial.print((buf[i] < 0x10 ? " 0" : " "));
|
||||||
|
Serial.print(buf[i], HEX);
|
||||||
|
}
|
||||||
|
Serial.println();
|
||||||
|
}
|
||||||
|
|
||||||
|
void checkReturn() {
|
||||||
|
unsigned long startMs = millis();
|
||||||
|
while (((millis() - startMs) < 500) && (!swSer.available()));
|
||||||
|
if (swSer.available()) {
|
||||||
|
Serial.print(millis());
|
||||||
|
Serial.print(" IN>>>");
|
||||||
|
while (swSer.available()) {
|
||||||
|
byte ch = (byte)swSer.read();
|
||||||
|
Serial.print((ch < 0x10 ? " 0" : " "));
|
||||||
|
Serial.print(ch, HEX);
|
||||||
|
}
|
||||||
|
Serial.println();
|
||||||
|
}
|
||||||
|
}
|
47
lib/EspSoftwareSerial/examples/swsertest/swsertest.ino
Normal file
47
lib/EspSoftwareSerial/examples/swsertest/swsertest.ino
Normal file
@ -0,0 +1,47 @@
|
|||||||
|
// On ESP8266:
|
||||||
|
// At 80MHz runs up 57600ps, and at 160MHz CPU frequency up to 115200bps with only negligible errors.
|
||||||
|
// Connect pin 12 to 14.
|
||||||
|
|
||||||
|
#include <SoftwareSerial.h>
|
||||||
|
|
||||||
|
#if defined(ESP8266) && !defined(D5)
|
||||||
|
#define D5 (14)
|
||||||
|
#define D6 (12)
|
||||||
|
#define D7 (13)
|
||||||
|
#define D8 (15)
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#ifdef ESP32
|
||||||
|
#define BAUD_RATE 57600
|
||||||
|
#else
|
||||||
|
#define BAUD_RATE 57600
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// Reminder: the buffer size optimizations here, in particular the isrBufSize that only accommodates
|
||||||
|
// a single 8N1 word, are on the basis that any char written to the loopback SoftwareSerial adapter gets read
|
||||||
|
// before another write is performed. Block writes with a size greater than 1 would usually fail.
|
||||||
|
SoftwareSerial swSer;
|
||||||
|
|
||||||
|
void setup() {
|
||||||
|
Serial.begin(115200);
|
||||||
|
swSer.begin(BAUD_RATE, SWSERIAL_8N1, D5, D6, false, 95, 11);
|
||||||
|
|
||||||
|
Serial.println("\nSoftware serial test started");
|
||||||
|
|
||||||
|
for (char ch = ' '; ch <= 'z'; ch++) {
|
||||||
|
swSer.write(ch);
|
||||||
|
}
|
||||||
|
swSer.println("");
|
||||||
|
}
|
||||||
|
|
||||||
|
void loop() {
|
||||||
|
while (swSer.available() > 0) {
|
||||||
|
Serial.write(swSer.read());
|
||||||
|
yield();
|
||||||
|
}
|
||||||
|
while (Serial.available() > 0) {
|
||||||
|
swSer.write(Serial.read());
|
||||||
|
yield();
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
43
lib/EspSoftwareSerial/keywords.txt
Normal file
43
lib/EspSoftwareSerial/keywords.txt
Normal file
@ -0,0 +1,43 @@
|
|||||||
|
#######################################
|
||||||
|
# Syntax Coloring Map for SoftwareSerial
|
||||||
|
# (esp8266)
|
||||||
|
#######################################
|
||||||
|
|
||||||
|
#######################################
|
||||||
|
# Datatypes (KEYWORD1)
|
||||||
|
#######################################
|
||||||
|
|
||||||
|
SoftwareSerial KEYWORD1
|
||||||
|
|
||||||
|
#######################################
|
||||||
|
# Methods and Functions (KEYWORD2)
|
||||||
|
#######################################
|
||||||
|
|
||||||
|
begin KEYWORD2
|
||||||
|
baudRate KEYWORD2
|
||||||
|
setTransmitEnablePin KEYWORD2
|
||||||
|
enableIntTx KEYWORD2
|
||||||
|
overflow KEYWORD2
|
||||||
|
available KEYWORD2
|
||||||
|
peek KEYWORD2
|
||||||
|
read KEYWORD2
|
||||||
|
flush KEYWORD2
|
||||||
|
write KEYWORD2
|
||||||
|
enableRx KEYWORD2
|
||||||
|
enableTx KEYWORD2
|
||||||
|
listen KEYWORD2
|
||||||
|
end KEYWORD2
|
||||||
|
isListening KEYWORD2
|
||||||
|
stopListening KEYWORD2
|
||||||
|
onReceive KEYWORD2
|
||||||
|
perform_work KEYWORD2
|
||||||
|
|
||||||
|
#######################################
|
||||||
|
# Constants (LITERAL1)
|
||||||
|
#######################################
|
||||||
|
|
||||||
|
SW_SERIAL_UNUSED_PIN LITERAL1
|
||||||
|
SWSERIAL_5N1 LITERAL1
|
||||||
|
SWSERIAL_6N1 LITERAL1
|
||||||
|
SWSERIAL_7N1 LITERAL1
|
||||||
|
SWSERIAL_8N1 LITERAL1
|
15
lib/EspSoftwareSerial/library.json
Normal file
15
lib/EspSoftwareSerial/library.json
Normal file
@ -0,0 +1,15 @@
|
|||||||
|
{
|
||||||
|
"name": "EspSoftwareSerial",
|
||||||
|
"version": "6.6.1",
|
||||||
|
"keywords": [
|
||||||
|
"serial", "io", "softwareserial"
|
||||||
|
],
|
||||||
|
"description": "Implementation of the Arduino software serial for ESP8266/ESP32.",
|
||||||
|
"repository":
|
||||||
|
{
|
||||||
|
"type": "git",
|
||||||
|
"url": "https://github.com/plerup/espsoftwareserial"
|
||||||
|
},
|
||||||
|
"frameworks": "arduino",
|
||||||
|
"platforms": "*"
|
||||||
|
}
|
9
lib/EspSoftwareSerial/library.properties
Normal file
9
lib/EspSoftwareSerial/library.properties
Normal file
@ -0,0 +1,9 @@
|
|||||||
|
name=EspSoftwareSerial
|
||||||
|
version=6.6.1
|
||||||
|
author=Peter Lerup, Dirk Kaar
|
||||||
|
maintainer=Peter Lerup <peter@lerup.com>
|
||||||
|
sentence=Implementation of the Arduino software serial for ESP8266/ESP32.
|
||||||
|
paragraph=
|
||||||
|
category=Signal Input/Output
|
||||||
|
url=https://github.com/plerup/espsoftwareserial/
|
||||||
|
architectures=esp8266,esp32
|
542
lib/EspSoftwareSerial/src/SoftwareSerial.cpp
Normal file
542
lib/EspSoftwareSerial/src/SoftwareSerial.cpp
Normal file
@ -0,0 +1,542 @@
|
|||||||
|
/*
|
||||||
|
|
||||||
|
SoftwareSerial.cpp - Implementation of the Arduino software serial for ESP8266/ESP32.
|
||||||
|
Copyright (c) 2015-2016 Peter Lerup. All rights reserved.
|
||||||
|
Copyright (c) 2018-2019 Dirk O. Kaar. All rights reserved.
|
||||||
|
|
||||||
|
This library is free software; you can redistribute it and/or
|
||||||
|
modify it under the terms of the GNU Lesser General Public
|
||||||
|
License as published by the Free Software Foundation; either
|
||||||
|
version 2.1 of the License, or (at your option) any later version.
|
||||||
|
|
||||||
|
This library is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||||
|
Lesser General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU Lesser General Public
|
||||||
|
License along with this library; if not, write to the Free Software
|
||||||
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||||
|
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include "SoftwareSerial.h"
|
||||||
|
#include <Arduino.h>
|
||||||
|
|
||||||
|
#ifdef ESP32
|
||||||
|
#define xt_rsil(a) (a)
|
||||||
|
#define xt_wsr_ps(a)
|
||||||
|
#endif
|
||||||
|
|
||||||
|
constexpr uint8_t BYTE_ALL_BITS_SET = ~static_cast<uint8_t>(0);
|
||||||
|
|
||||||
|
SoftwareSerial::SoftwareSerial() {
|
||||||
|
m_isrOverflow = false;
|
||||||
|
}
|
||||||
|
|
||||||
|
SoftwareSerial::SoftwareSerial(int8_t rxPin, int8_t txPin, bool invert)
|
||||||
|
{
|
||||||
|
m_isrOverflow = false;
|
||||||
|
m_rxPin = rxPin;
|
||||||
|
m_txPin = txPin;
|
||||||
|
m_invert = invert;
|
||||||
|
}
|
||||||
|
|
||||||
|
SoftwareSerial::~SoftwareSerial() {
|
||||||
|
end();
|
||||||
|
}
|
||||||
|
|
||||||
|
bool SoftwareSerial::isValidGPIOpin(int8_t pin) {
|
||||||
|
#if defined(ESP8266)
|
||||||
|
return (pin >= 0 && pin <= 5) || (pin >= 12 && pin <= 15);
|
||||||
|
#elif defined(ESP32)
|
||||||
|
return pin == 0 || pin == 2 || (pin >= 4 && pin <= 5) || (pin >= 12 && pin <= 19) ||
|
||||||
|
(pin >= 21 && pin <= 23) || (pin >= 25 && pin <= 27) || (pin >= 32 && pin <= 35);
|
||||||
|
#else
|
||||||
|
return true;
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
void SoftwareSerial::begin(uint32_t baud, SoftwareSerialConfig config,
|
||||||
|
int8_t rxPin, int8_t txPin,
|
||||||
|
bool invert, int bufCapacity, int isrBufCapacity) {
|
||||||
|
if (-1 != rxPin) m_rxPin = rxPin;
|
||||||
|
if (-1 != txPin) m_txPin = txPin;
|
||||||
|
m_oneWire = (m_rxPin == m_txPin);
|
||||||
|
m_invert = invert;
|
||||||
|
m_dataBits = 5 + (config & 07);
|
||||||
|
m_parityMode = static_cast<SoftwareSerialParity>(config & 070);
|
||||||
|
m_stopBits = 1 + ((config & 0300) ? 1 : 0);
|
||||||
|
m_pduBits = m_dataBits + static_cast<bool>(m_parityMode) + m_stopBits;
|
||||||
|
m_bitCycles = (ESP.getCpuFreqMHz() * 1000000UL + baud / 2) / baud;
|
||||||
|
m_intTxEnabled = true;
|
||||||
|
if (isValidGPIOpin(m_rxPin)) {
|
||||||
|
std::unique_ptr<circular_queue<uint8_t> > buffer(new circular_queue<uint8_t>((bufCapacity > 0) ? bufCapacity : 64));
|
||||||
|
m_buffer = move(buffer);
|
||||||
|
if (m_parityMode)
|
||||||
|
{
|
||||||
|
std::unique_ptr<circular_queue<uint8_t> > parityBuffer(new circular_queue<uint8_t>((bufCapacity > 0) ? (bufCapacity + 7) / 8 : 8));
|
||||||
|
m_parityBuffer = move(parityBuffer);
|
||||||
|
m_parityInPos = m_parityOutPos = 1;
|
||||||
|
}
|
||||||
|
std::unique_ptr<circular_queue<uint32_t> > isrBuffer(new circular_queue<uint32_t>((isrBufCapacity > 0) ? isrBufCapacity : (sizeof(uint8_t) * 8 + 2) * bufCapacity));
|
||||||
|
m_isrBuffer = move(isrBuffer);
|
||||||
|
if (m_buffer && (!m_parityMode || m_parityBuffer) && m_isrBuffer) {
|
||||||
|
m_rxValid = true;
|
||||||
|
pinMode(m_rxPin, INPUT_PULLUP);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (isValidGPIOpin(m_txPin)
|
||||||
|
#ifdef ESP8266
|
||||||
|
|| ((m_txPin == 16) && !m_oneWire)) {
|
||||||
|
#else
|
||||||
|
) {
|
||||||
|
#endif
|
||||||
|
m_txValid = true;
|
||||||
|
if (!m_oneWire) {
|
||||||
|
pinMode(m_txPin, OUTPUT);
|
||||||
|
digitalWrite(m_txPin, !m_invert);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (!m_rxEnabled) { enableRx(true); }
|
||||||
|
}
|
||||||
|
|
||||||
|
void SoftwareSerial::end()
|
||||||
|
{
|
||||||
|
enableRx(false);
|
||||||
|
m_txValid = false;
|
||||||
|
if (m_buffer) {
|
||||||
|
m_buffer.reset();
|
||||||
|
}
|
||||||
|
m_parityBuffer.reset();
|
||||||
|
if (m_isrBuffer) {
|
||||||
|
m_isrBuffer.reset();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
uint32_t SoftwareSerial::baudRate() {
|
||||||
|
return ESP.getCpuFreqMHz() * 1000000UL / m_bitCycles;
|
||||||
|
}
|
||||||
|
|
||||||
|
void SoftwareSerial::setTransmitEnablePin(int8_t txEnablePin) {
|
||||||
|
if (isValidGPIOpin(txEnablePin)) {
|
||||||
|
m_txEnableValid = true;
|
||||||
|
m_txEnablePin = txEnablePin;
|
||||||
|
pinMode(m_txEnablePin, OUTPUT);
|
||||||
|
digitalWrite(m_txEnablePin, LOW);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
m_txEnableValid = false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void SoftwareSerial::enableIntTx(bool on) {
|
||||||
|
m_intTxEnabled = on;
|
||||||
|
}
|
||||||
|
|
||||||
|
void SoftwareSerial::enableTx(bool on) {
|
||||||
|
if (m_txValid && m_oneWire) {
|
||||||
|
if (on) {
|
||||||
|
enableRx(false);
|
||||||
|
pinMode(m_txPin, OUTPUT);
|
||||||
|
digitalWrite(m_txPin, !m_invert);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
pinMode(m_rxPin, INPUT_PULLUP);
|
||||||
|
enableRx(true);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void SoftwareSerial::enableRx(bool on) {
|
||||||
|
if (m_rxValid) {
|
||||||
|
if (on) {
|
||||||
|
m_rxCurBit = m_pduBits - 1;
|
||||||
|
// Init to stop bit level and current cycle
|
||||||
|
m_isrLastCycle = (ESP.getCycleCount() | 1) ^ m_invert;
|
||||||
|
if (m_bitCycles >= (ESP.getCpuFreqMHz() * 1000000UL) / 74880UL)
|
||||||
|
attachInterruptArg(digitalPinToInterrupt(m_rxPin), reinterpret_cast<void (*)(void*)>(rxBitISR), this, CHANGE);
|
||||||
|
else
|
||||||
|
attachInterruptArg(digitalPinToInterrupt(m_rxPin), reinterpret_cast<void (*)(void*)>(rxBitSyncISR), this, m_invert ? RISING : FALLING);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
detachInterrupt(digitalPinToInterrupt(m_rxPin));
|
||||||
|
}
|
||||||
|
m_rxEnabled = on;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
int SoftwareSerial::read() {
|
||||||
|
if (!m_rxValid) { return -1; }
|
||||||
|
if (!m_buffer->available()) {
|
||||||
|
rxBits();
|
||||||
|
if (!m_buffer->available()) { return -1; }
|
||||||
|
}
|
||||||
|
auto val = m_buffer->pop();
|
||||||
|
if (m_parityBuffer)
|
||||||
|
{
|
||||||
|
m_lastReadParity = m_parityBuffer->peek() & m_parityOutPos;
|
||||||
|
m_parityOutPos <<= 1;
|
||||||
|
if (!m_parityOutPos)
|
||||||
|
{
|
||||||
|
m_parityOutPos = 1;
|
||||||
|
m_parityBuffer->pop();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return val;
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t SoftwareSerial::read(uint8_t * buffer, size_t size) {
|
||||||
|
if (!m_rxValid) { return 0; }
|
||||||
|
size_t avail;
|
||||||
|
if (0 == (avail = m_buffer->pop_n(buffer, size))) {
|
||||||
|
rxBits();
|
||||||
|
avail = m_buffer->pop_n(buffer, size);
|
||||||
|
}
|
||||||
|
if (!avail) return 0;
|
||||||
|
if (m_parityBuffer) {
|
||||||
|
uint32_t parityBits = avail;
|
||||||
|
while (m_parityOutPos >>= 1) ++parityBits;
|
||||||
|
m_parityOutPos = (1 << (parityBits % 8));
|
||||||
|
m_parityBuffer->pop_n(nullptr, parityBits / 8);
|
||||||
|
}
|
||||||
|
return avail;
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t SoftwareSerial::readBytes(uint8_t * buffer, size_t size) {
|
||||||
|
if (!m_rxValid || !size) { return 0; }
|
||||||
|
size_t count = 0;
|
||||||
|
const auto start = millis();
|
||||||
|
do {
|
||||||
|
count += read(&buffer[count], size - count);
|
||||||
|
if (count >= size) break;
|
||||||
|
yield();
|
||||||
|
} while (millis() - start < _timeout);
|
||||||
|
return count;
|
||||||
|
}
|
||||||
|
|
||||||
|
int SoftwareSerial::available() {
|
||||||
|
if (!m_rxValid) { return 0; }
|
||||||
|
rxBits();
|
||||||
|
int avail = m_buffer->available();
|
||||||
|
if (!avail) {
|
||||||
|
optimistic_yield(10000UL);
|
||||||
|
}
|
||||||
|
return avail;
|
||||||
|
}
|
||||||
|
|
||||||
|
void ICACHE_RAM_ATTR SoftwareSerial::preciseDelay(bool sync) {
|
||||||
|
if (!sync)
|
||||||
|
{
|
||||||
|
// Reenable interrupts while delaying to avoid other tasks piling up
|
||||||
|
if (!m_intTxEnabled) { xt_wsr_ps(m_savedPS); }
|
||||||
|
auto expired = ESP.getCycleCount() - m_periodStart;
|
||||||
|
if (expired < m_periodDuration)
|
||||||
|
{
|
||||||
|
auto ms = (m_periodDuration - expired) / ESP.getCpuFreqMHz() / 1000UL;
|
||||||
|
if (ms) delay(ms);
|
||||||
|
}
|
||||||
|
while ((ESP.getCycleCount() - m_periodStart) < m_periodDuration) { optimistic_yield(10000); }
|
||||||
|
// Disable interrupts again
|
||||||
|
if (!m_intTxEnabled) { m_savedPS = xt_rsil(15); }
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
while ((ESP.getCycleCount() - m_periodStart) < m_periodDuration) {}
|
||||||
|
}
|
||||||
|
m_periodDuration = 0;
|
||||||
|
m_periodStart = ESP.getCycleCount();
|
||||||
|
}
|
||||||
|
|
||||||
|
void ICACHE_RAM_ATTR SoftwareSerial::writePeriod(
|
||||||
|
uint32_t dutyCycle, uint32_t offCycle, bool withStopBit) {
|
||||||
|
preciseDelay(true);
|
||||||
|
if (dutyCycle)
|
||||||
|
{
|
||||||
|
digitalWrite(m_txPin, HIGH);
|
||||||
|
m_periodDuration += dutyCycle;
|
||||||
|
if (offCycle || (withStopBit && !m_invert)) preciseDelay(!withStopBit || m_invert);
|
||||||
|
}
|
||||||
|
if (offCycle)
|
||||||
|
{
|
||||||
|
digitalWrite(m_txPin, LOW);
|
||||||
|
m_periodDuration += offCycle;
|
||||||
|
if (withStopBit && m_invert) preciseDelay(false);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t SoftwareSerial::write(uint8_t byte) {
|
||||||
|
return write(&byte, 1);
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t SoftwareSerial::write(uint8_t byte, SoftwareSerialParity parity) {
|
||||||
|
return write(&byte, 1, parity);
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t SoftwareSerial::write(const uint8_t * buffer, size_t size) {
|
||||||
|
return write(buffer, size, m_parityMode);
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t ICACHE_RAM_ATTR SoftwareSerial::write(const uint8_t * buffer, size_t size, SoftwareSerialParity parity) {
|
||||||
|
if (m_rxValid) { rxBits(); }
|
||||||
|
if (!m_txValid) { return -1; }
|
||||||
|
|
||||||
|
if (m_txEnableValid) {
|
||||||
|
digitalWrite(m_txEnablePin, HIGH);
|
||||||
|
}
|
||||||
|
// Stop bit: if inverted, LOW, otherwise HIGH
|
||||||
|
bool b = !m_invert;
|
||||||
|
uint32_t dutyCycle = 0;
|
||||||
|
uint32_t offCycle = 0;
|
||||||
|
if (!m_intTxEnabled) {
|
||||||
|
// Disable interrupts in order to get a clean transmit timing
|
||||||
|
m_savedPS = xt_rsil(15);
|
||||||
|
}
|
||||||
|
const uint32_t dataMask = ((1UL << m_dataBits) - 1);
|
||||||
|
bool withStopBit = true;
|
||||||
|
m_periodDuration = 0;
|
||||||
|
m_periodStart = ESP.getCycleCount();
|
||||||
|
for (size_t cnt = 0; cnt < size; ++cnt) {
|
||||||
|
uint8_t byte = ~buffer[cnt] & dataMask;
|
||||||
|
// push LSB start-data-parity-stop bit pattern into uint32_t
|
||||||
|
// Stop bits: HIGH
|
||||||
|
uint32_t word = ~0UL;
|
||||||
|
// parity bit, if any
|
||||||
|
if (parity && m_parityMode)
|
||||||
|
{
|
||||||
|
uint32_t parityBit;
|
||||||
|
switch (parity)
|
||||||
|
{
|
||||||
|
case SWSERIAL_PARITY_EVEN:
|
||||||
|
// from inverted, so use odd parity
|
||||||
|
parityBit = byte;
|
||||||
|
parityBit ^= parityBit >> 4;
|
||||||
|
parityBit &= 0xf;
|
||||||
|
parityBit = (0x9669 >> parityBit) & 1;
|
||||||
|
break;
|
||||||
|
case SWSERIAL_PARITY_ODD:
|
||||||
|
// from inverted, so use even parity
|
||||||
|
parityBit = byte;
|
||||||
|
parityBit ^= parityBit >> 4;
|
||||||
|
parityBit &= 0xf;
|
||||||
|
parityBit = (0x6996 >> parityBit) & 1;
|
||||||
|
break;
|
||||||
|
case SWSERIAL_PARITY_MARK:
|
||||||
|
parityBit = false;
|
||||||
|
break;
|
||||||
|
case SWSERIAL_PARITY_SPACE:
|
||||||
|
// suppresses warning parityBit uninitialized
|
||||||
|
default:
|
||||||
|
parityBit = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
word ^= parityBit << m_dataBits;
|
||||||
|
}
|
||||||
|
word ^= byte;
|
||||||
|
// Stop bit: LOW
|
||||||
|
word <<= 1;
|
||||||
|
if (m_invert) word = ~word;
|
||||||
|
for (int i = 0; i <= m_pduBits; ++i) {
|
||||||
|
bool pb = b;
|
||||||
|
b = word & (1UL << i);
|
||||||
|
if (!pb && b) {
|
||||||
|
writePeriod(dutyCycle, offCycle, withStopBit);
|
||||||
|
withStopBit = false;
|
||||||
|
dutyCycle = offCycle = 0;
|
||||||
|
}
|
||||||
|
if (b) {
|
||||||
|
dutyCycle += m_bitCycles;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
offCycle += m_bitCycles;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
withStopBit = true;
|
||||||
|
}
|
||||||
|
writePeriod(dutyCycle, offCycle, true);
|
||||||
|
if (!m_intTxEnabled) {
|
||||||
|
// restore the interrupt state
|
||||||
|
xt_wsr_ps(m_savedPS);
|
||||||
|
}
|
||||||
|
if (m_txEnableValid) {
|
||||||
|
digitalWrite(m_txEnablePin, LOW);
|
||||||
|
}
|
||||||
|
return size;
|
||||||
|
}
|
||||||
|
|
||||||
|
void SoftwareSerial::flush() {
|
||||||
|
if (!m_rxValid) { return; }
|
||||||
|
m_buffer->flush();
|
||||||
|
if (m_parityBuffer)
|
||||||
|
{
|
||||||
|
m_parityInPos = m_parityOutPos = 1;
|
||||||
|
m_parityBuffer->flush();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
bool SoftwareSerial::overflow() {
|
||||||
|
bool res = m_overflow;
|
||||||
|
m_overflow = false;
|
||||||
|
return res;
|
||||||
|
}
|
||||||
|
|
||||||
|
int SoftwareSerial::peek() {
|
||||||
|
if (!m_rxValid) { return -1; }
|
||||||
|
if (!m_buffer->available()) {
|
||||||
|
rxBits();
|
||||||
|
if (!m_buffer->available()) return -1;
|
||||||
|
}
|
||||||
|
auto val = m_buffer->peek();
|
||||||
|
if (m_parityBuffer) m_lastReadParity = m_parityBuffer->peek() & m_parityOutPos;
|
||||||
|
return val;
|
||||||
|
}
|
||||||
|
|
||||||
|
void SoftwareSerial::rxBits() {
|
||||||
|
int isrAvail = m_isrBuffer->available();
|
||||||
|
#ifdef ESP8266
|
||||||
|
if (m_isrOverflow.load()) {
|
||||||
|
m_overflow = true;
|
||||||
|
m_isrOverflow.store(false);
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
if (m_isrOverflow.exchange(false)) {
|
||||||
|
m_overflow = true;
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// stop bit can go undetected if leading data bits are at same level
|
||||||
|
// and there was also no next start bit yet, so one byte may be pending.
|
||||||
|
// low-cost check first
|
||||||
|
if (!isrAvail && m_rxCurBit >= -1 && m_rxCurBit < m_pduBits - m_stopBits) {
|
||||||
|
uint32_t detectionCycles = (m_pduBits - m_stopBits - m_rxCurBit) * m_bitCycles;
|
||||||
|
if (ESP.getCycleCount() - m_isrLastCycle > detectionCycles) {
|
||||||
|
// Produce faux stop bit level, prevents start bit maldetection
|
||||||
|
// cycle's LSB is repurposed for the level bit
|
||||||
|
rxBits(((m_isrLastCycle + detectionCycles) | 1) ^ m_invert);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
m_isrBuffer->for_each([this](const uint32_t& isrCycle) { rxBits(isrCycle); });
|
||||||
|
}
|
||||||
|
|
||||||
|
void SoftwareSerial::rxBits(const uint32_t & isrCycle) {
|
||||||
|
bool level = (m_isrLastCycle & 1) ^ m_invert;
|
||||||
|
|
||||||
|
// error introduced by edge value in LSB of isrCycle is negligible
|
||||||
|
int32_t cycles = isrCycle - m_isrLastCycle;
|
||||||
|
m_isrLastCycle = isrCycle;
|
||||||
|
|
||||||
|
uint8_t bits = cycles / m_bitCycles;
|
||||||
|
if (cycles % m_bitCycles > (m_bitCycles >> 1)) ++bits;
|
||||||
|
while (bits > 0) {
|
||||||
|
// start bit detection
|
||||||
|
if (m_rxCurBit >= (m_pduBits - 1)) {
|
||||||
|
// leading edge of start bit
|
||||||
|
if (level) break;
|
||||||
|
m_rxCurBit = -1;
|
||||||
|
--bits;
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
// data bits
|
||||||
|
if (m_rxCurBit >= -1 && m_rxCurBit < (m_dataBits - 1)) {
|
||||||
|
int8_t dataBits = min(bits, static_cast<uint8_t>(m_dataBits - 1 - m_rxCurBit));
|
||||||
|
m_rxCurBit += dataBits;
|
||||||
|
bits -= dataBits;
|
||||||
|
m_rxCurByte >>= dataBits;
|
||||||
|
if (level) { m_rxCurByte |= (BYTE_ALL_BITS_SET << (8 - dataBits)); }
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
// parity bit
|
||||||
|
if (m_parityMode && m_rxCurBit == (m_dataBits - 1)) {
|
||||||
|
++m_rxCurBit;
|
||||||
|
--bits;
|
||||||
|
m_rxCurParity = level;
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
// stop bits
|
||||||
|
if (m_rxCurBit < (m_pduBits - m_stopBits - 1)) {
|
||||||
|
++m_rxCurBit;
|
||||||
|
--bits;
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
if (m_rxCurBit == (m_pduBits - m_stopBits - 1)) {
|
||||||
|
// Store the received value in the buffer unless we have an overflow
|
||||||
|
// if not high stop bit level, discard word
|
||||||
|
if (level)
|
||||||
|
{
|
||||||
|
m_rxCurByte >>= (sizeof(uint8_t) * 8 - m_dataBits);
|
||||||
|
if (!m_buffer->push(m_rxCurByte)) {
|
||||||
|
m_overflow = true;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
if (m_parityBuffer)
|
||||||
|
{
|
||||||
|
if (m_rxCurParity) {
|
||||||
|
m_parityBuffer->pushpeek() |= m_parityInPos;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
m_parityBuffer->pushpeek() &= ~m_parityInPos;
|
||||||
|
}
|
||||||
|
m_parityInPos <<= 1;
|
||||||
|
if (!m_parityInPos)
|
||||||
|
{
|
||||||
|
m_parityBuffer->push();
|
||||||
|
m_parityInPos = 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
m_rxCurBit = m_pduBits;
|
||||||
|
// reset to 0 is important for masked bit logic
|
||||||
|
m_rxCurByte = 0;
|
||||||
|
m_rxCurParity = false;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void ICACHE_RAM_ATTR SoftwareSerial::rxBitISR(SoftwareSerial * self) {
|
||||||
|
uint32_t curCycle = ESP.getCycleCount();
|
||||||
|
bool level = digitalRead(self->m_rxPin);
|
||||||
|
|
||||||
|
// Store level and cycle in the buffer unless we have an overflow
|
||||||
|
// cycle's LSB is repurposed for the level bit
|
||||||
|
if (!self->m_isrBuffer->push((curCycle | 1U) ^ !level)) self->m_isrOverflow.store(true);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ICACHE_RAM_ATTR SoftwareSerial::rxBitSyncISR(SoftwareSerial * self) {
|
||||||
|
uint32_t start = ESP.getCycleCount();
|
||||||
|
uint32_t wait = self->m_bitCycles - 172U;
|
||||||
|
|
||||||
|
bool level = self->m_invert;
|
||||||
|
// Store level and cycle in the buffer unless we have an overflow
|
||||||
|
// cycle's LSB is repurposed for the level bit
|
||||||
|
if (!self->m_isrBuffer->push(((start + wait) | 1U) ^ !level)) self->m_isrOverflow.store(true);
|
||||||
|
|
||||||
|
for (uint32_t i = 0; i < self->m_pduBits; ++i) {
|
||||||
|
while (ESP.getCycleCount() - start < wait) {};
|
||||||
|
wait += self->m_bitCycles;
|
||||||
|
|
||||||
|
// Store level and cycle in the buffer unless we have an overflow
|
||||||
|
// cycle's LSB is repurposed for the level bit
|
||||||
|
if (digitalRead(self->m_rxPin) != level)
|
||||||
|
{
|
||||||
|
if (!self->m_isrBuffer->push(((start + wait) | 1U) ^ level)) self->m_isrOverflow.store(true);
|
||||||
|
level = !level;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void SoftwareSerial::onReceive(Delegate<void(int available), void*> handler) {
|
||||||
|
receiveHandler = handler;
|
||||||
|
}
|
||||||
|
|
||||||
|
void SoftwareSerial::perform_work() {
|
||||||
|
if (!m_rxValid) { return; }
|
||||||
|
rxBits();
|
||||||
|
if (receiveHandler) {
|
||||||
|
int avail = m_buffer->available();
|
||||||
|
if (avail) { receiveHandler(avail); }
|
||||||
|
}
|
||||||
|
}
|
255
lib/EspSoftwareSerial/src/SoftwareSerial.h
Normal file
255
lib/EspSoftwareSerial/src/SoftwareSerial.h
Normal file
@ -0,0 +1,255 @@
|
|||||||
|
/*
|
||||||
|
SoftwareSerial.h
|
||||||
|
|
||||||
|
SoftwareSerial.cpp - Implementation of the Arduino software serial for ESP8266/ESP32.
|
||||||
|
Copyright (c) 2015-2016 Peter Lerup. All rights reserved.
|
||||||
|
Copyright (c) 2018-2019 Dirk O. Kaar. All rights reserved.
|
||||||
|
|
||||||
|
This library is free software; you can redistribute it and/or
|
||||||
|
modify it under the terms of the GNU Lesser General Public
|
||||||
|
License as published by the Free Software Foundation; either
|
||||||
|
version 2.1 of the License, or (at your option) any later version.
|
||||||
|
|
||||||
|
This library is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||||
|
Lesser General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU Lesser General Public
|
||||||
|
License along with this library; if not, write to the Free Software
|
||||||
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||||
|
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef __SoftwareSerial_h
|
||||||
|
#define __SoftwareSerial_h
|
||||||
|
|
||||||
|
#include "circular_queue/circular_queue.h"
|
||||||
|
#include <Stream.h>
|
||||||
|
|
||||||
|
enum SoftwareSerialParity : uint8_t {
|
||||||
|
SWSERIAL_PARITY_NONE = 000,
|
||||||
|
SWSERIAL_PARITY_EVEN = 020,
|
||||||
|
SWSERIAL_PARITY_ODD = 030,
|
||||||
|
SWSERIAL_PARITY_MARK = 040,
|
||||||
|
SWSERIAL_PARITY_SPACE = 070,
|
||||||
|
};
|
||||||
|
|
||||||
|
enum SoftwareSerialConfig {
|
||||||
|
SWSERIAL_5N1 = SWSERIAL_PARITY_NONE,
|
||||||
|
SWSERIAL_6N1,
|
||||||
|
SWSERIAL_7N1,
|
||||||
|
SWSERIAL_8N1,
|
||||||
|
SWSERIAL_5E1 = SWSERIAL_PARITY_EVEN,
|
||||||
|
SWSERIAL_6E1,
|
||||||
|
SWSERIAL_7E1,
|
||||||
|
SWSERIAL_8E1,
|
||||||
|
SWSERIAL_5O1 = SWSERIAL_PARITY_ODD,
|
||||||
|
SWSERIAL_6O1,
|
||||||
|
SWSERIAL_7O1,
|
||||||
|
SWSERIAL_8O1,
|
||||||
|
SWSERIAL_5M1 = SWSERIAL_PARITY_MARK,
|
||||||
|
SWSERIAL_6M1,
|
||||||
|
SWSERIAL_7M1,
|
||||||
|
SWSERIAL_8M1,
|
||||||
|
SWSERIAL_5S1 = SWSERIAL_PARITY_SPACE,
|
||||||
|
SWSERIAL_6S1,
|
||||||
|
SWSERIAL_7S1,
|
||||||
|
SWSERIAL_8S1,
|
||||||
|
SWSERIAL_5N2 = 0200 | SWSERIAL_PARITY_NONE,
|
||||||
|
SWSERIAL_6N2,
|
||||||
|
SWSERIAL_7N2,
|
||||||
|
SWSERIAL_8N2,
|
||||||
|
SWSERIAL_5E2 = 0200 | SWSERIAL_PARITY_EVEN,
|
||||||
|
SWSERIAL_6E2,
|
||||||
|
SWSERIAL_7E2,
|
||||||
|
SWSERIAL_8E2,
|
||||||
|
SWSERIAL_5O2 = 0200 | SWSERIAL_PARITY_ODD,
|
||||||
|
SWSERIAL_6O2,
|
||||||
|
SWSERIAL_7O2,
|
||||||
|
SWSERIAL_8O2,
|
||||||
|
SWSERIAL_5M2 = 0200 | SWSERIAL_PARITY_MARK,
|
||||||
|
SWSERIAL_6M2,
|
||||||
|
SWSERIAL_7M2,
|
||||||
|
SWSERIAL_8M2,
|
||||||
|
SWSERIAL_5S2 = 0200 | SWSERIAL_PARITY_SPACE,
|
||||||
|
SWSERIAL_6S2,
|
||||||
|
SWSERIAL_7S2,
|
||||||
|
SWSERIAL_8S2,
|
||||||
|
};
|
||||||
|
|
||||||
|
/// This class is compatible with the corresponding AVR one, however,
|
||||||
|
/// the constructor takes no arguments, for compatibility with the
|
||||||
|
/// HardwareSerial class.
|
||||||
|
/// Instead, the begin() function handles pin assignments and logic inversion.
|
||||||
|
/// It also has optional input buffer capacity arguments for byte buffer and ISR bit buffer.
|
||||||
|
/// Bitrates up to at least 115200 can be used.
|
||||||
|
class SoftwareSerial : public Stream {
|
||||||
|
public:
|
||||||
|
SoftwareSerial();
|
||||||
|
/// Ctor to set defaults for pins.
|
||||||
|
/// @param rxPin the GPIO pin used for RX
|
||||||
|
/// @param txPin -1 for onewire protocol, GPIO pin used for twowire TX
|
||||||
|
SoftwareSerial(int8_t rxPin, int8_t txPin = -1, bool invert = false);
|
||||||
|
SoftwareSerial(const SoftwareSerial&) = delete;
|
||||||
|
SoftwareSerial& operator= (const SoftwareSerial&) = delete;
|
||||||
|
virtual ~SoftwareSerial();
|
||||||
|
/// Configure the SoftwareSerial object for use.
|
||||||
|
/// @param baud the TX/RX bitrate
|
||||||
|
/// @param config sets databits, parity, and stop bit count
|
||||||
|
/// @param rxPin -1 or default: either no RX pin, or keeps the rxPin set in the ctor
|
||||||
|
/// @param txPin -1 or default: either no TX pin (onewire), or keeps the txPin set in the ctor
|
||||||
|
/// @param invert true: uses invert line level logic
|
||||||
|
/// @param bufCapacity the capacity for the received bytes buffer
|
||||||
|
/// @param isrBufCapacity 0: derived from bufCapacity. The capacity of the internal asynchronous
|
||||||
|
/// bit receive buffer, a suggested size is bufCapacity times the sum of
|
||||||
|
/// start, data, parity and stop bit count.
|
||||||
|
void begin(uint32_t baud, SoftwareSerialConfig config,
|
||||||
|
int8_t rxPin, int8_t txPin, bool invert,
|
||||||
|
int bufCapacity = 64, int isrBufCapacity = 0);
|
||||||
|
void begin(uint32_t baud, SoftwareSerialConfig config,
|
||||||
|
int8_t rxPin, int8_t txPin) {
|
||||||
|
begin(baud, config, rxPin, txPin, m_invert);
|
||||||
|
}
|
||||||
|
void begin(uint32_t baud, SoftwareSerialConfig config,
|
||||||
|
int8_t rxPin) {
|
||||||
|
begin(baud, config, rxPin, m_txPin, m_invert);
|
||||||
|
}
|
||||||
|
void begin(uint32_t baud, SoftwareSerialConfig config = SWSERIAL_8N1) {
|
||||||
|
begin(baud, config, m_rxPin, m_txPin, m_invert);
|
||||||
|
}
|
||||||
|
|
||||||
|
uint32_t baudRate();
|
||||||
|
/// Transmit control pin.
|
||||||
|
void setTransmitEnablePin(int8_t txEnablePin);
|
||||||
|
/// Enable or disable interrupts during tx.
|
||||||
|
void enableIntTx(bool on);
|
||||||
|
|
||||||
|
bool overflow();
|
||||||
|
|
||||||
|
int available() override;
|
||||||
|
int availableForWrite() {
|
||||||
|
if (!m_txValid) return 0;
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
int peek() override;
|
||||||
|
int read() override;
|
||||||
|
/// @returns The verbatim parity bit associated with the last read() or peek() call
|
||||||
|
bool readParity()
|
||||||
|
{
|
||||||
|
return m_lastReadParity;
|
||||||
|
}
|
||||||
|
/// @returns The calculated bit for even parity of the parameter byte
|
||||||
|
static bool parityEven(uint8_t byte) {
|
||||||
|
byte ^= byte >> 4;
|
||||||
|
byte &= 0xf;
|
||||||
|
return (0x6996 >> byte) & 1;
|
||||||
|
}
|
||||||
|
/// @returns The calculated bit for odd parity of the parameter byte
|
||||||
|
static bool parityOdd(uint8_t byte) {
|
||||||
|
byte ^= byte >> 4;
|
||||||
|
byte &= 0xf;
|
||||||
|
return (0x9669 >> byte) & 1;
|
||||||
|
}
|
||||||
|
/// The read(buffer, size) functions are non-blocking, the same as readBytes but without timeout
|
||||||
|
size_t read(uint8_t* buffer, size_t size);
|
||||||
|
/// The read(buffer, size) functions are non-blocking, the same as readBytes but without timeout
|
||||||
|
size_t read(char* buffer, size_t size) {
|
||||||
|
return read(reinterpret_cast<uint8_t*>(buffer), size);
|
||||||
|
}
|
||||||
|
/// @returns The number of bytes read into buffer, up to size. Times out if the limit set through
|
||||||
|
/// Stream::setTimeout() is reached.
|
||||||
|
size_t readBytes(uint8_t* buffer, size_t size) override;
|
||||||
|
/// @returns The number of bytes read into buffer, up to size. Times out if the limit set through
|
||||||
|
/// Stream::setTimeout() is reached.
|
||||||
|
size_t readBytes(char* buffer, size_t size) override {
|
||||||
|
return readBytes(reinterpret_cast<uint8_t*>(buffer), size);
|
||||||
|
}
|
||||||
|
void flush() override;
|
||||||
|
size_t write(uint8_t byte) override;
|
||||||
|
size_t write(uint8_t byte, SoftwareSerialParity parity);
|
||||||
|
size_t write(const uint8_t* buffer, size_t size) override;
|
||||||
|
size_t write(const char* buffer, size_t size) {
|
||||||
|
return write(reinterpret_cast<const uint8_t*>(buffer), size);
|
||||||
|
}
|
||||||
|
size_t write(const uint8_t* buffer, size_t size, SoftwareSerialParity parity);
|
||||||
|
size_t write(const char* buffer, size_t size, SoftwareSerialParity parity) {
|
||||||
|
return write(reinterpret_cast<const uint8_t*>(buffer), size, parity);
|
||||||
|
}
|
||||||
|
operator bool() const { return m_rxValid || m_txValid; }
|
||||||
|
|
||||||
|
/// Disable or enable interrupts on the rx pin.
|
||||||
|
void enableRx(bool on);
|
||||||
|
/// One wire control.
|
||||||
|
void enableTx(bool on);
|
||||||
|
|
||||||
|
// AVR compatibility methods.
|
||||||
|
bool listen() { enableRx(true); return true; }
|
||||||
|
void end();
|
||||||
|
bool isListening() { return m_rxEnabled; }
|
||||||
|
bool stopListening() { enableRx(false); return true; }
|
||||||
|
|
||||||
|
/// Set an event handler for received data.
|
||||||
|
void onReceive(Delegate<void(int available), void*> handler);
|
||||||
|
|
||||||
|
/// Run the internal processing and event engine. Can be iteratively called
|
||||||
|
/// from loop, or otherwise scheduled.
|
||||||
|
void perform_work();
|
||||||
|
|
||||||
|
using Print::write;
|
||||||
|
|
||||||
|
private:
|
||||||
|
// If sync is false, it's legal to exceed the deadline, for instance,
|
||||||
|
// by enabling interrupts.
|
||||||
|
void preciseDelay(bool sync);
|
||||||
|
// If withStopBit is set, either cycle contains a stop bit.
|
||||||
|
// If dutyCycle == 0, the level is not forced to HIGH.
|
||||||
|
// If offCycle == 0, the level remains unchanged from dutyCycle.
|
||||||
|
void writePeriod(
|
||||||
|
uint32_t dutyCycle, uint32_t offCycle, bool withStopBit);
|
||||||
|
bool isValidGPIOpin(int8_t pin);
|
||||||
|
/* check m_rxValid that calling is safe */
|
||||||
|
void rxBits();
|
||||||
|
void rxBits(const uint32_t& isrCycle);
|
||||||
|
|
||||||
|
static void rxBitISR(SoftwareSerial* self);
|
||||||
|
static void rxBitSyncISR(SoftwareSerial* self);
|
||||||
|
|
||||||
|
// Member variables
|
||||||
|
int8_t m_rxPin = -1;
|
||||||
|
int8_t m_txPin = -1;
|
||||||
|
int8_t m_txEnablePin = -1;
|
||||||
|
uint8_t m_dataBits;
|
||||||
|
bool m_oneWire;
|
||||||
|
bool m_rxValid = false;
|
||||||
|
bool m_rxEnabled = false;
|
||||||
|
bool m_txValid = false;
|
||||||
|
bool m_txEnableValid = false;
|
||||||
|
bool m_invert;
|
||||||
|
/// PDU bits include data, parity and stop bits; the start bit is not counted.
|
||||||
|
uint8_t m_pduBits;
|
||||||
|
bool m_intTxEnabled;
|
||||||
|
SoftwareSerialParity m_parityMode;
|
||||||
|
uint8_t m_stopBits;
|
||||||
|
bool m_lastReadParity;
|
||||||
|
bool m_overflow = false;
|
||||||
|
uint32_t m_bitCycles;
|
||||||
|
uint8_t m_parityInPos;
|
||||||
|
uint8_t m_parityOutPos;
|
||||||
|
int8_t m_rxCurBit; // 0 thru (m_pduBits - m_stopBits - 1): data/parity bits. -1: start bit. (m_pduBits - 1): stop bit.
|
||||||
|
uint8_t m_rxCurByte = 0;
|
||||||
|
std::unique_ptr<circular_queue<uint8_t> > m_buffer;
|
||||||
|
std::unique_ptr<circular_queue<uint8_t> > m_parityBuffer;
|
||||||
|
uint32_t m_periodStart;
|
||||||
|
uint32_t m_periodDuration;
|
||||||
|
uint32_t m_savedPS = 0;
|
||||||
|
// the ISR stores the relative bit times in the buffer. The inversion corrected level is used as sign bit (2's complement):
|
||||||
|
// 1 = positive including 0, 0 = negative.
|
||||||
|
std::unique_ptr<circular_queue<uint32_t> > m_isrBuffer;
|
||||||
|
std::atomic<bool> m_isrOverflow;
|
||||||
|
uint32_t m_isrLastCycle;
|
||||||
|
bool m_rxCurParity = false;
|
||||||
|
Delegate<void(int available), void*> receiveHandler;
|
||||||
|
};
|
||||||
|
|
||||||
|
#endif // __SoftwareSerial_h
|
1786
lib/EspSoftwareSerial/src/circular_queue/Delegate.h
Normal file
1786
lib/EspSoftwareSerial/src/circular_queue/Delegate.h
Normal file
File diff suppressed because it is too large
Load Diff
503
lib/EspSoftwareSerial/src/circular_queue/MultiDelegate.h
Normal file
503
lib/EspSoftwareSerial/src/circular_queue/MultiDelegate.h
Normal file
@ -0,0 +1,503 @@
|
|||||||
|
/*
|
||||||
|
MultiDelegate.h - A queue or event multiplexer based on the efficient Delegate
|
||||||
|
class
|
||||||
|
Copyright (c) 2019 Dirk O. Kaar. All rights reserved.
|
||||||
|
|
||||||
|
This library is free software; you can redistribute it and/or
|
||||||
|
modify it under the terms of the GNU Lesser General Public
|
||||||
|
License as published by the Free Software Foundation; either
|
||||||
|
version 2.1 of the License, or (at your option) any later version.
|
||||||
|
|
||||||
|
This library is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||||
|
Lesser General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU Lesser General Public
|
||||||
|
License along with this library; if not, write to the Free Software
|
||||||
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef __MULTIDELEGATE_H
|
||||||
|
#define __MULTIDELEGATE_H
|
||||||
|
|
||||||
|
#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO)
|
||||||
|
#include <atomic>
|
||||||
|
#else
|
||||||
|
#include "circular_queue/ghostl.h"
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#if defined(ESP8266)
|
||||||
|
#include <interrupts.h>
|
||||||
|
using esp8266::InterruptLock;
|
||||||
|
#elif defined(ARDUINO)
|
||||||
|
class InterruptLock {
|
||||||
|
public:
|
||||||
|
InterruptLock() {
|
||||||
|
noInterrupts();
|
||||||
|
}
|
||||||
|
~InterruptLock() {
|
||||||
|
interrupts();
|
||||||
|
}
|
||||||
|
};
|
||||||
|
#else
|
||||||
|
#include <mutex>
|
||||||
|
#endif
|
||||||
|
|
||||||
|
namespace detail
|
||||||
|
{
|
||||||
|
namespace
|
||||||
|
{
|
||||||
|
template< typename Delegate, typename R, bool ISQUEUE = false, typename... P>
|
||||||
|
struct CallP
|
||||||
|
{
|
||||||
|
static R execute(Delegate& del, P... args)
|
||||||
|
{
|
||||||
|
return del(std::forward<P...>(args...)) ? !ISQUEUE : ISQUEUE;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template< typename Delegate, bool ISQUEUE, typename... P>
|
||||||
|
struct CallP<Delegate, void, ISQUEUE, P...>
|
||||||
|
{
|
||||||
|
static bool execute(Delegate& del, P... args)
|
||||||
|
{
|
||||||
|
del(std::forward<P...>(args...));
|
||||||
|
return !ISQUEUE;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template< typename Delegate, typename R, bool ISQUEUE = false>
|
||||||
|
struct Call
|
||||||
|
{
|
||||||
|
static R execute(Delegate& del)
|
||||||
|
{
|
||||||
|
return del() ? !ISQUEUE : ISQUEUE;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template< typename Delegate, bool ISQUEUE>
|
||||||
|
struct Call<Delegate, void, ISQUEUE>
|
||||||
|
{
|
||||||
|
static bool execute(Delegate& del)
|
||||||
|
{
|
||||||
|
del();
|
||||||
|
return !ISQUEUE;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
};
|
||||||
|
|
||||||
|
template< typename Delegate, typename R = void, bool ISQUEUE = false, uint32_t QUEUE_CAPACITY = 32, typename... P>
|
||||||
|
class MultiDelegatePImpl
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
MultiDelegatePImpl() = default;
|
||||||
|
~MultiDelegatePImpl()
|
||||||
|
{
|
||||||
|
*this = nullptr;
|
||||||
|
}
|
||||||
|
|
||||||
|
MultiDelegatePImpl(const MultiDelegatePImpl&) = delete;
|
||||||
|
MultiDelegatePImpl& operator=(const MultiDelegatePImpl&) = delete;
|
||||||
|
|
||||||
|
MultiDelegatePImpl(MultiDelegatePImpl&& md)
|
||||||
|
{
|
||||||
|
first = md.first;
|
||||||
|
last = md.last;
|
||||||
|
unused = md.unused;
|
||||||
|
nodeCount = md.nodeCount;
|
||||||
|
md.first = nullptr;
|
||||||
|
md.last = nullptr;
|
||||||
|
md.unused = nullptr;
|
||||||
|
md.nodeCount = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
MultiDelegatePImpl(const Delegate& del)
|
||||||
|
{
|
||||||
|
add(del);
|
||||||
|
}
|
||||||
|
|
||||||
|
MultiDelegatePImpl(Delegate&& del)
|
||||||
|
{
|
||||||
|
add(std::move(del));
|
||||||
|
}
|
||||||
|
|
||||||
|
MultiDelegatePImpl& operator=(MultiDelegatePImpl&& md)
|
||||||
|
{
|
||||||
|
first = md.first;
|
||||||
|
last = md.last;
|
||||||
|
unused = md.unused;
|
||||||
|
nodeCount = md.nodeCount;
|
||||||
|
md.first = nullptr;
|
||||||
|
md.last = nullptr;
|
||||||
|
md.unused = nullptr;
|
||||||
|
md.nodeCount = 0;
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
|
||||||
|
MultiDelegatePImpl& operator=(std::nullptr_t)
|
||||||
|
{
|
||||||
|
if (last)
|
||||||
|
last->mNext = unused;
|
||||||
|
if (first)
|
||||||
|
unused = first;
|
||||||
|
while (unused)
|
||||||
|
{
|
||||||
|
auto to_delete = unused;
|
||||||
|
unused = unused->mNext;
|
||||||
|
delete(to_delete);
|
||||||
|
}
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
|
||||||
|
MultiDelegatePImpl& operator+=(const Delegate& del)
|
||||||
|
{
|
||||||
|
add(del);
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
|
||||||
|
MultiDelegatePImpl& operator+=(Delegate&& del)
|
||||||
|
{
|
||||||
|
add(std::move(del));
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
|
||||||
|
protected:
|
||||||
|
struct Node_t
|
||||||
|
{
|
||||||
|
~Node_t()
|
||||||
|
{
|
||||||
|
mDelegate = nullptr; // special overload in Delegate
|
||||||
|
}
|
||||||
|
Node_t* mNext = nullptr;
|
||||||
|
Delegate mDelegate;
|
||||||
|
};
|
||||||
|
|
||||||
|
Node_t* first = nullptr;
|
||||||
|
Node_t* last = nullptr;
|
||||||
|
Node_t* unused = nullptr;
|
||||||
|
uint32_t nodeCount = 0;
|
||||||
|
|
||||||
|
// Returns a pointer to an unused Node_t,
|
||||||
|
// or if none are available allocates a new one,
|
||||||
|
// or nullptr if limit is reached
|
||||||
|
Node_t* IRAM_ATTR get_node_unsafe()
|
||||||
|
{
|
||||||
|
Node_t* result = nullptr;
|
||||||
|
// try to get an item from unused items list
|
||||||
|
if (unused)
|
||||||
|
{
|
||||||
|
result = unused;
|
||||||
|
unused = unused->mNext;
|
||||||
|
}
|
||||||
|
// if no unused items, and count not too high, allocate a new one
|
||||||
|
else if (nodeCount < QUEUE_CAPACITY)
|
||||||
|
{
|
||||||
|
#if defined(ESP8266) || defined(ESP32)
|
||||||
|
result = new (std::nothrow) Node_t;
|
||||||
|
#else
|
||||||
|
result = new Node_t;
|
||||||
|
#endif
|
||||||
|
if (result)
|
||||||
|
++nodeCount;
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
void recycle_node_unsafe(Node_t* node)
|
||||||
|
{
|
||||||
|
node->mDelegate = nullptr; // special overload in Delegate
|
||||||
|
node->mNext = unused;
|
||||||
|
unused = node;
|
||||||
|
}
|
||||||
|
|
||||||
|
#ifndef ARDUINO
|
||||||
|
std::mutex mutex_unused;
|
||||||
|
#endif
|
||||||
|
public:
|
||||||
|
const Delegate* IRAM_ATTR add(const Delegate& del)
|
||||||
|
{
|
||||||
|
return add(Delegate(del));
|
||||||
|
}
|
||||||
|
|
||||||
|
const Delegate* IRAM_ATTR add(Delegate&& del)
|
||||||
|
{
|
||||||
|
if (!del)
|
||||||
|
return nullptr;
|
||||||
|
|
||||||
|
#ifdef ARDUINO
|
||||||
|
InterruptLock lockAllInterruptsInThisScope;
|
||||||
|
#else
|
||||||
|
std::lock_guard<std::mutex> lock(mutex_unused);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
Node_t* item = ISQUEUE ? get_node_unsafe() :
|
||||||
|
#if defined(ESP8266) || defined(ESP32)
|
||||||
|
new (std::nothrow) Node_t;
|
||||||
|
#else
|
||||||
|
new Node_t;
|
||||||
|
#endif
|
||||||
|
if (!item)
|
||||||
|
return nullptr;
|
||||||
|
|
||||||
|
item->mDelegate = std::move(del);
|
||||||
|
item->mNext = nullptr;
|
||||||
|
|
||||||
|
if (last)
|
||||||
|
last->mNext = item;
|
||||||
|
else
|
||||||
|
first = item;
|
||||||
|
last = item;
|
||||||
|
|
||||||
|
return &item->mDelegate;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool remove(const Delegate* del)
|
||||||
|
{
|
||||||
|
auto current = first;
|
||||||
|
if (!current)
|
||||||
|
return false;
|
||||||
|
|
||||||
|
Node_t* prev = nullptr;
|
||||||
|
do
|
||||||
|
{
|
||||||
|
if (del == ¤t->mDelegate)
|
||||||
|
{
|
||||||
|
// remove callback from stack
|
||||||
|
#ifdef ARDUINO
|
||||||
|
InterruptLock lockAllInterruptsInThisScope;
|
||||||
|
#else
|
||||||
|
std::lock_guard<std::mutex> lock(mutex_unused);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
auto to_recycle = current;
|
||||||
|
|
||||||
|
// removing rLast
|
||||||
|
if (last == current)
|
||||||
|
last = prev;
|
||||||
|
|
||||||
|
current = current->mNext;
|
||||||
|
if (prev)
|
||||||
|
{
|
||||||
|
prev->mNext = current;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
first = current;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (ISQUEUE)
|
||||||
|
recycle_node_unsafe(to_recycle);
|
||||||
|
else
|
||||||
|
delete to_recycle;
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
prev = current;
|
||||||
|
current = current->mNext;
|
||||||
|
}
|
||||||
|
} while (current);
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
void operator()(P... args)
|
||||||
|
{
|
||||||
|
auto current = first;
|
||||||
|
if (!current)
|
||||||
|
return;
|
||||||
|
|
||||||
|
static std::atomic<bool> fence(false);
|
||||||
|
// prevent recursive calls
|
||||||
|
#if defined(ARDUINO) && !defined(ESP32)
|
||||||
|
if (fence.load()) return;
|
||||||
|
fence.store(true);
|
||||||
|
#else
|
||||||
|
if (fence.exchange(true)) return;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
Node_t* prev = nullptr;
|
||||||
|
// prevent execution of new callbacks during this run
|
||||||
|
auto stop = last;
|
||||||
|
|
||||||
|
bool done;
|
||||||
|
do
|
||||||
|
{
|
||||||
|
done = current == stop;
|
||||||
|
if (!CallP<Delegate, R, ISQUEUE, P...>::execute(current->mDelegate, args...))
|
||||||
|
{
|
||||||
|
// remove callback from stack
|
||||||
|
#ifdef ARDUINO
|
||||||
|
InterruptLock lockAllInterruptsInThisScope;
|
||||||
|
#else
|
||||||
|
std::lock_guard<std::mutex> lock(mutex_unused);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
auto to_recycle = current;
|
||||||
|
|
||||||
|
// removing rLast
|
||||||
|
if (last == current)
|
||||||
|
last = prev;
|
||||||
|
|
||||||
|
current = current->mNext;
|
||||||
|
if (prev)
|
||||||
|
{
|
||||||
|
prev->mNext = current;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
first = current;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (ISQUEUE)
|
||||||
|
recycle_node_unsafe(to_recycle);
|
||||||
|
else
|
||||||
|
delete to_recycle;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
prev = current;
|
||||||
|
current = current->mNext;
|
||||||
|
}
|
||||||
|
|
||||||
|
#if defined(ESP8266) || defined(ESP32)
|
||||||
|
// running callbacks might last too long for watchdog etc.
|
||||||
|
optimistic_yield(10000);
|
||||||
|
#endif
|
||||||
|
} while (current && !done);
|
||||||
|
|
||||||
|
fence.store(false);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template< typename Delegate, typename R = void, bool ISQUEUE = false, uint32_t QUEUE_CAPACITY = 32>
|
||||||
|
class MultiDelegateImpl : public MultiDelegatePImpl<Delegate, R, ISQUEUE, QUEUE_CAPACITY>
|
||||||
|
{
|
||||||
|
protected:
|
||||||
|
using typename MultiDelegatePImpl<Delegate, R, ISQUEUE, QUEUE_CAPACITY>::Node_t;
|
||||||
|
using MultiDelegatePImpl<Delegate, R, ISQUEUE, QUEUE_CAPACITY>::first;
|
||||||
|
using MultiDelegatePImpl<Delegate, R, ISQUEUE, QUEUE_CAPACITY>::last;
|
||||||
|
using MultiDelegatePImpl<Delegate, R, ISQUEUE, QUEUE_CAPACITY>::unused;
|
||||||
|
using MultiDelegatePImpl<Delegate, R, ISQUEUE, QUEUE_CAPACITY>::nodeCount;
|
||||||
|
using MultiDelegatePImpl<Delegate, R, ISQUEUE, QUEUE_CAPACITY>::recycle_node_unsafe;
|
||||||
|
#ifndef ARDUINO
|
||||||
|
using MultiDelegatePImpl<Delegate, R, ISQUEUE, QUEUE_CAPACITY>::mutex_unused;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
public:
|
||||||
|
using MultiDelegatePImpl<Delegate, R, ISQUEUE, QUEUE_CAPACITY>::MultiDelegatePImpl;
|
||||||
|
|
||||||
|
void operator()()
|
||||||
|
{
|
||||||
|
auto current = first;
|
||||||
|
if (!current)
|
||||||
|
return;
|
||||||
|
|
||||||
|
static std::atomic<bool> fence(false);
|
||||||
|
// prevent recursive calls
|
||||||
|
#if defined(ARDUINO) && !defined(ESP32)
|
||||||
|
if (fence.load()) return;
|
||||||
|
fence.store(true);
|
||||||
|
#else
|
||||||
|
if (fence.exchange(true)) return;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
Node_t* prev = nullptr;
|
||||||
|
// prevent execution of new callbacks during this run
|
||||||
|
auto stop = last;
|
||||||
|
|
||||||
|
bool done;
|
||||||
|
do
|
||||||
|
{
|
||||||
|
done = current == stop;
|
||||||
|
if (!Call<Delegate, R, ISQUEUE>::execute(current->mDelegate))
|
||||||
|
{
|
||||||
|
// remove callback from stack
|
||||||
|
#ifdef ARDUINO
|
||||||
|
InterruptLock lockAllInterruptsInThisScope;
|
||||||
|
#else
|
||||||
|
std::lock_guard<std::mutex> lock(mutex_unused);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
auto to_recycle = current;
|
||||||
|
|
||||||
|
// removing rLast
|
||||||
|
if (last == current)
|
||||||
|
last = prev;
|
||||||
|
|
||||||
|
current = current->mNext;
|
||||||
|
if (prev)
|
||||||
|
{
|
||||||
|
prev->mNext = current;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
first = current;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (ISQUEUE)
|
||||||
|
recycle_node_unsafe(to_recycle);
|
||||||
|
else
|
||||||
|
delete to_recycle;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
prev = current;
|
||||||
|
current = current->mNext;
|
||||||
|
}
|
||||||
|
|
||||||
|
#if defined(ESP8266) || defined(ESP32)
|
||||||
|
// running callbacks might last too long for watchdog etc.
|
||||||
|
optimistic_yield(10000);
|
||||||
|
#endif
|
||||||
|
} while (current && !done);
|
||||||
|
|
||||||
|
fence.store(false);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template< typename Delegate, typename R, bool ISQUEUE, uint32_t QUEUE_CAPACITY, typename... P> class MultiDelegate;
|
||||||
|
|
||||||
|
template< typename Delegate, typename R, bool ISQUEUE, uint32_t QUEUE_CAPACITY, typename... P>
|
||||||
|
class MultiDelegate<Delegate, R(P...), ISQUEUE, QUEUE_CAPACITY> : public MultiDelegatePImpl<Delegate, R, ISQUEUE, QUEUE_CAPACITY, P...>
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
using MultiDelegatePImpl<Delegate, R, ISQUEUE, QUEUE_CAPACITY, P...>::MultiDelegatePImpl;
|
||||||
|
};
|
||||||
|
|
||||||
|
template< typename Delegate, typename R, bool ISQUEUE, uint32_t QUEUE_CAPACITY>
|
||||||
|
class MultiDelegate<Delegate, R(), ISQUEUE, QUEUE_CAPACITY> : public MultiDelegateImpl<Delegate, R, ISQUEUE, QUEUE_CAPACITY>
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
using MultiDelegateImpl<Delegate, R, ISQUEUE, QUEUE_CAPACITY>::MultiDelegateImpl;
|
||||||
|
};
|
||||||
|
};
|
||||||
|
|
||||||
|
/**
|
||||||
|
The MultiDelegate class template can be specialized to either a queue or an event multiplexer.
|
||||||
|
It is designed to be used with Delegate, the efficient runtime wrapper for C function ptr and C++ std::function.
|
||||||
|
@tparam Delegate specifies the concrete type that MultiDelegate bases the queue or event multiplexer on.
|
||||||
|
@tparam ISQUEUE modifies the generated MultiDelegate class in subtle ways. In queue mode (ISQUEUE == true),
|
||||||
|
the value of QUEUE_CAPACITY enforces the maximum number of simultaneous items the queue can contain.
|
||||||
|
This is exploited to minimize the use of new and delete by reusing already allocated items, thus
|
||||||
|
reducing heap fragmentation. In event multiplexer mode (ISQUEUE = false), new and delete are
|
||||||
|
used for allocation of the event handler items.
|
||||||
|
If the result type of the function call operator of Delegate is void, calling a MultiDelegate queue
|
||||||
|
removes each item after calling it; a Multidelegate event multiplexer keeps event handlers until
|
||||||
|
explicitly removed.
|
||||||
|
If the result type of the function call operator of Delegate is non-void, the type-conversion to bool
|
||||||
|
of that result determines if the item is immediately removed or kept after each call: a Multidelegate
|
||||||
|
queue removes an item only if true is returned, but a Multidelegate event multiplexer removes event
|
||||||
|
handlers that return false.
|
||||||
|
@tparam QUEUE_CAPACITY is only used if ISQUEUE == true. Then, it sets the maximum capacity that the queue dynamically
|
||||||
|
allocates from the heap. Unused items are not returned to the heap, but are managed by the MultiDelegate
|
||||||
|
instance during its own lifetime for efficiency.
|
||||||
|
*/
|
||||||
|
template< typename Delegate, bool ISQUEUE = false, uint32_t QUEUE_CAPACITY = 32>
|
||||||
|
class MultiDelegate : public detail::MultiDelegate<Delegate, typename Delegate::target_type, ISQUEUE, QUEUE_CAPACITY>
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
using detail::MultiDelegate<Delegate, typename Delegate::target_type, ISQUEUE, QUEUE_CAPACITY>::MultiDelegate;
|
||||||
|
};
|
||||||
|
|
||||||
|
#endif // __MULTIDELEGATE_H
|
399
lib/EspSoftwareSerial/src/circular_queue/circular_queue.h
Normal file
399
lib/EspSoftwareSerial/src/circular_queue/circular_queue.h
Normal file
@ -0,0 +1,399 @@
|
|||||||
|
/*
|
||||||
|
circular_queue.h - Implementation of a lock-free circular queue for EspSoftwareSerial.
|
||||||
|
Copyright (c) 2019 Dirk O. Kaar. All rights reserved.
|
||||||
|
|
||||||
|
This library is free software; you can redistribute it and/or
|
||||||
|
modify it under the terms of the GNU Lesser General Public
|
||||||
|
License as published by the Free Software Foundation; either
|
||||||
|
version 2.1 of the License, or (at your option) any later version.
|
||||||
|
|
||||||
|
This library is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||||
|
Lesser General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU Lesser General Public
|
||||||
|
License along with this library; if not, write to the Free Software
|
||||||
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef __circular_queue_h
|
||||||
|
#define __circular_queue_h
|
||||||
|
|
||||||
|
#ifdef ARDUINO
|
||||||
|
#include <Arduino.h>
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO)
|
||||||
|
#include <atomic>
|
||||||
|
#include <memory>
|
||||||
|
#include <algorithm>
|
||||||
|
#include "Delegate.h"
|
||||||
|
using std::min;
|
||||||
|
#else
|
||||||
|
#include "ghostl.h"
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#if !defined(ESP32) && !defined(ESP8266)
|
||||||
|
#define ICACHE_RAM_ATTR
|
||||||
|
#define IRAM_ATTR
|
||||||
|
#endif
|
||||||
|
|
||||||
|
/*!
|
||||||
|
@brief Instance class for a single-producer, single-consumer circular queue / ring buffer (FIFO).
|
||||||
|
This implementation is lock-free between producer and consumer for the available(), peek(),
|
||||||
|
pop(), and push() type functions.
|
||||||
|
*/
|
||||||
|
template< typename T, typename ForEachArg = void >
|
||||||
|
class circular_queue
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
/*!
|
||||||
|
@brief Constructs a valid, but zero-capacity dummy queue.
|
||||||
|
*/
|
||||||
|
circular_queue() : m_bufSize(1)
|
||||||
|
{
|
||||||
|
m_inPos.store(0);
|
||||||
|
m_outPos.store(0);
|
||||||
|
}
|
||||||
|
/*!
|
||||||
|
@brief Constructs a queue of the given maximum capacity.
|
||||||
|
*/
|
||||||
|
circular_queue(const size_t capacity) : m_bufSize(capacity + 1), m_buffer(new T[m_bufSize])
|
||||||
|
{
|
||||||
|
m_inPos.store(0);
|
||||||
|
m_outPos.store(0);
|
||||||
|
}
|
||||||
|
circular_queue(circular_queue&& cq) :
|
||||||
|
m_bufSize(cq.m_bufSize), m_buffer(cq.m_buffer), m_inPos(cq.m_inPos.load()), m_outPos(cq.m_outPos.load())
|
||||||
|
{}
|
||||||
|
~circular_queue()
|
||||||
|
{
|
||||||
|
m_buffer.reset();
|
||||||
|
}
|
||||||
|
circular_queue(const circular_queue&) = delete;
|
||||||
|
circular_queue& operator=(circular_queue&& cq)
|
||||||
|
{
|
||||||
|
m_bufSize = cq.m_bufSize;
|
||||||
|
m_buffer = cq.m_buffer;
|
||||||
|
m_inPos.store(cq.m_inPos.load());
|
||||||
|
m_outPos.store(cq.m_outPos.load());
|
||||||
|
}
|
||||||
|
circular_queue& operator=(const circular_queue&) = delete;
|
||||||
|
|
||||||
|
/*!
|
||||||
|
@brief Get the numer of elements the queue can hold at most.
|
||||||
|
*/
|
||||||
|
size_t capacity() const
|
||||||
|
{
|
||||||
|
return m_bufSize - 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
/*!
|
||||||
|
@brief Resize the queue. The available elements in the queue are preserved.
|
||||||
|
This is not lock-free and concurrent producer or consumer access
|
||||||
|
will lead to corruption.
|
||||||
|
@return True if the new capacity could accommodate the present elements in
|
||||||
|
the queue, otherwise nothing is done and false is returned.
|
||||||
|
*/
|
||||||
|
bool capacity(const size_t cap);
|
||||||
|
|
||||||
|
/*!
|
||||||
|
@brief Discard all data in the queue.
|
||||||
|
*/
|
||||||
|
void flush()
|
||||||
|
{
|
||||||
|
m_outPos.store(m_inPos.load());
|
||||||
|
}
|
||||||
|
|
||||||
|
/*!
|
||||||
|
@brief Get a snapshot number of elements that can be retrieved by pop.
|
||||||
|
*/
|
||||||
|
size_t available() const
|
||||||
|
{
|
||||||
|
int avail = static_cast<int>(m_inPos.load() - m_outPos.load());
|
||||||
|
if (avail < 0) avail += m_bufSize;
|
||||||
|
return avail;
|
||||||
|
}
|
||||||
|
|
||||||
|
/*!
|
||||||
|
@brief Get the remaining free elementes for pushing.
|
||||||
|
*/
|
||||||
|
size_t available_for_push() const
|
||||||
|
{
|
||||||
|
int avail = static_cast<int>(m_outPos.load() - m_inPos.load()) - 1;
|
||||||
|
if (avail < 0) avail += m_bufSize;
|
||||||
|
return avail;
|
||||||
|
}
|
||||||
|
|
||||||
|
/*!
|
||||||
|
@brief Peek at the next element pop will return without removing it from the queue.
|
||||||
|
@return An rvalue copy of the next element that can be popped. If the queue is empty,
|
||||||
|
return an rvalue copy of the element that is pending the next push.
|
||||||
|
*/
|
||||||
|
T peek() const
|
||||||
|
{
|
||||||
|
const auto outPos = m_outPos.load(std::memory_order_relaxed);
|
||||||
|
std::atomic_thread_fence(std::memory_order_acquire);
|
||||||
|
return m_buffer[outPos];
|
||||||
|
}
|
||||||
|
|
||||||
|
/*!
|
||||||
|
@brief Peek at the next pending input value.
|
||||||
|
@return A reference to the next element that can be pushed.
|
||||||
|
*/
|
||||||
|
T& IRAM_ATTR pushpeek()
|
||||||
|
{
|
||||||
|
const auto inPos = m_inPos.load(std::memory_order_relaxed);
|
||||||
|
std::atomic_thread_fence(std::memory_order_acquire);
|
||||||
|
return m_buffer[inPos];
|
||||||
|
}
|
||||||
|
|
||||||
|
/*!
|
||||||
|
@brief Release the next pending input value, accessible by pushpeek(), into the queue.
|
||||||
|
@return true if the queue accepted the value, false if the queue
|
||||||
|
was full.
|
||||||
|
*/
|
||||||
|
bool IRAM_ATTR push();
|
||||||
|
|
||||||
|
/*!
|
||||||
|
@brief Move the rvalue parameter into the queue.
|
||||||
|
@return true if the queue accepted the value, false if the queue
|
||||||
|
was full.
|
||||||
|
*/
|
||||||
|
bool IRAM_ATTR push(T&& val);
|
||||||
|
|
||||||
|
/*!
|
||||||
|
@brief Push a copy of the parameter into the queue.
|
||||||
|
@return true if the queue accepted the value, false if the queue
|
||||||
|
was full.
|
||||||
|
*/
|
||||||
|
bool IRAM_ATTR push(const T& val)
|
||||||
|
{
|
||||||
|
return push(T(val));
|
||||||
|
}
|
||||||
|
|
||||||
|
#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO)
|
||||||
|
/*!
|
||||||
|
@brief Push copies of multiple elements from a buffer into the queue,
|
||||||
|
in order, beginning at buffer's head.
|
||||||
|
@return The number of elements actually copied into the queue, counted
|
||||||
|
from the buffer head.
|
||||||
|
*/
|
||||||
|
size_t push_n(const T* buffer, size_t size);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
/*!
|
||||||
|
@brief Pop the next available element from the queue.
|
||||||
|
@return An rvalue copy of the popped element, or a default
|
||||||
|
value of type T if the queue is empty.
|
||||||
|
*/
|
||||||
|
T pop();
|
||||||
|
|
||||||
|
#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO)
|
||||||
|
/*!
|
||||||
|
@brief Pop multiple elements in ordered sequence from the queue to a buffer.
|
||||||
|
If buffer is nullptr, simply discards up to size elements from the queue.
|
||||||
|
@return The number of elements actually popped from the queue to
|
||||||
|
buffer.
|
||||||
|
*/
|
||||||
|
size_t pop_n(T* buffer, size_t size);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
/*!
|
||||||
|
@brief Iterate over and remove each available element from queue,
|
||||||
|
calling back fun with an rvalue reference of every single element.
|
||||||
|
*/
|
||||||
|
#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO)
|
||||||
|
void for_each(const Delegate<void(T&&), ForEachArg>& fun);
|
||||||
|
#else
|
||||||
|
void for_each(Delegate<void(T&&), ForEachArg> fun);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
/*!
|
||||||
|
@brief In reverse order, iterate over, pop and optionally requeue each available element from the queue,
|
||||||
|
calling back fun with a reference of every single element.
|
||||||
|
Requeuing is dependent on the return boolean of the callback function. If it
|
||||||
|
returns true, the requeue occurs.
|
||||||
|
*/
|
||||||
|
#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO)
|
||||||
|
bool for_each_rev_requeue(const Delegate<bool(T&), ForEachArg>& fun);
|
||||||
|
#else
|
||||||
|
bool for_each_rev_requeue(Delegate<bool(T&), ForEachArg> fun);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
protected:
|
||||||
|
const T defaultValue = {};
|
||||||
|
unsigned m_bufSize;
|
||||||
|
#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO)
|
||||||
|
std::unique_ptr<T[]> m_buffer;
|
||||||
|
#else
|
||||||
|
std::unique_ptr<T> m_buffer;
|
||||||
|
#endif
|
||||||
|
std::atomic<unsigned> m_inPos;
|
||||||
|
std::atomic<unsigned> m_outPos;
|
||||||
|
};
|
||||||
|
|
||||||
|
template< typename T, typename ForEachArg >
|
||||||
|
bool circular_queue<T, ForEachArg>::capacity(const size_t cap)
|
||||||
|
{
|
||||||
|
if (cap + 1 == m_bufSize) return true;
|
||||||
|
else if (available() > cap) return false;
|
||||||
|
std::unique_ptr<T[] > buffer(new T[cap + 1]);
|
||||||
|
const auto available = pop_n(buffer, cap);
|
||||||
|
m_buffer.reset(buffer);
|
||||||
|
m_bufSize = cap + 1;
|
||||||
|
std::atomic_thread_fence(std::memory_order_release);
|
||||||
|
m_inPos.store(available, std::memory_order_relaxed);
|
||||||
|
m_outPos.store(0, std::memory_order_release);
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
template< typename T, typename ForEachArg >
|
||||||
|
bool IRAM_ATTR circular_queue<T, ForEachArg>::push()
|
||||||
|
{
|
||||||
|
const auto inPos = m_inPos.load(std::memory_order_acquire);
|
||||||
|
const unsigned next = (inPos + 1) % m_bufSize;
|
||||||
|
if (next == m_outPos.load(std::memory_order_relaxed)) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::atomic_thread_fence(std::memory_order_acquire);
|
||||||
|
|
||||||
|
m_inPos.store(next, std::memory_order_release);
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
template< typename T, typename ForEachArg >
|
||||||
|
bool IRAM_ATTR circular_queue<T, ForEachArg>::push(T&& val)
|
||||||
|
{
|
||||||
|
const auto inPos = m_inPos.load(std::memory_order_acquire);
|
||||||
|
const unsigned next = (inPos + 1) % m_bufSize;
|
||||||
|
if (next == m_outPos.load(std::memory_order_relaxed)) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::atomic_thread_fence(std::memory_order_acquire);
|
||||||
|
|
||||||
|
m_buffer[inPos] = std::move(val);
|
||||||
|
|
||||||
|
std::atomic_thread_fence(std::memory_order_release);
|
||||||
|
|
||||||
|
m_inPos.store(next, std::memory_order_release);
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO)
|
||||||
|
template< typename T, typename ForEachArg >
|
||||||
|
size_t circular_queue<T, ForEachArg>::push_n(const T* buffer, size_t size)
|
||||||
|
{
|
||||||
|
const auto inPos = m_inPos.load(std::memory_order_acquire);
|
||||||
|
const auto outPos = m_outPos.load(std::memory_order_relaxed);
|
||||||
|
|
||||||
|
size_t blockSize = (outPos > inPos) ? outPos - 1 - inPos : (outPos == 0) ? m_bufSize - 1 - inPos : m_bufSize - inPos;
|
||||||
|
blockSize = min(size, blockSize);
|
||||||
|
if (!blockSize) return 0;
|
||||||
|
int next = (inPos + blockSize) % m_bufSize;
|
||||||
|
|
||||||
|
std::atomic_thread_fence(std::memory_order_acquire);
|
||||||
|
|
||||||
|
auto dest = m_buffer.get() + inPos;
|
||||||
|
std::copy_n(std::make_move_iterator(buffer), blockSize, dest);
|
||||||
|
size = min(size - blockSize, outPos > 1 ? static_cast<size_t>(outPos - next - 1) : 0);
|
||||||
|
next += size;
|
||||||
|
dest = m_buffer.get();
|
||||||
|
std::copy_n(std::make_move_iterator(buffer + blockSize), size, dest);
|
||||||
|
|
||||||
|
std::atomic_thread_fence(std::memory_order_release);
|
||||||
|
|
||||||
|
m_inPos.store(next, std::memory_order_release);
|
||||||
|
return blockSize + size;
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
template< typename T, typename ForEachArg >
|
||||||
|
T circular_queue<T, ForEachArg>::pop()
|
||||||
|
{
|
||||||
|
const auto outPos = m_outPos.load(std::memory_order_acquire);
|
||||||
|
if (m_inPos.load(std::memory_order_relaxed) == outPos) return defaultValue;
|
||||||
|
|
||||||
|
std::atomic_thread_fence(std::memory_order_acquire);
|
||||||
|
|
||||||
|
auto val = std::move(m_buffer[outPos]);
|
||||||
|
|
||||||
|
std::atomic_thread_fence(std::memory_order_release);
|
||||||
|
|
||||||
|
m_outPos.store((outPos + 1) % m_bufSize, std::memory_order_release);
|
||||||
|
return val;
|
||||||
|
}
|
||||||
|
|
||||||
|
#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO)
|
||||||
|
template< typename T, typename ForEachArg >
|
||||||
|
size_t circular_queue<T, ForEachArg>::pop_n(T* buffer, size_t size) {
|
||||||
|
size_t avail = size = min(size, available());
|
||||||
|
if (!avail) return 0;
|
||||||
|
const auto outPos = m_outPos.load(std::memory_order_acquire);
|
||||||
|
size_t n = min(avail, static_cast<size_t>(m_bufSize - outPos));
|
||||||
|
|
||||||
|
std::atomic_thread_fence(std::memory_order_acquire);
|
||||||
|
|
||||||
|
if (buffer) {
|
||||||
|
buffer = std::copy_n(std::make_move_iterator(m_buffer.get() + outPos), n, buffer);
|
||||||
|
avail -= n;
|
||||||
|
std::copy_n(std::make_move_iterator(m_buffer.get()), avail, buffer);
|
||||||
|
}
|
||||||
|
|
||||||
|
std::atomic_thread_fence(std::memory_order_release);
|
||||||
|
|
||||||
|
m_outPos.store((outPos + size) % m_bufSize, std::memory_order_release);
|
||||||
|
return size;
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
template< typename T, typename ForEachArg >
|
||||||
|
#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO)
|
||||||
|
void circular_queue<T, ForEachArg>::for_each(const Delegate<void(T&&), ForEachArg>& fun)
|
||||||
|
#else
|
||||||
|
void circular_queue<T, ForEachArg>::for_each(Delegate<void(T&&), ForEachArg> fun)
|
||||||
|
#endif
|
||||||
|
{
|
||||||
|
auto outPos = m_outPos.load(std::memory_order_acquire);
|
||||||
|
const auto inPos = m_inPos.load(std::memory_order_relaxed);
|
||||||
|
std::atomic_thread_fence(std::memory_order_acquire);
|
||||||
|
while (outPos != inPos)
|
||||||
|
{
|
||||||
|
fun(std::move(m_buffer[outPos]));
|
||||||
|
std::atomic_thread_fence(std::memory_order_release);
|
||||||
|
outPos = (outPos + 1) % m_bufSize;
|
||||||
|
m_outPos.store(outPos, std::memory_order_release);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template< typename T, typename ForEachArg >
|
||||||
|
#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO)
|
||||||
|
bool circular_queue<T, ForEachArg>::for_each_rev_requeue(const Delegate<bool(T&), ForEachArg>& fun)
|
||||||
|
#else
|
||||||
|
bool circular_queue<T, ForEachArg>::for_each_rev_requeue(Delegate<bool(T&), ForEachArg> fun)
|
||||||
|
#endif
|
||||||
|
{
|
||||||
|
auto inPos0 = circular_queue<T, ForEachArg>::m_inPos.load(std::memory_order_acquire);
|
||||||
|
auto outPos = circular_queue<T, ForEachArg>::m_outPos.load(std::memory_order_relaxed);
|
||||||
|
std::atomic_thread_fence(std::memory_order_acquire);
|
||||||
|
if (outPos == inPos0) return false;
|
||||||
|
auto pos = inPos0;
|
||||||
|
auto outPos1 = inPos0;
|
||||||
|
const auto posDecr = circular_queue<T, ForEachArg>::m_bufSize - 1;
|
||||||
|
do {
|
||||||
|
pos = (pos + posDecr) % circular_queue<T, ForEachArg>::m_bufSize;
|
||||||
|
T&& val = std::move(circular_queue<T, ForEachArg>::m_buffer[pos]);
|
||||||
|
if (fun(val))
|
||||||
|
{
|
||||||
|
outPos1 = (outPos1 + posDecr) % circular_queue<T, ForEachArg>::m_bufSize;
|
||||||
|
if (outPos1 != pos) circular_queue<T, ForEachArg>::m_buffer[outPos1] = std::move(val);
|
||||||
|
}
|
||||||
|
} while (pos != outPos);
|
||||||
|
circular_queue<T, ForEachArg>::m_outPos.store(outPos1, std::memory_order_release);
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // __circular_queue_h
|
200
lib/EspSoftwareSerial/src/circular_queue/circular_queue_mp.h
Normal file
200
lib/EspSoftwareSerial/src/circular_queue/circular_queue_mp.h
Normal file
@ -0,0 +1,200 @@
|
|||||||
|
/*
|
||||||
|
circular_queue_mp.h - Implementation of a lock-free circular queue for EspSoftwareSerial.
|
||||||
|
Copyright (c) 2019 Dirk O. Kaar. All rights reserved.
|
||||||
|
|
||||||
|
This library is free software; you can redistribute it and/or
|
||||||
|
modify it under the terms of the GNU Lesser General Public
|
||||||
|
License as published by the Free Software Foundation; either
|
||||||
|
version 2.1 of the License, or (at your option) any later version.
|
||||||
|
|
||||||
|
This library is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||||
|
Lesser General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU Lesser General Public
|
||||||
|
License along with this library; if not, write to the Free Software
|
||||||
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef __circular_queue_mp_h
|
||||||
|
#define __circular_queue_mp_h
|
||||||
|
|
||||||
|
#include "circular_queue.h"
|
||||||
|
|
||||||
|
#ifdef ESP8266
|
||||||
|
#include "interrupts.h"
|
||||||
|
#else
|
||||||
|
#include <mutex>
|
||||||
|
#endif
|
||||||
|
|
||||||
|
/*!
|
||||||
|
@brief Instance class for a multi-producer, single-consumer circular queue / ring buffer (FIFO).
|
||||||
|
This implementation is lock-free between producers and consumer for the available(), peek(),
|
||||||
|
pop(), and push() type functions, but is guarded to safely allow only a single producer
|
||||||
|
at any instant.
|
||||||
|
*/
|
||||||
|
template< typename T, typename ForEachArg = void >
|
||||||
|
class circular_queue_mp : protected circular_queue<T, ForEachArg>
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
circular_queue_mp() = default;
|
||||||
|
circular_queue_mp(const size_t capacity) : circular_queue<T, ForEachArg>(capacity)
|
||||||
|
{}
|
||||||
|
circular_queue_mp(circular_queue<T, ForEachArg>&& cq) : circular_queue<T, ForEachArg>(std::move(cq))
|
||||||
|
{}
|
||||||
|
using circular_queue<T, ForEachArg>::operator=;
|
||||||
|
using circular_queue<T, ForEachArg>::capacity;
|
||||||
|
using circular_queue<T, ForEachArg>::flush;
|
||||||
|
using circular_queue<T, ForEachArg>::available;
|
||||||
|
using circular_queue<T, ForEachArg>::available_for_push;
|
||||||
|
using circular_queue<T, ForEachArg>::peek;
|
||||||
|
using circular_queue<T, ForEachArg>::pop;
|
||||||
|
using circular_queue<T, ForEachArg>::pop_n;
|
||||||
|
using circular_queue<T, ForEachArg>::for_each;
|
||||||
|
using circular_queue<T, ForEachArg>::for_each_rev_requeue;
|
||||||
|
|
||||||
|
/*!
|
||||||
|
@brief Resize the queue. The available elements in the queue are preserved.
|
||||||
|
This is not lock-free, but safe, concurrent producer or consumer access
|
||||||
|
is guarded.
|
||||||
|
@return True if the new capacity could accommodate the present elements in
|
||||||
|
the queue, otherwise nothing is done and false is returned.
|
||||||
|
*/
|
||||||
|
bool capacity(const size_t cap)
|
||||||
|
{
|
||||||
|
#ifdef ESP8266
|
||||||
|
esp8266::InterruptLock lock;
|
||||||
|
#else
|
||||||
|
std::lock_guard<std::mutex> lock(m_pushMtx);
|
||||||
|
#endif
|
||||||
|
return circular_queue<T, ForEachArg>::capacity(cap);
|
||||||
|
}
|
||||||
|
|
||||||
|
bool IRAM_ATTR push() = delete;
|
||||||
|
|
||||||
|
/*!
|
||||||
|
@brief Move the rvalue parameter into the queue, guarded
|
||||||
|
for multiple concurrent producers.
|
||||||
|
@return true if the queue accepted the value, false if the queue
|
||||||
|
was full.
|
||||||
|
*/
|
||||||
|
bool IRAM_ATTR push(T&& val)
|
||||||
|
{
|
||||||
|
#ifdef ESP8266
|
||||||
|
esp8266::InterruptLock lock;
|
||||||
|
#else
|
||||||
|
std::lock_guard<std::mutex> lock(m_pushMtx);
|
||||||
|
#endif
|
||||||
|
return circular_queue<T, ForEachArg>::push(std::move(val));
|
||||||
|
}
|
||||||
|
|
||||||
|
/*!
|
||||||
|
@brief Push a copy of the parameter into the queue, guarded
|
||||||
|
for multiple concurrent producers.
|
||||||
|
@return true if the queue accepted the value, false if the queue
|
||||||
|
was full.
|
||||||
|
*/
|
||||||
|
bool IRAM_ATTR push(const T& val)
|
||||||
|
{
|
||||||
|
#ifdef ESP8266
|
||||||
|
esp8266::InterruptLock lock;
|
||||||
|
#else
|
||||||
|
std::lock_guard<std::mutex> lock(m_pushMtx);
|
||||||
|
#endif
|
||||||
|
return circular_queue<T, ForEachArg>::push(val);
|
||||||
|
}
|
||||||
|
|
||||||
|
/*!
|
||||||
|
@brief Push copies of multiple elements from a buffer into the queue,
|
||||||
|
in order, beginning at buffer's head. This is guarded for
|
||||||
|
multiple producers, push_n() is atomic.
|
||||||
|
@return The number of elements actually copied into the queue, counted
|
||||||
|
from the buffer head.
|
||||||
|
*/
|
||||||
|
size_t push_n(const T* buffer, size_t size)
|
||||||
|
{
|
||||||
|
#ifdef ESP8266
|
||||||
|
esp8266::InterruptLock lock;
|
||||||
|
#else
|
||||||
|
std::lock_guard<std::mutex> lock(m_pushMtx);
|
||||||
|
#endif
|
||||||
|
return circular_queue<T, ForEachArg>::push_n(buffer, size);
|
||||||
|
}
|
||||||
|
|
||||||
|
/*!
|
||||||
|
@brief Pops the next available element from the queue, requeues
|
||||||
|
it immediately.
|
||||||
|
@return A reference to the just requeued element, or the default
|
||||||
|
value of type T if the queue is empty.
|
||||||
|
*/
|
||||||
|
T& pop_requeue();
|
||||||
|
|
||||||
|
/*!
|
||||||
|
@brief Iterate over, pop and optionally requeue each available element from the queue,
|
||||||
|
calling back fun with a reference of every single element.
|
||||||
|
Requeuing is dependent on the return boolean of the callback function. If it
|
||||||
|
returns true, the requeue occurs.
|
||||||
|
*/
|
||||||
|
bool for_each_requeue(const Delegate<bool(T&), ForEachArg>& fun);
|
||||||
|
|
||||||
|
#ifndef ESP8266
|
||||||
|
protected:
|
||||||
|
std::mutex m_pushMtx;
|
||||||
|
#endif
|
||||||
|
};
|
||||||
|
|
||||||
|
template< typename T, typename ForEachArg >
|
||||||
|
T& circular_queue_mp<T>::pop_requeue()
|
||||||
|
{
|
||||||
|
#ifdef ESP8266
|
||||||
|
esp8266::InterruptLock lock;
|
||||||
|
#else
|
||||||
|
std::lock_guard<std::mutex> lock(m_pushMtx);
|
||||||
|
#endif
|
||||||
|
const auto outPos = circular_queue<T, ForEachArg>::m_outPos.load(std::memory_order_acquire);
|
||||||
|
const auto inPos = circular_queue<T, ForEachArg>::m_inPos.load(std::memory_order_relaxed);
|
||||||
|
std::atomic_thread_fence(std::memory_order_acquire);
|
||||||
|
if (inPos == outPos) return circular_queue<T, ForEachArg>::defaultValue;
|
||||||
|
T& val = circular_queue<T, ForEachArg>::m_buffer[inPos] = std::move(circular_queue<T, ForEachArg>::m_buffer[outPos]);
|
||||||
|
const auto bufSize = circular_queue<T, ForEachArg>::m_bufSize;
|
||||||
|
std::atomic_thread_fence(std::memory_order_release);
|
||||||
|
circular_queue<T, ForEachArg>::m_outPos.store((outPos + 1) % bufSize, std::memory_order_relaxed);
|
||||||
|
circular_queue<T, ForEachArg>::m_inPos.store((inPos + 1) % bufSize, std::memory_order_release);
|
||||||
|
return val;
|
||||||
|
}
|
||||||
|
|
||||||
|
template< typename T, typename ForEachArg >
|
||||||
|
bool circular_queue_mp<T>::for_each_requeue(const Delegate<bool(T&), ForEachArg>& fun)
|
||||||
|
{
|
||||||
|
auto inPos0 = circular_queue<T, ForEachArg>::m_inPos.load(std::memory_order_acquire);
|
||||||
|
auto outPos = circular_queue<T, ForEachArg>::m_outPos.load(std::memory_order_relaxed);
|
||||||
|
std::atomic_thread_fence(std::memory_order_acquire);
|
||||||
|
if (outPos == inPos0) return false;
|
||||||
|
do {
|
||||||
|
T&& val = std::move(circular_queue<T, ForEachArg>::m_buffer[outPos]);
|
||||||
|
if (fun(val))
|
||||||
|
{
|
||||||
|
#ifdef ESP8266
|
||||||
|
esp8266::InterruptLock lock;
|
||||||
|
#else
|
||||||
|
std::lock_guard<std::mutex> lock(m_pushMtx);
|
||||||
|
#endif
|
||||||
|
std::atomic_thread_fence(std::memory_order_release);
|
||||||
|
auto inPos = circular_queue<T, ForEachArg>::m_inPos.load(std::memory_order_relaxed);
|
||||||
|
std::atomic_thread_fence(std::memory_order_acquire);
|
||||||
|
circular_queue<T, ForEachArg>::m_buffer[inPos] = std::move(val);
|
||||||
|
std::atomic_thread_fence(std::memory_order_release);
|
||||||
|
circular_queue<T, ForEachArg>::m_inPos.store((inPos + 1) % circular_queue<T, ForEachArg>::m_bufSize, std::memory_order_release);
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
std::atomic_thread_fence(std::memory_order_release);
|
||||||
|
}
|
||||||
|
outPos = (outPos + 1) % circular_queue<T, ForEachArg>::m_bufSize;
|
||||||
|
circular_queue<T, ForEachArg>::m_outPos.store(outPos, std::memory_order_release);
|
||||||
|
} while (outPos != inPos0);
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // __circular_queue_mp_h
|
92
lib/EspSoftwareSerial/src/circular_queue/ghostl.h
Normal file
92
lib/EspSoftwareSerial/src/circular_queue/ghostl.h
Normal file
@ -0,0 +1,92 @@
|
|||||||
|
/*
|
||||||
|
ghostl.h - Implementation of a bare-bones, mostly no-op, C++ STL shell
|
||||||
|
that allows building some Arduino ESP8266/ESP32
|
||||||
|
libraries on Aruduino AVR.
|
||||||
|
Copyright (c) 2019 Dirk O. Kaar. All rights reserved.
|
||||||
|
|
||||||
|
This library is free software; you can redistribute it and/or
|
||||||
|
modify it under the terms of the GNU Lesser General Public
|
||||||
|
License as published by the Free Software Foundation; either
|
||||||
|
version 2.1 of the License, or (at your option) any later version.
|
||||||
|
|
||||||
|
This library is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||||
|
Lesser General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU Lesser General Public
|
||||||
|
License along with this library; if not, write to the Free Software
|
||||||
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef __ghostl_h
|
||||||
|
#define __ghostl_h
|
||||||
|
|
||||||
|
#if defined(ARDUINO_ARCH_SAMD)
|
||||||
|
#include <atomic>
|
||||||
|
#endif
|
||||||
|
|
||||||
|
namespace std
|
||||||
|
{
|
||||||
|
#if !defined(ARDUINO_ARCH_SAMD)
|
||||||
|
typedef enum memory_order {
|
||||||
|
memory_order_relaxed,
|
||||||
|
memory_order_acquire,
|
||||||
|
memory_order_release,
|
||||||
|
memory_order_seq_cst
|
||||||
|
} memory_order;
|
||||||
|
template< typename T > class atomic {
|
||||||
|
private:
|
||||||
|
T value;
|
||||||
|
public:
|
||||||
|
atomic() {}
|
||||||
|
atomic(T desired) { value = desired; }
|
||||||
|
void store(T desired, std::memory_order = std::memory_order_seq_cst) volatile noexcept { value = desired; }
|
||||||
|
T load(std::memory_order = std::memory_order_seq_cst) const volatile noexcept { return value; }
|
||||||
|
};
|
||||||
|
inline void atomic_thread_fence(std::memory_order order) noexcept {}
|
||||||
|
template< typename T > T&& move(T& t) noexcept { return static_cast<T&&>(t); }
|
||||||
|
#endif
|
||||||
|
|
||||||
|
template< typename T, unsigned long N > struct array
|
||||||
|
{
|
||||||
|
T _M_elems[N];
|
||||||
|
decltype(sizeof(0)) size() const { return N; }
|
||||||
|
T& operator[](decltype(sizeof(0)) i) { return _M_elems[i]; }
|
||||||
|
const T& operator[](decltype(sizeof(0)) i) const { return _M_elems[i]; }
|
||||||
|
};
|
||||||
|
|
||||||
|
template< typename T > class unique_ptr
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
using pointer = T*;
|
||||||
|
unique_ptr() noexcept : ptr(nullptr) {}
|
||||||
|
unique_ptr(pointer p) : ptr(p) {}
|
||||||
|
pointer operator->() const noexcept { return ptr; }
|
||||||
|
T& operator[](decltype(sizeof(0)) i) const { return ptr[i]; }
|
||||||
|
void reset(pointer p = pointer()) noexcept
|
||||||
|
{
|
||||||
|
delete ptr;
|
||||||
|
ptr = p;
|
||||||
|
}
|
||||||
|
T& operator*() const { return *ptr; }
|
||||||
|
private:
|
||||||
|
pointer ptr;
|
||||||
|
};
|
||||||
|
|
||||||
|
template< typename T > using function = T*;
|
||||||
|
using nullptr_t = decltype(nullptr);
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
struct identity {
|
||||||
|
typedef T type;
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
inline T&& forward(typename identity<T>::type& t) noexcept
|
||||||
|
{
|
||||||
|
return static_cast<typename identity<T>::type&&>(t);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // __ghostl_h
|
@ -160,99 +160,3 @@ void reset_counters() {
|
|||||||
|
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
#endif
|
|
||||||
|
|
||||||
#if (defined HAS_DCF77 || defined HAS_IF482)
|
|
||||||
ESP_LOGD(TAG, "Clockloop %d bytes left | Taskstate = %d",
|
|
||||||
uxTaskGetStackHighWaterMark(ClockTask), eTaskGetState(ClockTask));
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if (HAS_LED != NOT_A_PIN) || defined(HAS_RGB_LED)
|
|
||||||
ESP_LOGD(TAG, "LEDloop %d bytes left | Taskstate = %d",
|
|
||||||
uxTaskGetStackHighWaterMark(ledLoopTask),
|
|
||||||
eTaskGetState(ledLoopTask));
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// read battery voltage into global variable
|
|
||||||
#if (defined BAT_MEASURE_ADC || defined HAS_PMU)
|
|
||||||
batt_voltage = read_voltage();
|
|
||||||
if (batt_voltage == 0xffff)
|
|
||||||
ESP_LOGI(TAG, "Battery: external power");
|
|
||||||
else
|
|
||||||
ESP_LOGI(TAG, "Battery: %dmV", batt_voltage);
|
|
||||||
#ifdef HAS_PMU
|
|
||||||
AXP192_showstatus();
|
|
||||||
#endif
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// display BME680/280 sensor data
|
|
||||||
#if (HAS_BME)
|
|
||||||
#ifdef HAS_BME680
|
|
||||||
ESP_LOGI(TAG, "BME680 Temp: %.2f°C | IAQ: %.2f | IAQacc: %d",
|
|
||||||
bme_status.temperature, bme_status.iaq, bme_status.iaq_accuracy);
|
|
||||||
#elif defined HAS_BME280
|
|
||||||
ESP_LOGI(TAG, "BME280 Temp: %.2f°C | Humidity: %.2f | Pressure: %.0f",
|
|
||||||
bme_status.temperature, bme_status.humidity, bme_status.pressure);
|
|
||||||
#elif defined HAS_BMP180
|
|
||||||
ESP_LOGI(TAG, "BMP180 Temp: %.2f°C | Pressure: %.0f", bme_status.temperature,
|
|
||||||
bme_status.pressure);
|
|
||||||
#endif
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// check free heap memory
|
|
||||||
if (ESP.getMinFreeHeap() <= MEM_LOW) {
|
|
||||||
ESP_LOGI(TAG,
|
|
||||||
"Memory full, counter cleared (heap low water mark = %d Bytes / "
|
|
||||||
"free heap = %d bytes)",
|
|
||||||
ESP.getMinFreeHeap(), ESP.getFreeHeap());
|
|
||||||
reset_counters(); // clear macs container and reset all counters
|
|
||||||
get_salt(); // get new salt for salting hashes
|
|
||||||
|
|
||||||
if (ESP.getMinFreeHeap() <= MEM_LOW) // check again
|
|
||||||
do_reset(true); // memory leak, reset device
|
|
||||||
}
|
|
||||||
|
|
||||||
// check free PSRAM memory
|
|
||||||
#ifdef BOARD_HAS_PSRAM
|
|
||||||
if (ESP.getMinFreePsram() <= MEM_LOW) {
|
|
||||||
ESP_LOGI(TAG, "PSRAM full, counter cleared");
|
|
||||||
reset_counters(); // clear macs container and reset all counters
|
|
||||||
get_salt(); // get new salt for salting hashes
|
|
||||||
|
|
||||||
if (ESP.getMinFreePsram() <= MEM_LOW) // check again
|
|
||||||
do_reset(true); // memory leak, reset device
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
|
|
||||||
} // doHousekeeping()
|
|
||||||
|
|
||||||
// uptime counter 64bit to prevent millis() rollover after 49 days
|
|
||||||
uint64_t uptime() {
|
|
||||||
static uint32_t low32, high32;
|
|
||||||
uint32_t new_low32 = millis();
|
|
||||||
if (new_low32 < low32)
|
|
||||||
high32++;
|
|
||||||
low32 = new_low32;
|
|
||||||
return (uint64_t)high32 << 32 | low32;
|
|
||||||
}
|
|
||||||
|
|
||||||
uint32_t getFreeRAM() {
|
|
||||||
#ifndef BOARD_HAS_PSRAM
|
|
||||||
return ESP.getFreeHeap();
|
|
||||||
#else
|
|
||||||
return ESP.getFreePsram();
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
void reset_counters() {
|
|
||||||
#if ((WIFICOUNTER) || (BLECOUNTER))
|
|
||||||
macs.clear(); // clear all macs container
|
|
||||||
macs_total = 0; // reset all counters
|
|
||||||
macs_wifi = 0;
|
|
||||||
macs_ble = 0;
|
|
||||||
#ifdef HAS_DISPLAY
|
|
||||||
oledPlotCurve(0, true);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
437
src/main.cpp
437
src/main.cpp
@ -485,440 +485,3 @@ void setup() {
|
|||||||
} // setup()
|
} // setup()
|
||||||
|
|
||||||
void loop() { vTaskDelete(NULL); }
|
void loop() { vTaskDelete(NULL); }
|
||||||
3 MatrixDisplayIRQ -> matrix mux cycle -> 0,5ms (MATRIX_DISPLAY_SCAN_US)
|
|
||||||
|
|
||||||
|
|
||||||
// Interrupt routines
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
|
|
||||||
fired by hardware
|
|
||||||
DisplayIRQ -> esp32 timer 0 -> irqHandlerTask (Core 1)
|
|
||||||
CLOCKIRQ -> esp32 timer 1 -> ClockTask (Core 1)
|
|
||||||
ButtonIRQ -> external gpio -> irqHandlerTask (Core 1)
|
|
||||||
PMUIRQ -> PMU chip gpio -> irqHandlerTask (Core 1)
|
|
||||||
|
|
||||||
fired by software (Ticker.h)
|
|
||||||
TIMESYNC_IRQ -> timeSync() -> irqHandlerTask (Core 1)
|
|
||||||
CYCLIC_IRQ -> housekeeping() -> irqHandlerTask (Core 1)
|
|
||||||
SENDCYCLE_IRQ -> sendcycle() -> irqHandlerTask (Core 1)
|
|
||||||
BME_IRQ -> bmecycle() -> irqHandlerTask (Core 1)
|
|
||||||
|
|
||||||
|
|
||||||
// External RTC timer (if present)
|
|
||||||
-------------------------------------------------------------------------------
|
|
||||||
triggers pps 1 sec impulse
|
|
||||||
|
|
||||||
*/
|
|
||||||
|
|
||||||
// Basic Config
|
|
||||||
#include "main.h"
|
|
||||||
|
|
||||||
configData_t cfg; // struct holds current device configuration
|
|
||||||
char lmic_event_msg[LMIC_EVENTMSG_LEN]; // display buffer for LMIC event message
|
|
||||||
uint8_t volatile channel = 0; // channel rotation counter
|
|
||||||
uint16_t volatile macs_total = 0, macs_wifi = 0, macs_ble = 0,
|
|
||||||
batt_voltage = 0; // globals for display
|
|
||||||
|
|
||||||
hw_timer_t *ppsIRQ = NULL, *displayIRQ = NULL, *matrixDisplayIRQ = NULL;
|
|
||||||
|
|
||||||
TaskHandle_t irqHandlerTask = NULL, ClockTask = NULL;
|
|
||||||
SemaphoreHandle_t I2Caccess;
|
|
||||||
bool volatile TimePulseTick = false;
|
|
||||||
time_t userUTCTime = 0;
|
|
||||||
timesource_t timeSource = _unsynced;
|
|
||||||
|
|
||||||
// container holding unique MAC address hashes with Memory Alloctor using PSRAM,
|
|
||||||
// if present
|
|
||||||
std::set<uint16_t, std::less<uint16_t>, Mallocator<uint16_t>> macs;
|
|
||||||
|
|
||||||
// initialize payload encoder
|
|
||||||
PayloadConvert payload(PAYLOAD_BUFFER_SIZE);
|
|
||||||
|
|
||||||
// set Time Zone for user setting from paxcounter.conf
|
|
||||||
TimeChangeRule myDST = DAYLIGHT_TIME;
|
|
||||||
TimeChangeRule mySTD = STANDARD_TIME;
|
|
||||||
Timezone myTZ(myDST, mySTD);
|
|
||||||
|
|
||||||
// local Tag for logging
|
|
||||||
static const char TAG[] = __FILE__;
|
|
||||||
|
|
||||||
void setup() {
|
|
||||||
|
|
||||||
char features[100] = "";
|
|
||||||
|
|
||||||
// create some semaphores for syncing / mutexing tasks
|
|
||||||
I2Caccess = xSemaphoreCreateMutex(); // for access management of i2c bus
|
|
||||||
assert(I2Caccess != NULL);
|
|
||||||
I2C_MUTEX_UNLOCK();
|
|
||||||
|
|
||||||
// disable brownout detection
|
|
||||||
#ifdef DISABLE_BROWNOUT
|
|
||||||
// register with brownout is at address DR_REG_RTCCNTL_BASE + 0xd4
|
|
||||||
(*((uint32_t volatile *)ETS_UNCACHED_ADDR((DR_REG_RTCCNTL_BASE + 0xd4)))) = 0;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// setup debug output or silence device
|
|
||||||
#if (VERBOSE)
|
|
||||||
Serial.begin(115200);
|
|
||||||
esp_log_level_set("*", ESP_LOG_VERBOSE);
|
|
||||||
#else
|
|
||||||
// mute logs completely by redirecting them to silence function
|
|
||||||
esp_log_level_set("*", ESP_LOG_NONE);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
do_after_reset(rtc_get_reset_reason(0));
|
|
||||||
|
|
||||||
// print chip information on startup if in verbose mode after coldstart
|
|
||||||
#if (VERBOSE)
|
|
||||||
|
|
||||||
if (RTC_runmode == RUNMODE_POWERCYCLE) {
|
|
||||||
esp_chip_info_t chip_info;
|
|
||||||
esp_chip_info(&chip_info);
|
|
||||||
ESP_LOGI(TAG,
|
|
||||||
"This is ESP32 chip with %d CPU cores, WiFi%s%s, silicon revision "
|
|
||||||
"%d, %dMB %s Flash",
|
|
||||||
chip_info.cores,
|
|
||||||
(chip_info.features & CHIP_FEATURE_BT) ? "/BT" : "",
|
|
||||||
(chip_info.features & CHIP_FEATURE_BLE) ? "/BLE" : "",
|
|
||||||
chip_info.revision, spi_flash_get_chip_size() / (1024 * 1024),
|
|
||||||
(chip_info.features & CHIP_FEATURE_EMB_FLASH) ? "embedded"
|
|
||||||
: "external");
|
|
||||||
ESP_LOGI(TAG, "Internal Total heap %d, internal Free Heap %d",
|
|
||||||
ESP.getHeapSize(), ESP.getFreeHeap());
|
|
||||||
#ifdef BOARD_HAS_PSRAM
|
|
||||||
ESP_LOGI(TAG, "SPIRam Total heap %d, SPIRam Free Heap %d",
|
|
||||||
ESP.getPsramSize(), ESP.getFreePsram());
|
|
||||||
#endif
|
|
||||||
ESP_LOGI(TAG, "ChipRevision %d, Cpu Freq %d, SDK Version %s",
|
|
||||||
ESP.getChipRevision(), ESP.getCpuFreqMHz(), ESP.getSdkVersion());
|
|
||||||
ESP_LOGI(TAG, "Flash Size %d, Flash Speed %d", ESP.getFlashChipSize(),
|
|
||||||
ESP.getFlashChipSpeed());
|
|
||||||
ESP_LOGI(TAG, "Wifi/BT software coexist version %s",
|
|
||||||
esp_coex_version_get());
|
|
||||||
|
|
||||||
#if (HAS_LORA)
|
|
||||||
ESP_LOGI(TAG, "IBM LMIC version %d.%d.%d", LMIC_VERSION_MAJOR,
|
|
||||||
LMIC_VERSION_MINOR, LMIC_VERSION_BUILD);
|
|
||||||
ESP_LOGI(TAG, "Arduino LMIC version %d.%d.%d.%d",
|
|
||||||
ARDUINO_LMIC_VERSION_GET_MAJOR(ARDUINO_LMIC_VERSION),
|
|
||||||
ARDUINO_LMIC_VERSION_GET_MINOR(ARDUINO_LMIC_VERSION),
|
|
||||||
ARDUINO_LMIC_VERSION_GET_PATCH(ARDUINO_LMIC_VERSION),
|
|
||||||
ARDUINO_LMIC_VERSION_GET_LOCAL(ARDUINO_LMIC_VERSION));
|
|
||||||
showLoraKeys();
|
|
||||||
#endif // HAS_LORA
|
|
||||||
|
|
||||||
#if (HAS_GPS)
|
|
||||||
ESP_LOGI(TAG, "TinyGPS+ version %s", TinyGPSPlus::libraryVersion());
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
#endif // VERBOSE
|
|
||||||
|
|
||||||
// open i2c bus
|
|
||||||
i2c_init();
|
|
||||||
|
|
||||||
// setup power on boards with power management logic
|
|
||||||
#ifdef EXT_POWER_SW
|
|
||||||
pinMode(EXT_POWER_SW, OUTPUT);
|
|
||||||
digitalWrite(EXT_POWER_SW, EXT_POWER_ON);
|
|
||||||
strcat_P(features, " VEXT");
|
|
||||||
#endif
|
|
||||||
#ifdef HAS_PMU
|
|
||||||
AXP192_init();
|
|
||||||
strcat_P(features, " PMU");
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// read (and initialize on first run) runtime settings from NVRAM
|
|
||||||
loadConfig(); // includes initialize if necessary
|
|
||||||
|
|
||||||
// initialize display
|
|
||||||
#ifdef HAS_DISPLAY
|
|
||||||
strcat_P(features, " OLED");
|
|
||||||
DisplayIsOn = cfg.screenon;
|
|
||||||
// display verbose info only after a coldstart (note: blocking call!)
|
|
||||||
init_display(RTC_runmode == RUNMODE_POWERCYCLE ? true : false);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// scan i2c bus for devices
|
|
||||||
i2c_scan();
|
|
||||||
|
|
||||||
#ifdef BOARD_HAS_PSRAM
|
|
||||||
assert(psramFound());
|
|
||||||
ESP_LOGI(TAG, "PSRAM found and initialized");
|
|
||||||
strcat_P(features, " PSRAM");
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifdef BAT_MEASURE_EN
|
|
||||||
pinMode(BAT_MEASURE_EN, OUTPUT);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// initialize leds
|
|
||||||
#if (HAS_LED != NOT_A_PIN)
|
|
||||||
pinMode(HAS_LED, OUTPUT);
|
|
||||||
strcat_P(features, " LED");
|
|
||||||
|
|
||||||
#ifdef LED_POWER_SW
|
|
||||||
pinMode(LED_POWER_SW, OUTPUT);
|
|
||||||
digitalWrite(LED_POWER_SW, LED_POWER_ON);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifdef HAS_TWO_LED
|
|
||||||
pinMode(HAS_TWO_LED, OUTPUT);
|
|
||||||
strcat_P(features, " LED1");
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// use LED for power display if we have additional RGB LED, else for status
|
|
||||||
#ifdef HAS_RGB_LED
|
|
||||||
switch_LED(LED_ON);
|
|
||||||
strcat_P(features, " RGB");
|
|
||||||
rgb_set_color(COLOR_PINK);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#endif // HAS_LED
|
|
||||||
|
|
||||||
#if (HAS_LED != NOT_A_PIN) || defined(HAS_RGB_LED)
|
|
||||||
// start led loop
|
|
||||||
ESP_LOGI(TAG, "Starting LED Controller...");
|
|
||||||
xTaskCreatePinnedToCore(ledLoop, // task function
|
|
||||||
"ledloop", // name of task
|
|
||||||
1024, // stack size of task
|
|
||||||
(void *)1, // parameter of the task
|
|
||||||
3, // priority of the task
|
|
||||||
&ledLoopTask, // task handle
|
|
||||||
0); // CPU core
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// initialize wifi antenna
|
|
||||||
#ifdef HAS_ANTENNA_SWITCH
|
|
||||||
strcat_P(features, " ANT");
|
|
||||||
antenna_init();
|
|
||||||
antenna_select(cfg.wifiant);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// initialize battery status
|
|
||||||
#if (defined BAT_MEASURE_ADC || defined HAS_PMU)
|
|
||||||
strcat_P(features, " BATT");
|
|
||||||
calibrate_voltage();
|
|
||||||
batt_voltage = read_voltage();
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if (USE_OTA)
|
|
||||||
strcat_P(features, " OTA");
|
|
||||||
// reboot to firmware update mode if ota trigger switch is set
|
|
||||||
if (RTC_runmode == RUNMODE_UPDATE)
|
|
||||||
start_ota_update();
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// start BLE scan callback if BLE function is enabled in NVRAM configuration
|
|
||||||
// or switch off bluetooth, if not compiled
|
|
||||||
#if (BLECOUNTER)
|
|
||||||
strcat_P(features, " BLE");
|
|
||||||
if (cfg.blescan) {
|
|
||||||
ESP_LOGI(TAG, "Starting Bluetooth...");
|
|
||||||
start_BLEscan();
|
|
||||||
} else
|
|
||||||
btStop();
|
|
||||||
#else
|
|
||||||
// remove bluetooth stack to gain more free memory
|
|
||||||
btStop();
|
|
||||||
ESP_ERROR_CHECK(esp_bt_mem_release(ESP_BT_MODE_BTDM));
|
|
||||||
ESP_ERROR_CHECK(esp_coex_preference_set(
|
|
||||||
ESP_COEX_PREFER_WIFI)); // configure Wifi/BT coexist lib
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// initialize gps
|
|
||||||
#if (HAS_GPS)
|
|
||||||
strcat_P(features, " GPS");
|
|
||||||
if (gps_init()) {
|
|
||||||
ESP_LOGI(TAG, "Starting GPS Feed...");
|
|
||||||
xTaskCreatePinnedToCore(gps_loop, // task function
|
|
||||||
"gpsloop", // name of task
|
|
||||||
2048, // stack size of task
|
|
||||||
(void *)1, // parameter of the task
|
|
||||||
1, // priority of the task
|
|
||||||
&GpsTask, // task handle
|
|
||||||
1); // CPU core
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// initialize sensors
|
|
||||||
#if (HAS_SENSORS)
|
|
||||||
strcat_P(features, " SENS");
|
|
||||||
sensor_init();
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// initialize LoRa
|
|
||||||
#if (HAS_LORA)
|
|
||||||
strcat_P(features, " LORA");
|
|
||||||
// kick off join, except we come from sleep
|
|
||||||
assert(lora_stack_init(RTC_runmode == RUNMODE_WAKEUP ? false : true) ==
|
|
||||||
ESP_OK);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// initialize SPI
|
|
||||||
#ifdef HAS_SPI
|
|
||||||
strcat_P(features, " SPI");
|
|
||||||
assert(spi_init() == ESP_OK);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifdef HAS_SDCARD
|
|
||||||
if (sdcardInit())
|
|
||||||
strcat_P(features, " SD");
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if (HAS_SDS011)
|
|
||||||
// ESP_LOGI(TAG, "init fine-dust-sensor");
|
|
||||||
if ( sds011_init() )
|
|
||||||
strcat_P(features, " SDS");
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if (VENDORFILTER)
|
|
||||||
strcat_P(features, " FILTER");
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// initialize matrix display
|
|
||||||
#ifdef HAS_MATRIX_DISPLAY
|
|
||||||
strcat_P(features, " LED_MATRIX");
|
|
||||||
MatrixDisplayIsOn = cfg.screenon;
|
|
||||||
init_matrix_display(); // note: blocking call
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// show payload encoder
|
|
||||||
#if PAYLOAD_ENCODER == 1
|
|
||||||
strcat_P(features, " PLAIN");
|
|
||||||
#elif PAYLOAD_ENCODER == 2
|
|
||||||
strcat_P(features, " PACKED");
|
|
||||||
#elif PAYLOAD_ENCODER == 3
|
|
||||||
strcat_P(features, " LPPDYN");
|
|
||||||
#elif PAYLOAD_ENCODER == 4
|
|
||||||
strcat_P(features, " LPPPKD");
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// initialize RTC
|
|
||||||
#ifdef HAS_RTC
|
|
||||||
strcat_P(features, " RTC");
|
|
||||||
assert(rtc_init());
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if defined HAS_DCF77
|
|
||||||
strcat_P(features, " DCF77");
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if defined HAS_IF482
|
|
||||||
strcat_P(features, " IF482");
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if (WIFICOUNTER)
|
|
||||||
strcat_P(features, " WIFI");
|
|
||||||
// start wifi in monitor mode and start channel rotation timer
|
|
||||||
ESP_LOGI(TAG, "Starting Wifi...");
|
|
||||||
wifi_sniffer_init();
|
|
||||||
#else
|
|
||||||
// switch off wifi
|
|
||||||
esp_wifi_deinit();
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// initialize salt value using esp_random() called by random() in
|
|
||||||
// arduino-esp32 core. Note: do this *after* wifi has started, since
|
|
||||||
// function gets it's seed from RF noise
|
|
||||||
get_salt(); // get new 16bit for salting hashes
|
|
||||||
|
|
||||||
// start state machine
|
|
||||||
ESP_LOGI(TAG, "Starting Interrupt Handler...");
|
|
||||||
xTaskCreatePinnedToCore(irqHandler, // task function
|
|
||||||
"irqhandler", // name of task
|
|
||||||
4096, // stack size of task
|
|
||||||
(void *)1, // parameter of the task
|
|
||||||
2, // priority of the task
|
|
||||||
&irqHandlerTask, // task handle
|
|
||||||
1); // CPU core
|
|
||||||
|
|
||||||
// initialize BME sensor (BME280/BME680)
|
|
||||||
#if (HAS_BME)
|
|
||||||
#ifdef HAS_BME680
|
|
||||||
strcat_P(features, " BME680");
|
|
||||||
#elif defined HAS_BME280
|
|
||||||
strcat_P(features, " BME280");
|
|
||||||
#elif defined HAS_BMP180
|
|
||||||
strcat_P(features, " BMP180");
|
|
||||||
#endif
|
|
||||||
if (bme_init())
|
|
||||||
ESP_LOGI(TAG, "Starting BME sensor...");
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// starting timers and interrupts
|
|
||||||
assert(irqHandlerTask != NULL); // has interrupt handler task started?
|
|
||||||
ESP_LOGI(TAG, "Starting Timers...");
|
|
||||||
|
|
||||||
// display interrupt
|
|
||||||
#ifdef HAS_DISPLAY
|
|
||||||
// https://techtutorialsx.com/2017/10/07/esp32-arduino-timer-interrupts/
|
|
||||||
// prescaler 80 -> divides 80 MHz CPU freq to 1 MHz, timer 0, count up
|
|
||||||
displayIRQ = timerBegin(0, 80, true);
|
|
||||||
timerAttachInterrupt(displayIRQ, &DisplayIRQ, true);
|
|
||||||
timerAlarmWrite(displayIRQ, DISPLAYREFRESH_MS * 1000, true);
|
|
||||||
timerAlarmEnable(displayIRQ);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// LED Matrix display interrupt
|
|
||||||
#ifdef HAS_MATRIX_DISPLAY
|
|
||||||
// https://techtutorialsx.com/2017/10/07/esp32-arduino-timer-interrupts/
|
|
||||||
// prescaler 80 -> divides 80 MHz CPU freq to 1 MHz, timer 3, count up
|
|
||||||
matrixDisplayIRQ = timerBegin(3, 80, true);
|
|
||||||
timerAttachInterrupt(matrixDisplayIRQ, &MatrixDisplayIRQ, true);
|
|
||||||
timerAlarmWrite(matrixDisplayIRQ, MATRIX_DISPLAY_SCAN_US, true);
|
|
||||||
timerAlarmEnable(matrixDisplayIRQ);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// initialize button
|
|
||||||
#ifdef HAS_BUTTON
|
|
||||||
strcat_P(features, " BTN_");
|
|
||||||
#ifdef BUTTON_PULLUP
|
|
||||||
strcat_P(features, "PU");
|
|
||||||
#else
|
|
||||||
strcat_P(features, "PD");
|
|
||||||
#endif // BUTTON_PULLUP
|
|
||||||
button_init(HAS_BUTTON);
|
|
||||||
#endif // HAS_BUTTON
|
|
||||||
|
|
||||||
// cyclic function interrupts
|
|
||||||
sendcycler.attach(SENDCYCLE * 2, sendcycle);
|
|
||||||
housekeeper.attach(HOMECYCLE, housekeeping);
|
|
||||||
|
|
||||||
#if (TIME_SYNC_INTERVAL)
|
|
||||||
|
|
||||||
#if (!(TIME_SYNC_LORAWAN) && !(TIME_SYNC_LORASERVER) && !defined HAS_GPS && \
|
|
||||||
!defined HAS_RTC)
|
|
||||||
#warning you did not specify a time source, time will not be synched
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// initialize gps time
|
|
||||||
#if (HAS_GPS)
|
|
||||||
fetch_gpsTime();
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if (defined HAS_IF482 || defined HAS_DCF77)
|
|
||||||
ESP_LOGI(TAG, "Starting Clock Controller...");
|
|
||||||
clock_init();
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if (TIME_SYNC_LORASERVER)
|
|
||||||
timesync_init(); // create loraserver time sync task
|
|
||||||
#endif
|
|
||||||
|
|
||||||
ESP_LOGI(TAG, "Starting Timekeeper...");
|
|
||||||
assert(timepulse_init()); // setup pps timepulse
|
|
||||||
timepulse_start(); // starts pps and cyclic time sync
|
|
||||||
|
|
||||||
#endif // TIME_SYNC_INTERVAL
|
|
||||||
|
|
||||||
// show compiled features
|
|
||||||
ESP_LOGI(TAG, "Features:%s", features);
|
|
||||||
|
|
||||||
// set runmode to normal
|
|
||||||
RTC_runmode = RUNMODE_NORMAL;
|
|
||||||
|
|
||||||
vTaskDelete(NULL);
|
|
||||||
|
|
||||||
} // setup()
|
|
||||||
|
|
||||||
void loop() { vTaskDelete(NULL); }
|
|
||||||
|
468
src/payload.cpp
468
src/payload.cpp
@ -523,474 +523,6 @@ void PayloadConvert::addPM25( float value) {
|
|||||||
#endif // HAS_SDS011
|
#endif // HAS_SDS011
|
||||||
}
|
}
|
||||||
|
|
||||||
void PayloadConvert::addChars( char * string, int len) {
|
|
||||||
for (int i=0; i < len; i++)
|
|
||||||
addByte(string[i]);
|
|
||||||
}
|
|
||||||
|
|
||||||
buffer[cursor++] = highByte(voltage);
|
|
||||||
buffer[cursor++] = lowByte(voltage);
|
|
||||||
buffer[cursor++] = (byte)((uptime & 0xFF00000000000000) >> 56);
|
|
||||||
buffer[cursor++] = (byte)((uptime & 0x00FF000000000000) >> 48);
|
|
||||||
buffer[cursor++] = (byte)((uptime & 0x0000FF0000000000) >> 40);
|
|
||||||
buffer[cursor++] = (byte)((uptime & 0x000000FF00000000) >> 32);
|
|
||||||
buffer[cursor++] = (byte)((uptime & 0x00000000FF000000) >> 24);
|
|
||||||
buffer[cursor++] = (byte)((uptime & 0x0000000000FF0000) >> 16);
|
|
||||||
buffer[cursor++] = (byte)((uptime & 0x000000000000FF00) >> 8);
|
|
||||||
buffer[cursor++] = (byte)((uptime & 0x00000000000000FF));
|
|
||||||
buffer[cursor++] = (byte)(cputemp);
|
|
||||||
buffer[cursor++] = (byte)((mem & 0xFF000000) >> 24);
|
|
||||||
buffer[cursor++] = (byte)((mem & 0x00FF0000) >> 16);
|
|
||||||
buffer[cursor++] = (byte)((mem & 0x0000FF00) >> 8);
|
|
||||||
buffer[cursor++] = (byte)((mem & 0x000000FF));
|
|
||||||
buffer[cursor++] = (byte)(reset1);
|
|
||||||
buffer[cursor++] = (byte)(reset2);
|
|
||||||
}
|
|
||||||
|
|
||||||
void PayloadConvert::addGPS(gpsStatus_t value) {
|
|
||||||
#if(HAS_GPS)
|
|
||||||
buffer[cursor++] = (byte)((value.latitude & 0xFF000000) >> 24);
|
|
||||||
buffer[cursor++] = (byte)((value.latitude & 0x00FF0000) >> 16);
|
|
||||||
buffer[cursor++] = (byte)((value.latitude & 0x0000FF00) >> 8);
|
|
||||||
buffer[cursor++] = (byte)((value.latitude & 0x000000FF));
|
|
||||||
buffer[cursor++] = (byte)((value.longitude & 0xFF000000) >> 24);
|
|
||||||
buffer[cursor++] = (byte)((value.longitude & 0x00FF0000) >> 16);
|
|
||||||
buffer[cursor++] = (byte)((value.longitude & 0x0000FF00) >> 8);
|
|
||||||
buffer[cursor++] = (byte)((value.longitude & 0x000000FF));
|
|
||||||
#if (!PAYLOAD_OPENSENSEBOX)
|
|
||||||
buffer[cursor++] = value.satellites;
|
|
||||||
buffer[cursor++] = highByte(value.hdop);
|
|
||||||
buffer[cursor++] = lowByte(value.hdop);
|
|
||||||
buffer[cursor++] = highByte(value.altitude);
|
|
||||||
buffer[cursor++] = lowByte(value.altitude);
|
|
||||||
#endif
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
void PayloadConvert::addSensor(uint8_t buf[]) {
|
|
||||||
#if(HAS_SENSORS)
|
|
||||||
uint8_t length = buf[0];
|
|
||||||
memcpy(buffer, buf + 1, length);
|
|
||||||
cursor += length; // length of buffer
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
void PayloadConvert::addBME(bmeStatus_t value) {
|
|
||||||
#if(HAS_BME)
|
|
||||||
int16_t temperature = (int16_t)(value.temperature); // float -> int
|
|
||||||
uint16_t humidity = (uint16_t)(value.humidity); // float -> int
|
|
||||||
uint16_t pressure = (uint16_t)(value.pressure); // float -> int
|
|
||||||
uint16_t iaq = (uint16_t)(value.iaq); // float -> int
|
|
||||||
buffer[cursor++] = highByte(temperature);
|
|
||||||
buffer[cursor++] = lowByte(temperature);
|
|
||||||
buffer[cursor++] = highByte(pressure);
|
|
||||||
buffer[cursor++] = lowByte(pressure);
|
|
||||||
buffer[cursor++] = highByte(humidity);
|
|
||||||
buffer[cursor++] = lowByte(humidity);
|
|
||||||
buffer[cursor++] = highByte(iaq);
|
|
||||||
buffer[cursor++] = lowByte(iaq);
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
void PayloadConvert::addButton(uint8_t value) {
|
|
||||||
#ifdef HAS_BUTTON
|
|
||||||
buffer[cursor++] = value;
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
void PayloadConvert::addTime(time_t value) {
|
|
||||||
uint32_t time = (uint32_t)value;
|
|
||||||
buffer[cursor++] = (byte)((time & 0xFF000000) >> 24);
|
|
||||||
buffer[cursor++] = (byte)((time & 0x00FF0000) >> 16);
|
|
||||||
buffer[cursor++] = (byte)((time & 0x0000FF00) >> 8);
|
|
||||||
buffer[cursor++] = (byte)((time & 0x000000FF));
|
|
||||||
}
|
|
||||||
|
|
||||||
/* ---------------- packed format with LoRa serialization Encoder ----------
|
|
||||||
*/
|
|
||||||
// derived from
|
|
||||||
// https://github.com/thesolarnomad/lora-serialization/blob/master/src/LoraEncoder.cpp
|
|
||||||
|
|
||||||
#elif (PAYLOAD_ENCODER == 2)
|
|
||||||
|
|
||||||
void PayloadConvert::addByte(uint8_t value) { writeUint8(value); }
|
|
||||||
|
|
||||||
void PayloadConvert::addCount(uint16_t value, uint8_t snifftype) {
|
|
||||||
writeUint16(value);
|
|
||||||
}
|
|
||||||
|
|
||||||
void PayloadConvert::addAlarm(int8_t rssi, uint8_t msg) {
|
|
||||||
writeUint8(rssi);
|
|
||||||
writeUint8(msg);
|
|
||||||
}
|
|
||||||
|
|
||||||
void PayloadConvert::addVoltage(uint16_t value) { writeUint16(value); }
|
|
||||||
|
|
||||||
void PayloadConvert::addConfig(configData_t value) {
|
|
||||||
writeUint8(value.loradr);
|
|
||||||
writeUint8(value.txpower);
|
|
||||||
writeUint16(value.rssilimit);
|
|
||||||
writeUint8(value.sendcycle);
|
|
||||||
writeUint8(value.wifichancycle);
|
|
||||||
writeUint8(value.blescantime);
|
|
||||||
writeUint8(value.rgblum);
|
|
||||||
writeBitmap(value.adrmode ? true : false, value.screensaver ? true : false,
|
|
||||||
value.screenon ? true : false, value.countermode ? true : false,
|
|
||||||
value.blescan ? true : false, value.wifiant ? true : false,
|
|
||||||
value.vendorfilter ? true : false,
|
|
||||||
value.monitormode ? true : false);
|
|
||||||
writeBitmap(value.payloadmask && GPS_DATA ? true : false,
|
|
||||||
value.payloadmask && ALARM_DATA ? true : false,
|
|
||||||
value.payloadmask && MEMS_DATA ? true : false,
|
|
||||||
value.payloadmask && COUNT_DATA ? true : false,
|
|
||||||
value.payloadmask && SENSOR1_DATA ? true : false,
|
|
||||||
value.payloadmask && SENSOR2_DATA ? true : false,
|
|
||||||
value.payloadmask && SENSOR3_DATA ? true : false,
|
|
||||||
value.payloadmask && BATT_DATA ? true : false);
|
|
||||||
writeVersion(value.version);
|
|
||||||
}
|
|
||||||
|
|
||||||
void PayloadConvert::addStatus(uint16_t voltage, uint64_t uptime, float cputemp,
|
|
||||||
uint32_t mem, uint8_t reset1, uint8_t reset2) {
|
|
||||||
writeUint16(voltage);
|
|
||||||
writeUptime(uptime);
|
|
||||||
writeUint8((byte)cputemp);
|
|
||||||
writeUint32(mem);
|
|
||||||
writeUint8(reset1);
|
|
||||||
writeUint8(reset2);
|
|
||||||
}
|
|
||||||
|
|
||||||
void PayloadConvert::addGPS(gpsStatus_t value) {
|
|
||||||
#if(HAS_GPS)
|
|
||||||
writeLatLng(value.latitude, value.longitude);
|
|
||||||
#if (!PAYLOAD_OPENSENSEBOX)
|
|
||||||
writeUint8(value.satellites);
|
|
||||||
writeUint16(value.hdop);
|
|
||||||
writeUint16(value.altitude);
|
|
||||||
#endif
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
void PayloadConvert::addSensor(uint8_t buf[]) {
|
|
||||||
#if(HAS_SENSORS)
|
|
||||||
uint8_t length = buf[0];
|
|
||||||
memcpy(buffer, buf + 1, length);
|
|
||||||
cursor += length; // length of buffer
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
void PayloadConvert::addBME(bmeStatus_t value) {
|
|
||||||
#if(HAS_BME)
|
|
||||||
writeFloat(value.temperature);
|
|
||||||
writePressure(value.pressure);
|
|
||||||
writeUFloat(value.humidity);
|
|
||||||
writeUFloat(value.iaq);
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
void PayloadConvert::addButton(uint8_t value) {
|
|
||||||
#ifdef HAS_BUTTON
|
|
||||||
writeUint8(value);
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
void PayloadConvert::addTime(time_t value) {
|
|
||||||
uint32_t time = (uint32_t)value;
|
|
||||||
writeUint32(time);
|
|
||||||
}
|
|
||||||
|
|
||||||
void PayloadConvert::uintToBytes(uint64_t value, uint8_t byteSize) {
|
|
||||||
for (uint8_t x = 0; x < byteSize; x++) {
|
|
||||||
byte next = 0;
|
|
||||||
if (sizeof(value) > x) {
|
|
||||||
next = static_cast<byte>((value >> (x * 8)) & 0xFF);
|
|
||||||
}
|
|
||||||
buffer[cursor] = next;
|
|
||||||
++cursor;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void PayloadConvert::writeUptime(uint64_t uptime) {
|
|
||||||
writeUint64(uptime);
|
|
||||||
}
|
|
||||||
|
|
||||||
void PayloadConvert::writeVersion(char *version) {
|
|
||||||
memcpy(buffer + cursor, version, 10);
|
|
||||||
cursor += 10;
|
|
||||||
}
|
|
||||||
|
|
||||||
void PayloadConvert::writeLatLng(double latitude, double longitude) {
|
|
||||||
// Tested to at least work with int32_t, which are processed correctly.
|
|
||||||
writeUint32(latitude);
|
|
||||||
writeUint32(longitude);
|
|
||||||
}
|
|
||||||
|
|
||||||
void PayloadConvert::writeUint64(uint64_t i) { uintToBytes(i, 8); }
|
|
||||||
|
|
||||||
void PayloadConvert::writeUint32(uint32_t i) { uintToBytes(i, 4); }
|
|
||||||
|
|
||||||
void PayloadConvert::writeUint16(uint16_t i) { uintToBytes(i, 2); }
|
|
||||||
|
|
||||||
void PayloadConvert::writeUint8(uint8_t i) { uintToBytes(i, 1); }
|
|
||||||
|
|
||||||
void PayloadConvert::writeUFloat(float value) {
|
|
||||||
writeUint16(value * 100);
|
|
||||||
}
|
|
||||||
|
|
||||||
void PayloadConvert::writePressure(float value) {
|
|
||||||
writeUint16(value * 10);
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Uses a 16bit two's complement with two decimals, so the range is
|
|
||||||
* -327.68 to +327.67 degrees
|
|
||||||
*/
|
|
||||||
void PayloadConvert::writeFloat(float value) {
|
|
||||||
int16_t t = (int16_t)(value * 100);
|
|
||||||
if (value < 0) {
|
|
||||||
t = ~-t;
|
|
||||||
t = t + 1;
|
|
||||||
}
|
|
||||||
buffer[cursor++] = (byte)((t >> 8) & 0xFF);
|
|
||||||
buffer[cursor++] = (byte)t & 0xFF;
|
|
||||||
}
|
|
||||||
|
|
||||||
void PayloadConvert::writeBitmap(bool a, bool b, bool c, bool d, bool e, bool f,
|
|
||||||
bool g, bool h) {
|
|
||||||
uint8_t bitmap = 0;
|
|
||||||
// LSB first
|
|
||||||
bitmap |= (a & 1) << 7;
|
|
||||||
bitmap |= (b & 1) << 6;
|
|
||||||
bitmap |= (c & 1) << 5;
|
|
||||||
bitmap |= (d & 1) << 4;
|
|
||||||
bitmap |= (e & 1) << 3;
|
|
||||||
bitmap |= (f & 1) << 2;
|
|
||||||
bitmap |= (g & 1) << 1;
|
|
||||||
bitmap |= (h & 1) << 0;
|
|
||||||
writeUint8(bitmap);
|
|
||||||
}
|
|
||||||
|
|
||||||
/* ---------------- Cayenne LPP 2.0 format ---------- */
|
|
||||||
// see specs
|
|
||||||
// http://community.mydevices.com/t/cayenne-lpp-2-0/7510 (LPP 2.0)
|
|
||||||
// https://github.com/myDevicesIoT/cayenne-docs/blob/master/docs/LORA.md
|
|
||||||
// (LPP 1.0) PAYLOAD_ENCODER == 3 -> Dynamic Sensor Payload, using channels ->
|
|
||||||
// FPort 1 PAYLOAD_ENCODER == 4 -> Packed Sensor Payload, not using channels ->
|
|
||||||
// FPort 2
|
|
||||||
|
|
||||||
#elif ((PAYLOAD_ENCODER == 3) || (PAYLOAD_ENCODER == 4))
|
|
||||||
|
|
||||||
void PayloadConvert::addByte(uint8_t value) {
|
|
||||||
/*
|
|
||||||
not implemented
|
|
||||||
*/ }
|
|
||||||
|
|
||||||
void PayloadConvert::addCount(uint16_t value, uint8_t snifftype) {
|
|
||||||
switch (snifftype) {
|
|
||||||
case MAC_SNIFF_WIFI:
|
|
||||||
#if (PAYLOAD_ENCODER == 3)
|
|
||||||
buffer[cursor++] = LPP_COUNT_WIFI_CHANNEL;
|
|
||||||
#endif
|
|
||||||
buffer[cursor++] =
|
|
||||||
LPP_LUMINOSITY; // workaround since cayenne has no data type meter
|
|
||||||
buffer[cursor++] = highByte(value);
|
|
||||||
buffer[cursor++] = lowByte(value);
|
|
||||||
break;
|
|
||||||
case MAC_SNIFF_BLE:
|
|
||||||
#if (PAYLOAD_ENCODER == 3)
|
|
||||||
buffer[cursor++] = LPP_COUNT_BLE_CHANNEL;
|
|
||||||
#endif
|
|
||||||
buffer[cursor++] =
|
|
||||||
LPP_LUMINOSITY; // workaround since cayenne has no data type meter
|
|
||||||
buffer[cursor++] = highByte(value);
|
|
||||||
buffer[cursor++] = lowByte(value);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void PayloadConvert::addAlarm(int8_t rssi, uint8_t msg) {
|
|
||||||
#if (PAYLOAD_ENCODER == 3)
|
|
||||||
buffer[cursor++] = LPP_ALARM_CHANNEL;
|
|
||||||
#endif
|
|
||||||
buffer[cursor++] = LPP_PRESENCE;
|
|
||||||
buffer[cursor++] = msg;
|
|
||||||
#if (PAYLOAD_ENCODER == 3)
|
|
||||||
buffer[cursor++] = LPP_MSG_CHANNEL;
|
|
||||||
#endif
|
|
||||||
buffer[cursor++] = LPP_ANALOG_INPUT;
|
|
||||||
buffer[cursor++] = rssi;
|
|
||||||
}
|
|
||||||
|
|
||||||
void PayloadConvert::addVoltage(uint16_t value) {
|
|
||||||
uint16_t volt = value / 10;
|
|
||||||
#if (PAYLOAD_ENCODER == 3)
|
|
||||||
buffer[cursor++] = LPP_BATT_CHANNEL;
|
|
||||||
#endif
|
|
||||||
buffer[cursor++] = LPP_ANALOG_INPUT;
|
|
||||||
buffer[cursor++] = highByte(volt);
|
|
||||||
buffer[cursor++] = lowByte(volt);
|
|
||||||
}
|
|
||||||
|
|
||||||
void PayloadConvert::addConfig(configData_t value) {
|
|
||||||
#if (PAYLOAD_ENCODER == 3)
|
|
||||||
buffer[cursor++] = LPP_ADR_CHANNEL;
|
|
||||||
#endif
|
|
||||||
buffer[cursor++] = LPP_DIGITAL_INPUT;
|
|
||||||
buffer[cursor++] = value.adrmode;
|
|
||||||
}
|
|
||||||
|
|
||||||
void PayloadConvert::addStatus(uint16_t voltage, uint64_t uptime, float celsius,
|
|
||||||
uint32_t mem, uint8_t reset1, uint8_t reset2) {
|
|
||||||
uint16_t temp = celsius * 10;
|
|
||||||
uint16_t volt = voltage / 10;
|
|
||||||
#if (defined BAT_MEASURE_ADC || defined HAS_PMU)
|
|
||||||
#if (PAYLOAD_ENCODER == 3)
|
|
||||||
buffer[cursor++] = LPP_BATT_CHANNEL;
|
|
||||||
#endif
|
|
||||||
buffer[cursor++] = LPP_ANALOG_INPUT;
|
|
||||||
buffer[cursor++] = highByte(volt);
|
|
||||||
buffer[cursor++] = lowByte(volt);
|
|
||||||
#endif // BAT_MEASURE_ADC
|
|
||||||
|
|
||||||
#if (PAYLOAD_ENCODER == 3)
|
|
||||||
buffer[cursor++] = LPP_TEMPERATURE_CHANNEL;
|
|
||||||
#endif
|
|
||||||
buffer[cursor++] = LPP_TEMPERATURE;
|
|
||||||
buffer[cursor++] = highByte(temp);
|
|
||||||
buffer[cursor++] = lowByte(temp);
|
|
||||||
}
|
|
||||||
|
|
||||||
void PayloadConvert::addGPS(gpsStatus_t value) {
|
|
||||||
#if(HAS_GPS)
|
|
||||||
int32_t lat = value.latitude / 100;
|
|
||||||
int32_t lon = value.longitude / 100;
|
|
||||||
int32_t alt = value.altitude * 100;
|
|
||||||
#if (PAYLOAD_ENCODER == 3)
|
|
||||||
buffer[cursor++] = LPP_GPS_CHANNEL;
|
|
||||||
#endif
|
|
||||||
buffer[cursor++] = LPP_GPS;
|
|
||||||
buffer[cursor++] = (byte)((lat & 0xFF0000) >> 16);
|
|
||||||
buffer[cursor++] = (byte)((lat & 0x00FF00) >> 8);
|
|
||||||
buffer[cursor++] = (byte)((lat & 0x0000FF));
|
|
||||||
buffer[cursor++] = (byte)((lon & 0xFF0000) >> 16);
|
|
||||||
buffer[cursor++] = (byte)((lon & 0x00FF00) >> 8);
|
|
||||||
buffer[cursor++] = (byte)(lon & 0x0000FF);
|
|
||||||
buffer[cursor++] = (byte)((alt & 0xFF0000) >> 16);
|
|
||||||
buffer[cursor++] = (byte)((alt & 0x00FF00) >> 8);
|
|
||||||
buffer[cursor++] = (byte)(alt & 0x0000FF);
|
|
||||||
#endif // HAS_GPS
|
|
||||||
}
|
|
||||||
|
|
||||||
void PayloadConvert::addSensor(uint8_t buf[]) {
|
|
||||||
#if(HAS_SENSORS)
|
|
||||||
// to come
|
|
||||||
/*
|
|
||||||
uint8_t length = buf[0];
|
|
||||||
memcpy(buffer, buf+1, length);
|
|
||||||
cursor += length; // length of buffer
|
|
||||||
*/
|
|
||||||
#endif // HAS_SENSORS
|
|
||||||
}
|
|
||||||
|
|
||||||
void PayloadConvert::addBME(bmeStatus_t value) {
|
|
||||||
#if(HAS_BME)
|
|
||||||
|
|
||||||
// data value conversions to meet cayenne data type definition
|
|
||||||
// 0.1°C per bit => -3276,7 .. +3276,7 °C
|
|
||||||
int16_t temperature = (int16_t)(value.temperature * 10.0);
|
|
||||||
// 0.1 hPa per bit => 0 .. 6553,6 hPa
|
|
||||||
uint16_t pressure = (uint16_t)(value.pressure * 10);
|
|
||||||
// 0.5% per bit => 0 .. 128 %C
|
|
||||||
uint8_t humidity = (uint8_t)(value.humidity * 2.0);
|
|
||||||
int16_t iaq = (int16_t)(value.iaq);
|
|
||||||
|
|
||||||
#if (PAYLOAD_ENCODER == 3)
|
|
||||||
buffer[cursor++] = LPP_TEMPERATURE_CHANNEL;
|
|
||||||
#endif
|
|
||||||
buffer[cursor++] = LPP_TEMPERATURE; // 2 bytes 0.1 °C Signed MSB
|
|
||||||
buffer[cursor++] = highByte(temperature);
|
|
||||||
buffer[cursor++] = lowByte(temperature);
|
|
||||||
#if (PAYLOAD_ENCODER == 3)
|
|
||||||
buffer[cursor++] = LPP_BAROMETER_CHANNEL;
|
|
||||||
#endif
|
|
||||||
buffer[cursor++] = LPP_BAROMETER; // 2 bytes 0.1 hPa Unsigned MSB
|
|
||||||
buffer[cursor++] = highByte(pressure);
|
|
||||||
buffer[cursor++] = lowByte(pressure);
|
|
||||||
#if (PAYLOAD_ENCODER == 3)
|
|
||||||
buffer[cursor++] = LPP_HUMIDITY_CHANNEL;
|
|
||||||
#endif
|
|
||||||
buffer[cursor++] = LPP_HUMIDITY; // 1 byte 0.5 % Unsigned
|
|
||||||
buffer[cursor++] = humidity;
|
|
||||||
#if (PAYLOAD_ENCODER == 3)
|
|
||||||
buffer[cursor++] = LPP_AIR_CHANNEL;
|
|
||||||
#endif
|
|
||||||
buffer[cursor++] = LPP_LUMINOSITY; // 2 bytes, 1.0 unsigned
|
|
||||||
buffer[cursor++] = highByte(iaq);
|
|
||||||
buffer[cursor++] = lowByte(iaq);
|
|
||||||
#endif // HAS_BME
|
|
||||||
}
|
|
||||||
|
|
||||||
void PayloadConvert::addButton(uint8_t value) {
|
|
||||||
#ifdef HAS_BUTTON
|
|
||||||
#if (PAYLOAD_ENCODER == 3)
|
|
||||||
buffer[cursor++] = LPP_BUTTON_CHANNEL;
|
|
||||||
#endif
|
|
||||||
buffer[cursor++] = LPP_DIGITAL_INPUT;
|
|
||||||
buffer[cursor++] = value;
|
|
||||||
#endif // HAS_BUTTON
|
|
||||||
}
|
|
||||||
|
|
||||||
void PayloadConvert::addTime(time_t value) {
|
|
||||||
#if (PAYLOAD_ENCODER == 4)
|
|
||||||
uint32_t t = (uint32_t)value;
|
|
||||||
uint32_t tx_period = (uint32_t)SENDCYCLE * 2;
|
|
||||||
buffer[cursor++] = 0x03; // set config mask to UTCTime + TXPeriod
|
|
||||||
// UTCTime in seconds
|
|
||||||
buffer[cursor++] = (byte)((t & 0xFF000000) >> 24);
|
|
||||||
buffer[cursor++] = (byte)((t & 0x00FF0000) >> 16);
|
|
||||||
buffer[cursor++] = (byte)((t & 0x0000FF00) >> 8);
|
|
||||||
buffer[cursor++] = (byte)((t & 0x000000FF));
|
|
||||||
// TXPeriod in seconds
|
|
||||||
buffer[cursor++] = (byte)((tx_period & 0xFF000000) >> 24);
|
|
||||||
buffer[cursor++] = (byte)((tx_period & 0x00FF0000) >> 16);
|
|
||||||
buffer[cursor++] = (byte)((tx_period & 0x0000FF00) >> 8);
|
|
||||||
buffer[cursor++] = (byte)((tx_period & 0x000000FF));
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
#endif // PAYLOAD_ENCODER
|
|
||||||
|
|
||||||
void PayloadConvert::addPM10( float value) {
|
|
||||||
#if (HAS_SDS011)
|
|
||||||
#if (PAYLOAD_ENCODER == 1) // plain
|
|
||||||
char tempBuffer[10+1];
|
|
||||||
sprintf( tempBuffer, ",%5.1f", value);
|
|
||||||
addChars(tempBuffer, strlen(tempBuffer));
|
|
||||||
#elif (PAYLOAD_ENCODER == 2 ) // packed
|
|
||||||
writeUint16( (uint16_t) (value*10) );
|
|
||||||
#elif (PAYLOAD_ENCODER == 3 ) // Cayenne LPP dynamic
|
|
||||||
// TODO
|
|
||||||
#elif (PAYLOAD_ENCODER == 4 ) // Cayenne LPP packed
|
|
||||||
// TODO
|
|
||||||
#endif
|
|
||||||
#endif // HAS_SDS011
|
|
||||||
}
|
|
||||||
|
|
||||||
void PayloadConvert::addPM25( float value) {
|
|
||||||
#if (HAS_SDS011)
|
|
||||||
#if (PAYLOAD_ENCODER == 1) // plain
|
|
||||||
char tempBuffer[10+1];
|
|
||||||
sprintf( tempBuffer, ",%5.1f", value);
|
|
||||||
addChars(tempBuffer, strlen(tempBuffer));
|
|
||||||
#elif (PAYLOAD_ENCODER == 2 ) // packed
|
|
||||||
writeUint16( (uint16_t) (value*10) );
|
|
||||||
#elif (PAYLOAD_ENCODER == 3 ) // Cayenne LPP dynamic
|
|
||||||
// TODO
|
|
||||||
#elif (PAYLOAD_ENCODER == 4 ) // Cayenne LPP packed
|
|
||||||
// TODO
|
|
||||||
#endif
|
|
||||||
#endif // HAS_SDS011
|
|
||||||
}
|
|
||||||
|
|
||||||
void PayloadConvert::addChars( char * string, int len) {
|
void PayloadConvert::addChars( char * string, int len) {
|
||||||
for (int i=0; i < len; i++)
|
for (int i=0; i < len; i++)
|
||||||
addByte(string[i]);
|
addByte(string[i]);
|
||||||
|
@ -85,39 +85,3 @@ void createFile(void) {
|
|||||||
|
|
||||||
#endif // (HAS_SDCARD)
|
#endif // (HAS_SDCARD)
|
||||||
|
|
||||||
if (++counterWrites > 2) {
|
|
||||||
// force writing to SD-card
|
|
||||||
ESP_LOGD(TAG, "flushing data to card");
|
|
||||||
fileSDCard.flush();
|
|
||||||
counterWrites = 0;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void createFile(void) {
|
|
||||||
char bufferFilename[8 + 1 + 3 + 1];
|
|
||||||
|
|
||||||
useSDCard = false;
|
|
||||||
|
|
||||||
for (int i = 0; i < 100; i++) {
|
|
||||||
sprintf(bufferFilename, SDCARD_FILE_NAME, i);
|
|
||||||
ESP_LOGD(TAG, "SD: looking for file <%s>", bufferFilename);
|
|
||||||
bool fileExists = SD.exists(bufferFilename);
|
|
||||||
if (!fileExists) {
|
|
||||||
ESP_LOGD(TAG, "SD: file does not exist: opening");
|
|
||||||
fileSDCard = SD.open(bufferFilename, FILE_WRITE);
|
|
||||||
if (fileSDCard) {
|
|
||||||
ESP_LOGD(TAG, "SD: name opened: <%s>", bufferFilename);
|
|
||||||
fileSDCard.print( SDCARD_FILE_HEADER );
|
|
||||||
#if (HAS_SDS011)
|
|
||||||
fileSDCard.print( SDCARD_FILE_HEADER_SDS011 );
|
|
||||||
#endif
|
|
||||||
fileSDCard.println();
|
|
||||||
useSDCard = true;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
#endif // (HAS_SDCARD)
|
|
||||||
|
138
src/senddata.cpp
138
src/senddata.cpp
@ -181,144 +181,6 @@ void sendData() {
|
|||||||
|
|
||||||
} // sendData()
|
} // sendData()
|
||||||
|
|
||||||
void flushQueues() {
|
|
||||||
#if (HAS_LORA)
|
|
||||||
lora_queuereset();
|
|
||||||
#endif
|
|
||||||
#ifdef HAS_SPI
|
|
||||||
spi_queuereset();
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
SendBuffer.MessagePort = port;
|
|
||||||
}
|
|
||||||
memcpy(SendBuffer.Message, payload.getBuffer(), SendBuffer.MessageSize);
|
|
||||||
|
|
||||||
// enqueue message in device's send queues
|
|
||||||
#if (HAS_LORA)
|
|
||||||
lora_enqueuedata(&SendBuffer);
|
|
||||||
#endif
|
|
||||||
#ifdef HAS_SPI
|
|
||||||
spi_enqueuedata(&SendBuffer);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// write data to sdcard, if present
|
|
||||||
#ifdef HAS_SDCARD
|
|
||||||
sdcardWriteData(macs_wifi, macs_ble);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
} // SendPayload
|
|
||||||
|
|
||||||
// interrupt triggered function to prepare payload to send
|
|
||||||
void sendData() {
|
|
||||||
|
|
||||||
uint8_t bitmask = cfg.payloadmask;
|
|
||||||
uint8_t mask = 1;
|
|
||||||
#if (HAS_GPS)
|
|
||||||
gpsStatus_t gps_status;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
while (bitmask) {
|
|
||||||
switch (bitmask & mask) {
|
|
||||||
|
|
||||||
#if ((WIFICOUNTER) || (BLECOUNTER))
|
|
||||||
case COUNT_DATA:
|
|
||||||
payload.reset();
|
|
||||||
#if !(PAYLOAD_OPENSENSEBOX)
|
|
||||||
if (cfg.wifiscan)
|
|
||||||
payload.addCount(macs_wifi, MAC_SNIFF_WIFI);
|
|
||||||
if (cfg.blescan)
|
|
||||||
payload.addCount(macs_ble, MAC_SNIFF_BLE);
|
|
||||||
#endif
|
|
||||||
#if (HAS_GPS)
|
|
||||||
if (GPSPORT == COUNTERPORT) {
|
|
||||||
// send GPS position only if we have a fix
|
|
||||||
if (gps_hasfix()) {
|
|
||||||
gps_storelocation(&gps_status);
|
|
||||||
payload.addGPS(gps_status);
|
|
||||||
} else
|
|
||||||
ESP_LOGD(TAG, "No valid GPS position");
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
#if (PAYLOAD_OPENSENSEBOX)
|
|
||||||
if (cfg.wifiscan)
|
|
||||||
payload.addCount(macs_wifi, MAC_SNIFF_WIFI);
|
|
||||||
if (cfg.blescan)
|
|
||||||
payload.addCount(macs_ble, MAC_SNIFF_BLE);
|
|
||||||
#endif
|
|
||||||
#if (HAS_SDS011)
|
|
||||||
payload.addPM10(pm10);
|
|
||||||
payload.addPM25(pm25);
|
|
||||||
#endif
|
|
||||||
SendPayload(COUNTERPORT, prio_normal);
|
|
||||||
// clear counter if not in cumulative counter mode
|
|
||||||
if (cfg.countermode != 1) {
|
|
||||||
reset_counters(); // clear macs container and reset all counters
|
|
||||||
get_salt(); // get new salt for salting hashes
|
|
||||||
ESP_LOGI(TAG, "Counter cleared");
|
|
||||||
}
|
|
||||||
#ifdef HAS_DISPLAY
|
|
||||||
else
|
|
||||||
oledPlotCurve(macs.size(), true);
|
|
||||||
#endif
|
|
||||||
break;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if (HAS_BME)
|
|
||||||
case MEMS_DATA:
|
|
||||||
payload.reset();
|
|
||||||
payload.addBME(bme_status);
|
|
||||||
SendPayload(BMEPORT, prio_normal);
|
|
||||||
break;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if (HAS_GPS)
|
|
||||||
case GPS_DATA:
|
|
||||||
if (GPSPORT != COUNTERPORT) {
|
|
||||||
// send GPS position only if we have a fix
|
|
||||||
if (gps_hasfix()) {
|
|
||||||
gps_storelocation(&gps_status);
|
|
||||||
payload.reset();
|
|
||||||
payload.addGPS(gps_status);
|
|
||||||
SendPayload(GPSPORT, prio_high);
|
|
||||||
} else
|
|
||||||
ESP_LOGD(TAG, "No valid GPS position");
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if (HAS_SENSORS)
|
|
||||||
case SENSOR1_DATA:
|
|
||||||
payload.reset();
|
|
||||||
payload.addSensor(sensor_read(1));
|
|
||||||
SendPayload(SENSOR1PORT, prio_normal);
|
|
||||||
break;
|
|
||||||
case SENSOR2_DATA:
|
|
||||||
payload.reset();
|
|
||||||
payload.addSensor(sensor_read(2));
|
|
||||||
SendPayload(SENSOR2PORT, prio_normal);
|
|
||||||
break;
|
|
||||||
case SENSOR3_DATA:
|
|
||||||
payload.reset();
|
|
||||||
payload.addSensor(sensor_read(3));
|
|
||||||
SendPayload(SENSOR3PORT, prio_normal);
|
|
||||||
break;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if (defined BAT_MEASURE_ADC || defined HAS_PMU)
|
|
||||||
case BATT_DATA:
|
|
||||||
payload.reset();
|
|
||||||
payload.addVoltage(read_voltage());
|
|
||||||
SendPayload(BATTPORT, prio_normal);
|
|
||||||
break;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
} // switch
|
|
||||||
bitmask &= ~mask;
|
|
||||||
mask <<= 1;
|
|
||||||
} // while (bitmask)
|
|
||||||
|
|
||||||
} // sendData()
|
|
||||||
|
|
||||||
void flushQueues() {
|
void flushQueues() {
|
||||||
#if (HAS_LORA)
|
#if (HAS_LORA)
|
||||||
lora_queuereset();
|
lora_queuereset();
|
||||||
|
@ -320,274 +320,4 @@ void clock_loop(void *taskparameter) { // ClockTask
|
|||||||
} // for
|
} // for
|
||||||
} // clock_loop()
|
} // clock_loop()
|
||||||
|
|
||||||
#endif // HAS_IF482 || defined HAS_DCF77
|
|
||||||
if (t) {
|
|
||||||
timeSource = _rtc;
|
|
||||||
goto finish;
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
|
|
||||||
goto finish;
|
|
||||||
|
|
||||||
finish:
|
|
||||||
|
|
||||||
setMyTime((uint32_t)t, t_msec, timeSource); // set time
|
|
||||||
|
|
||||||
} // calibrateTime()
|
|
||||||
|
|
||||||
// adjust system time, calibrate RTC and RTC_INT pps
|
|
||||||
void IRAM_ATTR setMyTime(uint32_t t_sec, uint16_t t_msec,
|
|
||||||
timesource_t mytimesource) {
|
|
||||||
|
|
||||||
// called with invalid timesource?
|
|
||||||
if (mytimesource == _unsynced)
|
|
||||||
return;
|
|
||||||
|
|
||||||
// increment t_sec only if t_msec > 1000
|
|
||||||
time_t time_to_set = (time_t)(t_sec + t_msec / 1000);
|
|
||||||
|
|
||||||
// do we have a valid time?
|
|
||||||
if (timeIsValid(time_to_set)) {
|
|
||||||
|
|
||||||
// if we have msec fraction, then wait until top of second with
|
|
||||||
// millisecond precision
|
|
||||||
if (t_msec % 1000) {
|
|
||||||
time_to_set++;
|
|
||||||
vTaskDelay(pdMS_TO_TICKS(1000 - t_msec % 1000));
|
|
||||||
}
|
|
||||||
|
|
||||||
ESP_LOGD(TAG, "[%0.3f] UTC epoch time: %d.%03d sec", millis() / 1000.0,
|
|
||||||
time_to_set, t_msec % 1000);
|
|
||||||
|
|
||||||
// if we have got an external timesource, set RTC time and shift RTC_INT pulse
|
|
||||||
// to top of second
|
|
||||||
#ifdef HAS_RTC
|
|
||||||
if ((mytimesource == _gps) || (mytimesource == _lora))
|
|
||||||
set_rtctime(time_to_set);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// if we have a software pps timer, shift it to top of second
|
|
||||||
#if (!defined GPS_INT && !defined RTC_INT)
|
|
||||||
timerWrite(ppsIRQ, 0); // reset pps timer
|
|
||||||
CLOCKIRQ(); // fire clock pps, this advances time 1 sec
|
|
||||||
#endif
|
|
||||||
|
|
||||||
setTime(time_to_set); // set the time on top of second
|
|
||||||
|
|
||||||
timeSource = mytimesource; // set global variable
|
|
||||||
timesyncer.attach(TIME_SYNC_INTERVAL * 60, timeSync);
|
|
||||||
ESP_LOGI(TAG, "[%0.3f] Timesync finished, time was set | source: %c",
|
|
||||||
millis() / 1000.0, timeSetSymbols[timeSource]);
|
|
||||||
} else {
|
|
||||||
timesyncer.attach(TIME_SYNC_INTERVAL_RETRY * 60, timeSync);
|
|
||||||
ESP_LOGI(TAG, "[%0.3f] Timesync failed, invalid time fetched | source: %c",
|
|
||||||
millis() / 1000.0, timeSetSymbols[timeSource]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// helper function to setup a pulse per second for time synchronisation
|
|
||||||
uint8_t timepulse_init() {
|
|
||||||
|
|
||||||
// use time pulse from GPS as time base with fixed 1Hz frequency
|
|
||||||
#ifdef GPS_INT
|
|
||||||
|
|
||||||
// setup external interupt pin for rising edge GPS INT
|
|
||||||
pinMode(GPS_INT, INPUT_PULLDOWN);
|
|
||||||
// setup external rtc 1Hz clock as pulse per second clock
|
|
||||||
ESP_LOGI(TAG, "Timepulse: external (GPS)");
|
|
||||||
return 1; // success
|
|
||||||
|
|
||||||
// use pulse from on board RTC chip as time base with fixed frequency
|
|
||||||
#elif defined RTC_INT
|
|
||||||
|
|
||||||
// setup external interupt pin for falling edge RTC INT
|
|
||||||
pinMode(RTC_INT, INPUT_PULLUP);
|
|
||||||
|
|
||||||
// setup external rtc 1Hz clock as pulse per second clock
|
|
||||||
if (I2C_MUTEX_LOCK()) {
|
|
||||||
Rtc.SetSquareWavePinClockFrequency(DS3231SquareWaveClock_1Hz);
|
|
||||||
Rtc.SetSquareWavePin(DS3231SquareWavePin_ModeClock);
|
|
||||||
I2C_MUTEX_UNLOCK();
|
|
||||||
ESP_LOGI(TAG, "Timepulse: external (RTC)");
|
|
||||||
return 1; // success
|
|
||||||
} else {
|
|
||||||
ESP_LOGE(TAG, "RTC initialization error, I2C bus busy");
|
|
||||||
return 0; // failure
|
|
||||||
}
|
|
||||||
return 1; // success
|
|
||||||
|
|
||||||
#else
|
|
||||||
// use ESP32 hardware timer as time base with adjustable frequency
|
|
||||||
ppsIRQ = timerBegin(1, 8000, true); // set 80 MHz prescaler to 1/10000 sec
|
|
||||||
timerAlarmWrite(ppsIRQ, 10000, true); // 1000ms
|
|
||||||
ESP_LOGI(TAG, "Timepulse: internal (ESP32 hardware timer)");
|
|
||||||
return 1; // success
|
|
||||||
|
|
||||||
#endif
|
|
||||||
} // timepulse_init
|
|
||||||
|
|
||||||
void timepulse_start(void) {
|
|
||||||
|
|
||||||
#ifdef GPS_INT // start external clock gps pps line
|
|
||||||
attachInterrupt(digitalPinToInterrupt(GPS_INT), CLOCKIRQ, RISING);
|
|
||||||
#elif defined RTC_INT // start external clock rtc
|
|
||||||
attachInterrupt(digitalPinToInterrupt(RTC_INT), CLOCKIRQ, FALLING);
|
|
||||||
#else // start internal clock esp32 hardware timer
|
|
||||||
timerAttachInterrupt(ppsIRQ, &CLOCKIRQ, true);
|
|
||||||
timerAlarmEnable(ppsIRQ);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// start cyclic time sync
|
|
||||||
timeSync(); // init systime by RTC or GPS or LORA
|
|
||||||
timesyncer.attach(TIME_SYNC_INTERVAL * 60, timeSync);
|
|
||||||
}
|
|
||||||
|
|
||||||
// interrupt service routine triggered by either pps or esp32 hardware timer
|
|
||||||
void IRAM_ATTR CLOCKIRQ(void) {
|
|
||||||
|
|
||||||
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
|
|
||||||
|
|
||||||
SyncToPPS(); // advance systime, see microTime.h
|
|
||||||
|
|
||||||
// advance wall clock, if we have
|
|
||||||
#if (defined HAS_IF482 || defined HAS_DCF77)
|
|
||||||
xTaskNotifyFromISR(ClockTask, uint32_t(now()), eSetBits,
|
|
||||||
&xHigherPriorityTaskWoken);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// flip time pulse ticker, if needed
|
|
||||||
#ifdef HAS_DISPLAY
|
|
||||||
#if (defined GPS_INT || defined RTC_INT)
|
|
||||||
TimePulseTick = !TimePulseTick; // flip pulse ticker
|
|
||||||
#endif
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// yield only if we should
|
|
||||||
if (xHigherPriorityTaskWoken)
|
|
||||||
portYIELD_FROM_ISR();
|
|
||||||
}
|
|
||||||
|
|
||||||
// helper function to check plausibility of a time
|
|
||||||
time_t timeIsValid(time_t const t) {
|
|
||||||
// is it a time in the past? we use compile date to guess
|
|
||||||
return (t >= compiledUTC() ? t : 0);
|
|
||||||
}
|
|
||||||
|
|
||||||
// helper function to convert compile time to UTC time
|
|
||||||
time_t compiledUTC(void) {
|
|
||||||
static time_t t = myTZ.toUTC(RtcDateTime(__DATE__, __TIME__).Epoch32Time());
|
|
||||||
return t;
|
|
||||||
}
|
|
||||||
|
|
||||||
// helper function to calculate serial transmit time
|
|
||||||
TickType_t tx_Ticks(uint32_t framesize, unsigned long baud, uint32_t config,
|
|
||||||
int8_t rxPin, int8_t txPins) {
|
|
||||||
|
|
||||||
uint32_t databits = ((config & 0x0c) >> 2) + 5;
|
|
||||||
uint32_t stopbits = ((config & 0x20) >> 5) + 1;
|
|
||||||
uint32_t txTime = (databits + stopbits + 1) * framesize * 1000.0 / baud;
|
|
||||||
// +1 for the startbit
|
|
||||||
|
|
||||||
return round(txTime);
|
|
||||||
}
|
|
||||||
|
|
||||||
#if (defined HAS_IF482 || defined HAS_DCF77)
|
|
||||||
|
|
||||||
#if (defined HAS_DCF77 && defined HAS_IF482)
|
|
||||||
#error You must define at most one of IF482 or DCF77!
|
|
||||||
#endif
|
|
||||||
|
|
||||||
void clock_init(void) {
|
|
||||||
|
|
||||||
// setup clock output interface
|
|
||||||
#ifdef HAS_IF482
|
|
||||||
IF482.begin(HAS_IF482);
|
|
||||||
#elif defined HAS_DCF77
|
|
||||||
pinMode(HAS_DCF77, OUTPUT);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
userUTCTime = now();
|
|
||||||
|
|
||||||
xTaskCreatePinnedToCore(clock_loop, // task function
|
|
||||||
"clockloop", // name of task
|
|
||||||
2048, // stack size of task
|
|
||||||
(void *)&userUTCTime, // start time as task parameter
|
|
||||||
4, // priority of the task
|
|
||||||
&ClockTask, // task handle
|
|
||||||
1); // CPU core
|
|
||||||
|
|
||||||
assert(ClockTask); // has clock task started?
|
|
||||||
} // clock_init
|
|
||||||
|
|
||||||
void clock_loop(void *taskparameter) { // ClockTask
|
|
||||||
|
|
||||||
// caveat: don't use now() in this task, it will cause a race condition
|
|
||||||
// due to concurrent access to i2c bus when reading/writing from/to rtc chip!
|
|
||||||
|
|
||||||
#define nextmin(t) (t + DCF77_FRAME_SIZE + 1) // next minute
|
|
||||||
|
|
||||||
#ifdef HAS_TWO_LED
|
|
||||||
static bool led1_state = false;
|
|
||||||
#endif
|
|
||||||
uint32_t printtime;
|
|
||||||
time_t t = *((time_t *)taskparameter), last_printtime = 0; // UTC time seconds
|
|
||||||
|
|
||||||
#ifdef HAS_DCF77
|
|
||||||
uint8_t *DCFpulse; // pointer on array with DCF pulse bits
|
|
||||||
DCFpulse = DCF77_Frame(nextmin(t)); // load first DCF frame before start
|
|
||||||
#elif defined HAS_IF482
|
|
||||||
static TickType_t txDelay = pdMS_TO_TICKS(1000 - IF482_SYNC_FIXUP) -
|
|
||||||
tx_Ticks(IF482_FRAME_SIZE, HAS_IF482);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// output the next second's pulse/telegram after pps arrived
|
|
||||||
for (;;) {
|
|
||||||
|
|
||||||
// wait for timepulse and store UTC time in seconds got
|
|
||||||
xTaskNotifyWait(0x00, ULONG_MAX, &printtime, portMAX_DELAY);
|
|
||||||
t = time_t(printtime);
|
|
||||||
|
|
||||||
// no confident or no recent time -> suppress clock output
|
|
||||||
if ((timeStatus() == timeNotSet) || !(timeIsValid(t)) ||
|
|
||||||
(t == last_printtime))
|
|
||||||
continue;
|
|
||||||
|
|
||||||
#if defined HAS_IF482
|
|
||||||
|
|
||||||
// wait until moment to fire. Normally we won't get notified during this
|
|
||||||
// timespan, except when next pps pulse arrives while waiting, because pps
|
|
||||||
// was adjusted by recent time sync
|
|
||||||
if (xTaskNotifyWait(0x00, ULONG_MAX, &printtime, txDelay) == pdTRUE)
|
|
||||||
t = time_t(printtime); // new adjusted UTC time seconds
|
|
||||||
|
|
||||||
// send IF482 telegram
|
|
||||||
IF482.print(IF482_Frame(t + 1)); // note: telegram is for *next* second
|
|
||||||
|
|
||||||
#elif defined HAS_DCF77
|
|
||||||
|
|
||||||
if (second(t) == DCF77_FRAME_SIZE - 1) // is it time to load new frame?
|
|
||||||
DCFpulse = DCF77_Frame(nextmin(t)); // generate frame for next minute
|
|
||||||
|
|
||||||
if (minute(nextmin(t)) == // do we still have a recent frame?
|
|
||||||
DCFpulse[DCF77_FRAME_SIZE]) // (timepulses could be missed!)
|
|
||||||
DCF77_Pulse(t, DCFpulse); // then output current second's pulse
|
|
||||||
|
|
||||||
// else we have no recent frame, thus suppressing clock output
|
|
||||||
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// pps blink on secondary LED if we have one
|
|
||||||
#ifdef HAS_TWO_LED
|
|
||||||
if (led1_state)
|
|
||||||
switch_LED1(LED_OFF);
|
|
||||||
else
|
|
||||||
switch_LED1(LED_ON);
|
|
||||||
led1_state = !led1_state;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
last_printtime = t;
|
|
||||||
|
|
||||||
} // for
|
|
||||||
} // clock_loop()
|
|
||||||
|
|
||||||
#endif // HAS_IF482 || defined HAS_DCF77
|
#endif // HAS_IF482 || defined HAS_DCF77
|
||||||
|
Loading…
Reference in New Issue
Block a user