This commit is contained in:
Oliver Brandmueller 2018-06-17 11:53:18 +02:00
commit c6fb9734cf
31 changed files with 2765 additions and 3257 deletions

108
.clang-format Normal file
View File

@ -0,0 +1,108 @@
---
Language: Cpp
# BasedOnStyle: LLVM
AccessModifierOffset: -2
AlignAfterOpenBracket: Align
AlignConsecutiveAssignments: false
AlignConsecutiveDeclarations: false
AlignEscapedNewlines: Right
AlignOperands: true
AlignTrailingComments: true
AllowAllParametersOfDeclarationOnNextLine: true
AllowShortBlocksOnASingleLine: false
AllowShortCaseLabelsOnASingleLine: false
AllowShortFunctionsOnASingleLine: All
AllowShortIfStatementsOnASingleLine: false
AllowShortLoopsOnASingleLine: false
AlwaysBreakAfterDefinitionReturnType: None
AlwaysBreakAfterReturnType: None
AlwaysBreakBeforeMultilineStrings: false
AlwaysBreakTemplateDeclarations: false
BinPackArguments: true
BinPackParameters: true
BraceWrapping:
AfterClass: false
AfterControlStatement: false
AfterEnum: false
AfterFunction: false
AfterNamespace: false
AfterObjCDeclaration: false
AfterStruct: false
AfterUnion: false
BeforeCatch: false
BeforeElse: false
IndentBraces: false
SplitEmptyFunction: true
SplitEmptyRecord: true
SplitEmptyNamespace: true
BreakBeforeBinaryOperators: None
BreakBeforeBraces: Attach
BreakBeforeInheritanceComma: false
BreakBeforeTernaryOperators: true
BreakConstructorInitializersBeforeComma: false
BreakConstructorInitializers: BeforeColon
BreakAfterJavaFieldAnnotations: false
BreakStringLiterals: true
ColumnLimit: 80
CommentPragmas: '^ IWYU pragma:'
CompactNamespaces: false
ConstructorInitializerAllOnOneLineOrOnePerLine: false
ConstructorInitializerIndentWidth: 4
ContinuationIndentWidth: 4
Cpp11BracedListStyle: true
DerivePointerAlignment: false
DisableFormat: false
ExperimentalAutoDetectBinPacking: false
FixNamespaceComments: true
ForEachMacros:
- foreach
- Q_FOREACH
- BOOST_FOREACH
IncludeCategories:
- Regex: '^"(llvm|llvm-c|clang|clang-c)/'
Priority: 2
- Regex: '^(<|"(gtest|gmock|isl|json)/)'
Priority: 3
- Regex: '.*'
Priority: 1
IncludeIsMainRegex: '(Test)?$'
IndentCaseLabels: false
IndentWidth: 2
IndentWrappedFunctionNames: false
JavaScriptQuotes: Leave
JavaScriptWrapImports: true
KeepEmptyLinesAtTheStartOfBlocks: true
MacroBlockBegin: ''
MacroBlockEnd: ''
MaxEmptyLinesToKeep: 1
NamespaceIndentation: None
ObjCBlockIndentWidth: 2
ObjCSpaceAfterProperty: false
ObjCSpaceBeforeProtocolList: true
PenaltyBreakAssignment: 2
PenaltyBreakBeforeFirstCallParameter: 19
PenaltyBreakComment: 300
PenaltyBreakFirstLessLess: 120
PenaltyBreakString: 1000
PenaltyExcessCharacter: 1000000
PenaltyReturnTypeOnItsOwnLine: 60
PointerAlignment: Right
ReflowComments: true
SortIncludes: false
SortUsingDeclarations: true
SpaceAfterCStyleCast: false
SpaceAfterTemplateKeyword: true
SpaceBeforeAssignmentOperators: true
SpaceBeforeParens: ControlStatements
SpaceInEmptyParentheses: false
SpacesBeforeTrailingComments: 1
SpacesInAngles: false
SpacesInContainerLiterals: true
SpacesInCStyleCastParentheses: false
SpacesInParentheses: false
SpacesInSquareBrackets: false
Standard: Cpp11
TabWidth: 8
UseTab: Never
...

224
README.md
View File

@ -1,7 +1,7 @@
# ESP32-Paxcounter
**Wifi & Bluetooth driven, LoRaWAN enabled, battery powered mini Paxcounter built on cheap ESP32 boards**
**Wifi & Bluetooth driven, LoRaWAN enabled, battery powered mini Paxcounter built on cheap ESP32 LoRa IoT boards**
---> check branch "development" for latest alpha version <---
--> see development branch of this repository for latest alpha version <--
<img src="img/Paxcounter-title.jpg">
@ -19,16 +19,24 @@ This can all be done with a single small and cheap ESP32 board for less than $20
# Hardware
Currently supported IoT boards:
- Heltec LoRa-32 {1}
- TTGOv1 {1}
- TTGOv2 {1}{4}
- Pycom LoPy {2}
- Pycom LoPy4 {2}
- LoLin32 with [LoraNode32 shield](https://github.com/hallard/LoLin32-Lora) {2}{3}
- LoLin32 Lite with [LoraNode32-Lite shield](https://github.com/hallard/LoLin32-Lite-Lora) {2}{3}
Supported ESP32 based LoRa IoT boards:
- **Heltec LoRa-32** *a)*
- **TTGOv1** *a)*
- **TTGOv2** *a,d)*
- **TTGOv2.1** *a),e)*
- **TTGO T-Beam** *d),e),f)*
- **Pycom LoPy** *b),f)*
- **Pycom LoPy4** *b),f)*
- **Pycom FiPy** *b),f)*
- **LoLin32** with [LoraNode32 shield](https://github.com/hallard/LoLin32-Lora) *b),c)*
- **LoLin32 Lite** with [LoraNode32-Lite shield](https://github.com/hallard/LoLin32-Lite-Lora) *b),c)*
{1} on board OLED Display supported; {2} on board RGB LED supported; {3} on board Hardware unique DEVEUI supported; {4} special wiring needed, see instructions in /hal/ttgov2.h
a) on board OLED Display supported;
b) on board RGB LED supported;
c) on board Hardware unique DEVEUI supported;
d) external wiring needed, see instructions in board.h file;
e) battery voltage monitoring supported;
f) on board GPS supported (for Pycom PyTrack expansion needed)
Target platform must be selected in [platformio.ini](https://github.com/cyberman54/ESP32-Paxcounter/blob/master/platformio.ini).<br>
Hardware dependent settings (pinout etc.) are stored in board files in /hal directory.<br>
@ -36,17 +44,7 @@ Hardware dependent settings (pinout etc.) are stored in board files in /hal dire
<b>3D printable cases</b> can be found (and, if wanted so, ordered) on Thingiverse, see
<A HREF="https://www.thingiverse.com/thing:2670713">Heltec</A> and <A HREF="https://www.thingiverse.com/thing:2811127">TTGOv2</A>, for example.<br>
<b>Power consumption</b>:
- Heltec ~720mW
- TTGOv1 TBD
- TTGOv2 ~990mW
- LoPy with expansion board: ~690mW
- LoPy pure, without expansion board: TBD
- LoLin32 with [LoraNode32 shield](https://github.com/hallard/LoLin32-Lora): TBD
- LoLin32 Lite with [LoraNode32-Lite shield](https://github.com/hallard/LoLin32-Lite-Lora): TBD
These results where metered with software version 1.2.97 while continuously scanning wifi and ble, no LoRa TXing, OLED display (if present) on, 5V USB powered.
<b>Power consumption</b> was metered at around 1000mW, depending on board (i.e. has display or not) and user settings in paxcounter.conf. If you are limited on battery, you may want to save around 30% power by disabling bluetooth (commenting out line *#define BLECOUNTER* in paxcounter.conf).
# Preparing
@ -64,14 +62,14 @@ If your device has silicon **Unique ID** which is stored in serial EEPROM Microc
# Building
Use <A HREF="https://platformio.org/">PlatformIO</A> with your preferred IDE for development and building this code.
Use <A HREF="https://platformio.org/">PlatformIO</A> with your preferred IDE for development and building this code. Make sure you have latest PlatformIO version.
# Uploading
To upload the code to your ESP32 board this needs to be switched from run to bootloader mode. Boards with USB bridge like Heltec and TTGO usually have an onboard logic which allows soft switching by the upload tool. In PlatformIO this happenes automatically.<p>
The LoPy/LoPy4 board needs to be set manually. See these
The LoPy/LoPy4/FiPy board needs to be set manually. See these
<A HREF="https://www.thethingsnetwork.org/labs/story/program-your-lopy-from-the-arduino-ide-using-lmic">instructions</A> how to do it. Don't forget to press on board reset button after switching between run and bootloader mode.<p>
The original Pycom firmware is not needed, so there is no need to update it before flashing Paxcounter. Just flash the compiled paxcounter binary (.elf file) on your LoPy/LoPy4. If you later want to go back to the Pycom firmware, download the firmware from Pycom and flash it over.
The original Pycom firmware is not needed, so there is no need to update it before flashing Paxcounter. Just flash the compiled paxcounter binary (.elf file) on your LoPy/LoPy4/FiPy. If you later want to go back to the Pycom firmware, download the firmware from Pycom and flash it over.
# Legal note
@ -81,7 +79,7 @@ The original Pycom firmware is not needed, so there is no need to update it befo
(e.g. UK citizens may want to check [Data Protection Act 1998](https://ico.org.uk/media/1560691/wi-fi-location-analytics-guidance.pdf) and [GDPR 2018](https://ico.org.uk/for-organisations/guide-to-the-general-data-protection-regulation-gdpr/key-definitions/))
(e.g. Citizens in the the Netherlands may want to read [this article](https://www.ivir.nl/publicaties/download/PrivacyInformatie_2016_6.pdf))
(e.g. Citizens in the the Netherlands may want to read [this article](https://www.ivir.nl/publicaties/download/PrivacyInformatie_2016_6.pdf) and [this article](https://autoriteitpersoonsgegevens.nl/nl/nieuws/europese-privacytoezichthouders-publiceren-opinie-eprivacyverordening))
Note: If you use this software you do this at your own risk. That means that you alone - not the authors of this software - are responsible for the legal compliance of an application using this or build from this software and/or usage of a device created using this software. You should take special care and get prior legal advice if you plan metering passengers in public areas and/or publish data drawn from doing so.
@ -89,20 +87,92 @@ Note: If you use this software you do this at your own risk. That means that you
Paxcounter generates identifiers for sniffed MAC adresses and collects them temporary in the device's RAM for a configurable scan cycle time (default 240 seconds). After each scan cycle the collected identifiers are cleared. Identifiers are generated by salting and hashing MAC adresses. The random salt value changes after each scan cycle. Identifiers and MAC adresses are never transferred to the LoRaWAN network. No persistent storing of MAC adresses, identifiers or timestamps and no other kind of analytics than counting are implemented in this code. Wireless networks are not touched by this code, but MAC adresses from wireless devices as well within as not within wireless networks, regardless if encrypted or unencrypted, are sniffed and processed by this code. If the bluetooth option in the code is enabled, bluetooth MACs are scanned and processed by the included BLE stack, then hashed and counted by this code.
# Payload format description
# LED
FPort1:
Legend for mono color on board LED:
byte 1: 16-bit WiFi counter, MSB
byte 2: 16-bit WiFi counter, LSB
byte 3: 16-bit BLE counter, MSB
byte 4: 16-bit BLE counter, LSB
- Single Flash (50ms): seen a new Wifi or BLE device
- Quick blink (20ms on each 1/5 second): joining LoRaWAN network in progress or pending
- Small blink (10ms on each 1/2 second): LoRaWAN data transmit in progress or pending
- Long blink (200ms on each 2 seconds): LoRaWAN stack error
FPort2:
Legend for RGB LED (LoPy/LoPy4/FiPy/Lolin32 only):
see remote command set
- Green each blink: seen a new Wifi device
- Magenta each blink: seen a new BLE device
- Yellow quick blink: joining LoRaWAN network in progress or pending
- Blue blink: LoRaWAN data transmit in progress or pending
- Red long blink: LoRaWAN stack error
# Remote command set
# Payload
**LoRaWAN Port #1:**
Paxcounter data
byte 1-2: Number of unique pax, first seen on Wifi
byte 3-4: Number of unique pax, first seen on Bluetooth [0 if BT disabled]
GPS data (only, if GPS is present and has a fix)
bytes 5-8: GPS latitude
bytes 9-12: GPS longitude
bytes 13-14: GPS number of satellites
bytes 15-16: GPS HDOP
bytes 17-18: GPS altitude [meter]
**LoRaWAN Port #2:**
- see remote control -
If you're using [TheThingsNetwork](https://www.thethingsnetwork.org/) (TTN) you may want to use a payload converter. Go to TTN Console - Application - Payload Formats and paste the code example below in tabs Decoder and Converter. Make sure that your application parses the fields `pax`, `ble` and `wifi`.
To map a GPS capable paxcounter device and at the same time contribute to TTN coverage mapping, you simply activate the [TTNmapper integration](https://www.thethingsnetwork.org/docs/applications/ttnmapper/) in TTN Console. Paxcounter generates ttnmapper compatible data fields.
**Decoder:**
```javascript
function Decoder(bytes, port) {
var decoded = {};
if (port === 1) {
var i = 0;
decoded.wifi = (bytes[i++] << 8) | bytes[i++];
decoded.ble = (bytes[i++] << 8) | bytes[i++];
if (bytes.length > 4) {
decoded.latitude = ( (bytes[i++]) | (bytes[i++] << 8) | (bytes[i++] << 16) | bytes[i++] << 24 );
decoded.longitude = ( (bytes[i++]) | (bytes[i++] << 8) | (bytes[i++] << 16) | bytes[i++] << 24 );
decoded.sats = ( bytes[i++] | (bytes[i++] << 8) );
decoded.hdop = ( bytes[i++] | (bytes[i++] << 8) );
decoded.altitude = ( bytes[i++] | (bytes[i++] << 8) );
}
}
return decoded;
}
```
**Converter:**
```javascript
function Converter(decoded, port) {
var converted = decoded;
if (port === 1) {
converted.pax = converted.ble + converted.wifi;
if (converted.hdop) {
converted.hdop /= 100;
converted.latitude /= 1000000;
converted.longitude /= 1000000;
}
}
return converted;
}
```
# Remote control
The device listenes for remote control commands on LoRaWAN Port 2.
Each command is followed by exactly one parameter.
@ -121,10 +191,10 @@ Note: all settings are stored in NVRAM and will be reloaded when device starts.
1 = cumulative counter, mac counter is never reset
2 = cyclic confirmed, like 0 but data is resent until confirmation by network received
0x03 (NOT YET IMPLEMENTED) set screen saver mode
0x03 set GPS data on/off
0 = screen saver off [default]
1 = screen saver on
0 = GPS data off
1 = GPS data on, appends GPS data to payload, if GPS is present and has a fix [default]
0x04 set display on/off
@ -144,7 +214,8 @@ Note: all settings are stored in NVRAM and will be reloaded when device starts.
0 = ADR off
1 = ADR on [default]
note: set ADR to off, if device is moving, set to on, if not.
Note: set ADR to off, if device is moving, set to on, if not.
If ADR is set to on, SF value is shown inverted on display.
0x08 do nothing
@ -156,77 +227,81 @@ Note: all settings are stored in NVRAM and will be reloaded when device starts.
1 = reset MAC counter to zero
2 = reset device to factory settings
0x0A set payload send cycle
0x0A set LoRaWAN payload send cycle
0 ... 255 payload send cycle in seconds/2
e.g. 120 -> payload is transmitted each 240 seconds [default]
0x0B set Wifi channel switch interval timer
0 ... 255 timeout for scanning 1 wifi channel in seconds/100
e.g. 50 -> each channel is scanned for 0,5 seconds [default]
0 ... 255 duration for scanning a wifi channel in seconds/100
e.g. 50 -> each channel is scanned for 500 milliseconds [default]
0x0C set BLE scan cycle timer
0x0C set Bluetooth channel switch interval timer
0 ... 255 duration of a BLE scan cycle in seconds
e.g. 11 -> 1 cycle runs for 11 seconds [default]
0 ... 255 duration for scanning a bluetooth advertising channel in seconds/100
e.g. 8 -> each channel is scanned for 80 milliseconds [default]
0x0D (NOT YET IMPLEMENTED) set BLE and WIFI vendorfilter mode
0 = disabled (use to count devices, not people)
1 = enabled [default]
0x0E set BLE scan mode
0x0E set Bluetooth scanner
0 = disabled
1 = enabled [default]
0x0F set WIFI antenna switch (works on LoPy/LoPy4 only)
0x0F set WIFI antenna switch (works on LoPy/LoPy4/FiPy only)
0 = internal antenna [default]
1 = external antenna
0x10 set RGB led luminosity (works on LoPy/LoPy4 and LoRaNode32 shield only)
0x10 set RGB led luminosity (works on LoPy/LoPy4/FiPy and LoRaNode32 shield only)
0 ... 100 percentage of luminosity (100% = full light)
e.g. 50 -> 50% of luminosity [default]
0x80 get device configuration
device answers with it's current configuration. The configuration is a C structure declared in file [globals.h](src/globals.h#L27-L44) with the following definition:
device answers with it's current configuration. The configuration is a C structure declared in file [globals.h](src/globals.h#L32-L50) with the following definition:
byte 1: Lora SF (7..12)
byte 2: Lora TXpower (2..15)
byte 3: Lora ADR (1=on, 0=off)
byte 4: Screensaver status (1=on, 0=off)
byte 5: Display status (1=on, 0=off)
byte 6: Counter mode (0=cyclic unconfirmed, 1=cumulative, 2=cyclic confirmed)
bytes 7-8: RSSI limiter threshold value (negative)
byte 9: Payload send cycle in seconds/2 (0..255)
byte 10: Wifi channel switch interval in seconds/100 (0..255)
byte 11: BLE scan cycle duration in seconds (0..255)
byte 12: BLE scan mode (1=on, 0=0ff)
byte 13: Wifi antenna switch (0=internal, 1=external)
byte 14: Vendorfilter mode (0=disabled, 1=enabled)
byte 15: RGB LED luminosity (0..100 %)
bytes 16-25: Software version (ASCII format)
byte 1: Lora SF (7..12) [default 9]
byte 2: Lora TXpower (2..15) [default 15]
byte 3: Lora ADR (1=on, 0=off) [default 1]
byte 4: Screensaver status (1=on, 0=off) [default 0]
byte 5: Display status (1=on, 0=off) [default 0]
byte 6: Counter mode (0=cyclic unconfirmed, 1=cumulative, 2=cyclic confirmed) [default 0]
bytes 7-8: RSSI limiter threshold value (negative) [default 0]
byte 9: Lora Payload send cycle in seconds/2 (0..255) [default 120]
byte 10: Wifi channel switch interval in seconds/100 (0..255) [default 50]
byte 11: Bluetooth channel switch interval in seconds/100 (0..255) [efault 10]
byte 12: Bluetooth scanner status (1=on, 0=0ff) [default 1]
byte 13: Wifi antenna switch (0=internal, 1=external) [default 0]
byte 14: Vendorfilter mode (0=disabled, 1=enabled) [default 0]
byte 15: RGB LED luminosity (0..100 %) [default 30]
byte 16: GPS send data mode (1=on, 0=ff) [default 1]
bytes 17-27: Software version (ASCII format, terminating with zero)
0x81 get device uptime
bytes 1-7: Uptime in seconds (little endian format)
bytes 1-8: Uptime in seconds (little endian format)
0x82 get device cpu temperature
bytes 1-3: chip temperature in celsius (little endian format)
bytes 1-4: Chip temperature in degrees celsius (little endian format)
# RGB Led color description
0x83 get device battery voltage
Description of the RGB LED color (LoPy/LoPy4 and Lolin32 only):
bytes 1-2: Battery voltage in millivolt, 0 if unreadable (little endian format)
- Yellow quick blink: joining LoRaWAN network in progress or pending
- Blue blink: LoRaWAN data transmit (including waiting for receive windows) in progress or pending
- Green each blink: seen a new Wifi device
- Magenta each blink: seen a new BLE device
0x84 get device GPS status
bytes 1-4: Latitude
bytes 5-8: Longitude
byte 9-10: Number of satellites
byte 11-12: HDOP
bytes 13-14: altidute [meter]
# License
@ -252,4 +327,7 @@ see file <A HREF="https://github.com/cyberman54/ESP32-Paxcounter/blob/master/LIC
# Credits
Thanks to Charles Hallard (https://github.com/hallard) for major contributions to this project.
Thanks to
- [Oliver Brandmüller](https://github.com/spmrider) for idea and initial setup of this project
- [Charles Hallard](https://github.com/hallard) for major code contributions to this project
- [robbi5](https://github.com/robbi5) for the payload converter

View File

@ -11,28 +11,35 @@
; ---> SELECT TARGET PLATFORM HERE! <---
[platformio]
env_default = heltec_wifi_lora_32
env_default = heltec
;env_default = ttgov1
;env_default = ttgov2
;env_default = ttgov21
;env_default = ttgobeam
;env_default = lopy
;env_default = lopy4
;env_default = lolin32lite_lora
;env_default = lolin32_lora
;env_default = fipy
;env_default = lolin32lite
;env_default = lolin32
;
description = Paxcounter is a proof-of-concept ESP32 device for metering passenger flows in realtime. It counts how many mobile devices are around.
[common_env_data]
platform_espressif32 = espressif32@>=1.0.2
board_build.partitions = no_ota.csv
lib_deps_display =
U8g2@>=2.22.14
lib_deps_rgbled =
SmartLeds
SmartLeds@>=1.1.3
lib_deps_gps =
TinyGPSPlus@>=1.0.2
build_flags =
; we need build_flag for logging, otherwise we can't use ESP_LOGx in arduino framework
; ---> NOTE: For production run set DEBUG_LEVEL level to NONE! <---
; otherwise device may crash in dense environments due to serial buffer overflow
;
; -DCORE_DEBUG_LEVEL=ARDUHAL_LOG_LEVEL_NONE
-DCORE_DEBUG_LEVEL=ARDUHAL_LOG_LEVEL_INFO
-DCORE_DEBUG_LEVEL=ARDUHAL_LOG_LEVEL_INFO
; -DCORE_DEBUG_LEVEL=ARDUHAL_LOG_LEVEL_VERBOSE
; -DCORE_DEBUG_LEVEL=ARDUHAL_LOG_LEVEL_DEBUG
;
@ -40,93 +47,132 @@ build_flags =
-D_lmic_config_h_
-include "src/paxcounter.conf"
[env:heltec_wifi_lora_32]
platform = espressif32
[env:heltec]
platform = ${common_env_data.platform_espressif32}
framework = arduino
board = heltec_wifi_lora_32
monitor_baud = 115200
upload_speed = 115200
lib_deps =
${common_env_data.lib_deps_display}
build_flags =
${common_env_data.build_flags}
-Dheltec_wifi_lora_32
-include "src/hal/heltec.h"
[env:ttgov1]
platform = espressif32
framework = arduino
board = esp32dev
monitor_baud = 115200
board_build.partitions = ${common_env_data.board_build.partitions}
monitor_speed = 115200
upload_speed = 115200
lib_deps =
${common_env_data.lib_deps_display}
build_flags =
${common_env_data.build_flags}
-include "src/hal/heltec.h"
[env:ttgov1]
platform = ${common_env_data.platform_espressif32}
framework = arduino
board = esp32dev
board_build.partitions = ${common_env_data.board_build.partitions}
monitor_speed = 115200
upload_speed = 115200
lib_deps =
${common_env_data.lib_deps_display}
build_flags =
${common_env_data.build_flags}
-Dttgov1
-include "src/hal/ttgov1.h"
[env:ttgov2]
platform = espressif32
platform = ${common_env_data.platform_espressif32}
framework = arduino
board = esp32dev
monitor_baud = 115200
board_build.partitions = ${common_env_data.board_build.partitions}
monitor_speed = 115200
upload_speed = 921600
lib_deps =
${common_env_data.lib_deps_display}
build_flags =
${common_env_data.build_flags}
-Dttgov2
-include "src/hal/ttgov2.h"
[env:lopy]
platform = espressif32
[env:ttgov21]
platform = ${common_env_data.platform_espressif32}
framework = arduino
board = esp32dev
monitor_baud = 115200
board_build.partitions = ${common_env_data.board_build.partitions}
monitor_speed = 115200
upload_speed = 921600
lib_deps =
${common_env_data.lib_deps_display}
build_flags =
${common_env_data.build_flags}
-include "src/hal/ttgov21.h"
[env:ttgobeam]
platform = ${common_env_data.platform_espressif32}
framework = arduino
board = esp32dev
board_build.partitions = ${common_env_data.board_build.partitions}
monitor_speed = 115200
upload_speed = 921600
lib_deps =
${common_env_data.lib_deps_gps}
build_flags =
${common_env_data.build_flags}
-include "src/hal/ttgobeam.h"
[env:fipy]
platform = espressif32@1.0.1
framework = arduino
board = esp32dev
board_build.partitions = ${common_env_data.board_build.partitions}
monitor_speed = 115200
upload_speed = 921600
lib_deps =
${common_env_data.lib_deps_rgbled}
build_flags =
${common_env_data.build_flags}
-include "src/hal/fipy.h"
[env:lopy]
platform = ${common_env_data.platform_espressif32}
framework = arduino
board = esp32dev
board_build.partitions = ${common_env_data.board_build.partitions}
monitor_speed = 115200
upload_speed = 921600
lib_deps =
${common_env_data.lib_deps_rgbled}
build_flags =
${common_env_data.build_flags}
-Dlopy
-include "src/hal/lopy.h"
[env:lopy4]
platform = espressif32
platform = ${common_env_data.platform_espressif32}
framework = arduino
board = esp32dev
monitor_baud = 115200
board_build.partitions = ${common_env_data.board_build.partitions}
monitor_speed = 115200
upload_speed = 921600
lib_deps =
${common_env_data.lib_deps_rgbled}
build_flags =
${common_env_data.build_flags}
-Dlopy4
-include "src/hal/lopy4.h"
[env:lolin32lite_lora]
platform = espressif32
[env:lolin32lite]
platform = ${common_env_data.platform_espressif32}
framework = arduino
board = lolin32
monitor_baud = 115200
board_build.partitions = ${common_env_data.board_build.partitions}
monitor_speed = 115200
upload_speed = 256000
lib_deps =
${common_env_data.lib_deps_rgbled}
build_flags =
${common_env_data.build_flags}
-Dlolin32lite_lora
-include "src/hal/lolin32lite_lora.h"
[env:lolin32_lora]
platform = espressif32
[env:lolin32]
platform = ${common_env_data.platform_espressif32}
framework = arduino
board = lolin32
monitor_baud = 115200
board_build.partitions = ${common_env_data.board_build.partitions}
monitor_speed = 115200
upload_speed = 921600
lib_deps =
${common_env_data.lib_deps_rgbled}
build_flags =
${common_env_data.build_flags}
-Dlolin32_lora
-include "src/hal/lolin32_lora.h"

60
src/adcread.cpp Normal file
View File

@ -0,0 +1,60 @@
#ifdef HAS_BATTERY_PROBE
#include "globals.h"
#include <driver/adc.h>
#include <esp_adc_cal.h>
#define DEFAULT_VREF 1100 // tbd: use adc2_vref_to_gpio() for better estimate
#define NO_OF_SAMPLES 64 // we do multisampling
// Local logging tag
static const char TAG[] = "main";
static void print_char_val_type(esp_adc_cal_value_t val_type) {
if (val_type == ESP_ADC_CAL_VAL_EFUSE_TP) {
ESP_LOGI(TAG,
"ADC characterization based on Two Point values stored in eFuse");
} else if (val_type == ESP_ADC_CAL_VAL_EFUSE_VREF) {
ESP_LOGI(TAG,
"ADC characterization based on reference voltage stored in eFuse");
} else {
ESP_LOGI(TAG, "ADC characterization based on default reference voltage");
}
}
uint16_t read_voltage(void) {
static const adc1_channel_t channel = HAS_BATTERY_PROBE;
static const adc_atten_t atten = ADC_ATTEN_DB_11;
static const adc_unit_t unit = ADC_UNIT_1;
// configure ADC1
ESP_ERROR_CHECK(adc1_config_width(ADC_WIDTH_BIT_12));
ESP_ERROR_CHECK(adc1_config_channel_atten(channel, atten));
// calibrate ADC1
esp_adc_cal_characteristics_t *adc_chars =
(esp_adc_cal_characteristics_t *)calloc(
1, sizeof(esp_adc_cal_characteristics_t));
esp_adc_cal_value_t val_type = esp_adc_cal_characterize(
unit, atten, ADC_WIDTH_BIT_12, DEFAULT_VREF, adc_chars);
print_char_val_type(val_type);
// multisample ADC1
uint32_t adc_reading = 0;
for (int i = 0; i < NO_OF_SAMPLES; i++) {
adc_reading += adc1_get_raw(channel);
}
adc_reading /= NO_OF_SAMPLES;
// Convert adc_reading to voltage in mV
uint16_t voltage =
(uint16_t)esp_adc_cal_raw_to_voltage(adc_reading, adc_chars);
#ifdef BATT_FACTOR
voltage *= BATT_FACTOR;
#endif
ESP_LOGI(TAG, "Raw: %d / Voltage: %dmV", adc_reading, voltage);
return voltage;
}
#endif // HAS_BATTERY_PROBE

View File

@ -1,41 +1,38 @@
/* switches wifi antenna, if board has switch to select internal and external antenna */
/* switches wifi antenna, if board has switch internal / external antenna */
#ifdef HAS_ANTENNA_SWITCH
#include <Arduino.h>
// Local logging tag
static const char *TAG = "antenna";
static const char TAG[] = "wifi";
typedef enum {
ANTENNA_INT = 0,
ANTENNA_EXT
} antenna_type_t;
typedef enum { ANTENNA_INT = 0, ANTENNA_EXT } antenna_type_t;
void antenna_init(void) {
gpio_config_t gpioconf = {.pin_bit_mask = 1ull << HAS_ANTENNA_SWITCH,
.mode = GPIO_MODE_OUTPUT,
.pull_up_en = GPIO_PULLUP_DISABLE,
.pull_down_en = GPIO_PULLDOWN_DISABLE,
.intr_type = GPIO_INTR_DISABLE};
gpio_config(&gpioconf);
gpio_config_t gpioconf = {.pin_bit_mask = 1ull << HAS_ANTENNA_SWITCH,
.mode = GPIO_MODE_OUTPUT,
.pull_up_en = GPIO_PULLUP_DISABLE,
.pull_down_en = GPIO_PULLDOWN_DISABLE,
.intr_type = GPIO_INTR_DISABLE};
gpio_config(&gpioconf);
}
void antenna_select (const uint8_t _ant) {
if (HAS_ANTENNA_SWITCH < 32) {
if (_ant == ANTENNA_EXT) {
GPIO_REG_WRITE(GPIO_OUT_W1TS_REG, 1 << HAS_ANTENNA_SWITCH);
} else {
GPIO_REG_WRITE(GPIO_OUT_W1TC_REG, 1 << HAS_ANTENNA_SWITCH);
}
} else {
if (_ant == ANTENNA_EXT) {
GPIO_REG_WRITE(GPIO_OUT1_W1TS_REG, 1 << (HAS_ANTENNA_SWITCH & 31));
} else {
GPIO_REG_WRITE(GPIO_OUT1_W1TC_REG, 1 << (HAS_ANTENNA_SWITCH & 31));
}
}
ESP_LOGI(TAG, "Wifi Antenna switched to %s", _ant ? "external" : "internal");
void antenna_select(const uint8_t _ant) {
if (HAS_ANTENNA_SWITCH < 32) {
if (_ant == ANTENNA_EXT) {
GPIO_REG_WRITE(GPIO_OUT_W1TS_REG, 1 << HAS_ANTENNA_SWITCH);
} else {
GPIO_REG_WRITE(GPIO_OUT_W1TC_REG, 1 << HAS_ANTENNA_SWITCH);
}
} else {
if (_ant == ANTENNA_EXT) {
GPIO_REG_WRITE(GPIO_OUT1_W1TS_REG, 1 << (HAS_ANTENNA_SWITCH & 31));
} else {
GPIO_REG_WRITE(GPIO_OUT1_W1TC_REG, 1 << (HAS_ANTENNA_SWITCH & 31));
}
}
ESP_LOGI(TAG, "Wifi Antenna switched to %s", _ant ? "external" : "internal");
}
#endif

View File

@ -14,285 +14,267 @@ https://github.com/nkolban/esp32-snippets/tree/master/BLE/scanner
#include <esp_blufi_api.h> // needed for BLE_ADDR types, do not remove
#include <bt_types.h>
#define BT_BD_ADDR_HEX(addr) addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]
#define BT_BD_ADDR_HEX(addr) \
addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]
// local Tag for logging
static const char *TAG = "bt_loop";
static const char TAG[] = "bluetooth";
// defined in macsniff.cpp
bool mac_add(uint8_t *paddr, int8_t rssi, bool sniff_type);
// Prototypes
static const char *bt_addr_t_to_string(esp_ble_addr_type_t type);
static const char *btsig_gap_type(uint32_t gap_type);
static void gap_callback_handler(esp_gap_ble_cb_event_t event, esp_ble_gap_cb_param_t *param);
static const char *bt_addr_t_to_string(esp_ble_addr_type_t type) {
switch(type) {
case BLE_ADDR_TYPE_PUBLIC:
return "BLE_ADDR_TYPE_PUBLIC";
case BLE_ADDR_TYPE_RANDOM:
return "BLE_ADDR_TYPE_RANDOM";
case BLE_ADDR_TYPE_RPA_PUBLIC:
return "BLE_ADDR_TYPE_RPA_PUBLIC";
case BLE_ADDR_TYPE_RPA_RANDOM:
return "BLE_ADDR_TYPE_RPA_RANDOM";
default:
return "Unknown addr_t";
}
const char *bt_addr_t_to_string(esp_ble_addr_type_t type) {
switch (type) {
case BLE_ADDR_TYPE_PUBLIC:
return "BLE_ADDR_TYPE_PUBLIC";
case BLE_ADDR_TYPE_RANDOM:
return "BLE_ADDR_TYPE_RANDOM";
case BLE_ADDR_TYPE_RPA_PUBLIC:
return "BLE_ADDR_TYPE_RPA_PUBLIC";
case BLE_ADDR_TYPE_RPA_RANDOM:
return "BLE_ADDR_TYPE_RPA_RANDOM";
default:
return "Unknown addr_t";
}
} // bt_addr_t_to_string
static const char *btsig_gap_type(uint32_t gap_type) {
switch (gap_type)
{
case 0x01: return "Flags";
case 0x02: return "Incomplete List of 16-bit Service Class UUIDs";
case 0x03: return "Complete List of 16-bit Service Class UUIDs";
case 0x04: return "Incomplete List of 32-bit Service Class UUIDs";
case 0x05: return "Complete List of 32-bit Service Class UUIDs";
case 0x06: return "Incomplete List of 128-bit Service Class UUIDs";
case 0x07: return "Complete List of 128-bit Service Class UUIDs";
case 0x08: return "Shortened Local Name";
case 0x09: return "Complete Local Name";
case 0x0A: return "Tx Power Level";
case 0x0D: return "Class of Device";
case 0x0E: return "Simple Pairing Hash C/C-192";
case 0x0F: return "Simple Pairing Randomizer R/R-192";
case 0x10: return "Device ID/Security Manager TK Value";
case 0x11: return "Security Manager Out of Band Flags";
case 0x12: return "Slave Connection Interval Range";
case 0x14: return "List of 16-bit Service Solicitation UUIDs";
case 0x1F: return "List of 32-bit Service Solicitation UUIDs";
case 0x15: return "List of 128-bit Service Solicitation UUIDs";
case 0x16: return "Service Data - 16-bit UUID";
case 0x20: return "Service Data - 32-bit UUID";
case 0x21: return "Service Data - 128-bit UUID";
case 0x22: return "LE Secure Connections Confirmation Value";
case 0x23: return "LE Secure Connections Random Value";
case 0x24: return "URI";
case 0x25: return "Indoor Positioning";
case 0x26: return "Transport Discovery Data";
case 0x17: return "Public Target Address";
case 0x18: return "Random Target Address";
case 0x19: return "Appearance";
case 0x1A: return "Advertising Interval";
case 0x1B: return "LE Bluetooth Device Address";
case 0x1C: return "LE Role";
case 0x1D: return "Simple Pairing Hash C-256";
case 0x1E: return "Simple Pairing Randomizer R-256";
case 0x3D: return "3D Information Data";
case 0xFF: return "Manufacturer Specific Data";
default:
return "Unknown type";
}
const char *btsig_gap_type(uint32_t gap_type) {
switch (gap_type) {
case 0x01:
return "Flags";
case 0x02:
return "Incomplete List of 16-bit Service Class UUIDs";
case 0x03:
return "Complete List of 16-bit Service Class UUIDs";
case 0x04:
return "Incomplete List of 32-bit Service Class UUIDs";
case 0x05:
return "Complete List of 32-bit Service Class UUIDs";
case 0x06:
return "Incomplete List of 128-bit Service Class UUIDs";
case 0x07:
return "Complete List of 128-bit Service Class UUIDs";
case 0x08:
return "Shortened Local Name";
case 0x09:
return "Complete Local Name";
case 0x0A:
return "Tx Power Level";
case 0x0D:
return "Class of Device";
case 0x0E:
return "Simple Pairing Hash C/C-192";
case 0x0F:
return "Simple Pairing Randomizer R/R-192";
case 0x10:
return "Device ID/Security Manager TK Value";
case 0x11:
return "Security Manager Out of Band Flags";
case 0x12:
return "Slave Connection Interval Range";
case 0x14:
return "List of 16-bit Service Solicitation UUIDs";
case 0x1F:
return "List of 32-bit Service Solicitation UUIDs";
case 0x15:
return "List of 128-bit Service Solicitation UUIDs";
case 0x16:
return "Service Data - 16-bit UUID";
case 0x20:
return "Service Data - 32-bit UUID";
case 0x21:
return "Service Data - 128-bit UUID";
case 0x22:
return "LE Secure Connections Confirmation Value";
case 0x23:
return "LE Secure Connections Random Value";
case 0x24:
return "URI";
case 0x25:
return "Indoor Positioning";
case 0x26:
return "Transport Discovery Data";
case 0x17:
return "Public Target Address";
case 0x18:
return "Random Target Address";
case 0x19:
return "Appearance";
case 0x1A:
return "Advertising Interval";
case 0x1B:
return "LE Bluetooth Device Address";
case 0x1C:
return "LE Role";
case 0x1D:
return "Simple Pairing Hash C-256";
case 0x1E:
return "Simple Pairing Randomizer R-256";
case 0x3D:
return "3D Information Data";
case 0xFF:
return "Manufacturer Specific Data";
default:
return "Unknown type";
}
} // btsig_gap_type
// using IRAM_:ATTR here to speed up callback function
IRAM_ATTR void gap_callback_handler(esp_gap_ble_cb_event_t event,
esp_ble_gap_cb_param_t *param) {
esp_ble_gap_cb_param_t *p = (esp_ble_gap_cb_param_t *)param;
static void gap_callback_handler(esp_gap_ble_cb_event_t event, esp_ble_gap_cb_param_t *param)
{
esp_ble_gap_cb_param_t *p = (esp_ble_gap_cb_param_t *)param;
esp_err_t status;
ESP_LOGD(TAG, "BT payload rcvd -> type: 0x%.2x -> %s", *p->scan_rst.ble_adv,
btsig_gap_type(*p->scan_rst.ble_adv));
ESP_LOGD(tag, "BT payload rcvd -> type: 0x%.2x -> %s", *p->scan_rst.ble_adv, btsig_gap_type(*p->scan_rst.ble_adv));
switch (event) {
case ESP_GAP_BLE_SCAN_PARAM_SET_COMPLETE_EVT:
// restart scan
ESP_ERROR_CHECK(esp_ble_gap_start_scanning(BLESCANTIME));
break;
switch (event)
{
case ESP_GAP_BLE_SCAN_PARAM_SET_COMPLETE_EVT:
{ // restart scan
status = esp_ble_gap_start_scanning(cfg.blescantime);
if (status != ESP_OK)
{
ESP_LOGE(TAG, "esp_ble_gap_start_scanning: rc=%d", status);
}
}
break;
case ESP_GAP_BLE_SCAN_RESULT_EVT:
{
if ( p->scan_rst.search_evt == ESP_GAP_SEARCH_INQ_CMPL_EVT) // Inquiry complete, scan is done
{ // restart scan
status = esp_ble_gap_start_scanning (cfg.blescantime);
if (status != ESP_OK)
{
ESP_LOGE(TAG, "esp_ble_gap_start_scanning: rc=%d", status);
}
return;
}
if (p->scan_rst.search_evt == ESP_GAP_SEARCH_INQ_RES_EVT) // Inquiry result for a peer device
{ // evaluate sniffed packet
ESP_LOGD(TAG, "Device address (bda): %02x:%02x:%02x:%02x:%02x:%02x", BT_BD_ADDR_HEX(p->scan_rst.bda));
ESP_LOGD(TAG, "Addr_type : %s", bt_addr_t_to_string(p->scan_rst.ble_addr_type));
ESP_LOGD(TAG, "RSSI : %d", p->scan_rst.rssi);
if (!( cfg.rssilimit == 0 ) || (p->scan_rst.rssi > cfg.rssilimit )) { // rssi is negative value
ESP_LOGI(TAG, "BLTH RSSI %d -> ignoring (limit: %d)", p->scan_rst.rssi, cfg.rssilimit);
break;
}
#ifdef VENDORFILTER
if (p->scan_rst.ble_addr_type == BLE_ADDR_TYPE_RANDOM) goto skip;
if (p->scan_rst.ble_addr_type == BLE_ADDR_TYPE_RPA_RANDOM) goto skip;
#endif
// add this device and show new count total if it was not previously added
if (cfg.blescan) // count only if BLE scan is enabled
mac_add((uint8_t *) p->scan_rst.bda, p->scan_rst.rssi, MAC_SNIFF_BLE);
break;
skip:
ESP_LOGD(TAG, "BT device filtered");
break;
/* to be improved in vendorfilter if:
// you can search for elements in the payload using the
// function esp_ble_resolve_adv_data()
//
// Like this, that scans for the "Complete name" (looking inside the payload buffer)
// uint8_t len;
// uint8_t *data = esp_ble_resolve_adv_data(p->scan_rst.ble_adv, ESP_BLE_AD_TYPE_NAME_CMPL, &len);
filter BLE devices using their advertisements to get filter alternative to vendor OUI
if vendorfiltering is on, we ...
- want to count: mobile phones and tablets
- don't want to count: beacons, peripherals (earphones, headsets, printers), cars and machines
see
https://github.com/nkolban/ESP32_BLE_Arduino/blob/master/src/BLEAdvertisedDevice.cpp
http://www.libelium.com/products/meshlium/smartphone-detection/
https://www.question-defense.com/2013/01/12/bluetooth-cod-bluetooth-class-of-deviceclass-of-service-explained
https://www.bluetooth.com/specifications/assigned-numbers/baseband
"The Class of Device (CoD) in case of Bluetooth which allows us to differentiate the type of
device (smartphone, handsfree, computer, LAN/network AP). With this parameter we can
differentiate among pedestrians and vehicles."
*/
}
}
break;
default:
break;
}
} // gap_callback_handler
esp_err_t register_ble_functionality(void)
{
esp_err_t status;
ESP_LOGI(TAG, "Register GAP callback");
// This function is called to occur gap event, such as scan result.
//register the scan callback function to the gap module
status = esp_ble_gap_register_callback(gap_callback_handler);
if (status != ESP_OK)
{
ESP_LOGE(TAG, "esp_ble_gap_register_callback: rc=%d", status);
return ESP_FAIL;
}
static esp_ble_scan_params_t ble_scan_params =
{
.scan_type = BLE_SCAN_TYPE_PASSIVE,
.own_addr_type = BLE_ADDR_TYPE_RANDOM,
#ifdef VENDORFILTER
.scan_filter_policy = BLE_SCAN_FILTER_ALLOW_WLIST_PRA_DIR,
// ADV_IND, ADV_NONCONN_IND, ADV_SCAN_IND packets are used for broadcasting
// data in broadcast applications (e.g., Beacons), so we don't want them in vendorfilter mode
#else
.scan_filter_policy = BLE_SCAN_FILTER_ALLOW_ALL,
#endif
.scan_interval = (uint16_t) (BLESCANINTERVAL / 0.625), // Time = N * 0.625 msec
.scan_window = (uint16_t) (BLESCANWINDOW / 0.625) // Time = N * 0.625 msec
};
ESP_LOGI(TAG, "Set GAP scan parameters");
// This function is called to set scan parameters.
status = esp_ble_gap_set_scan_params(&ble_scan_params);
if (status != ESP_OK)
{
ESP_LOGE(TAG, "esp_ble_gap_set_scan_params: rc=%d", status);
return ESP_FAIL;
}
return ESP_OK ;
}
// Main start code running in its own Xtask
void bt_loop(void * pvParameters)
{
configASSERT( ( ( uint32_t ) pvParameters ) == 1 ); // FreeRTOS check
esp_err_t status;
// Initialize BT controller to allocate task and other resource.
ESP_LOGI(TAG, "Enabling Bluetooth Controller");
esp_bt_controller_config_t bt_cfg = BT_CONTROLLER_INIT_CONFIG_DEFAULT();
bt_cfg.controller_task_stack_size = 8192; // double BT stack size
if (esp_bt_controller_init(&bt_cfg) != ESP_OK)
{
ESP_LOGE(TAG, "Bluetooth controller initialize failed");
goto end;
}
// Enable BT controller
if (esp_bt_controller_enable(ESP_BT_MODE_BTDM) != ESP_OK)
{
ESP_LOGE(TAG, "Bluetooth controller enable failed");
goto end;
}
//esp_bt_controller_mem_release(ESP_BT_MODE_BTDM); // gives 30KB more RAM for heap
// Init and alloc the resource for bluetooth, must be prior to every bluetooth stuff
ESP_LOGI(TAG, "Init Bluetooth stack");
status = esp_bluedroid_init();
if (status != ESP_OK)
{
ESP_LOGE(TAG, "%s init bluetooth failed\n", __func__);
goto end;
}
// Enable bluetooth, must after esp_bluedroid_init()
status = esp_bluedroid_enable();
if (status != ESP_OK)
{
ESP_LOGE(TAG, "%s enable bluetooth failed\n", __func__);
goto end;
}
ESP_LOGI(TAG, "Register BLE functionality");
status = register_ble_functionality();
if (status != ESP_OK)
{
ESP_LOGE(TAG, "Register BLE functionality failed");
goto end;
}
while(1)
{
vTaskDelay(10/portTICK_PERIOD_MS); // reset watchdog
case ESP_GAP_BLE_SCAN_RESULT_EVT:
// evaluate scan results
if (p->scan_rst.search_evt ==
ESP_GAP_SEARCH_INQ_CMPL_EVT) // Inquiry complete, scan is done
{ // restart scan
ESP_ERROR_CHECK(esp_ble_gap_start_scanning(BLESCANTIME));
return;
}
end:
ESP_LOGI(TAG, "Terminating BT logging task");
vTaskDelete(NULL);
} // bt_loop
if (p->scan_rst.search_evt ==
ESP_GAP_SEARCH_INQ_RES_EVT) // Inquiry result for a peer device
{ // evaluate sniffed packet
ESP_LOGD(TAG, "Device address (bda): %02x:%02x:%02x:%02x:%02x:%02x",
BT_BD_ADDR_HEX(p->scan_rst.bda));
ESP_LOGD(TAG, "Addr_type : %s",
bt_addr_t_to_string(p->scan_rst.ble_addr_type));
ESP_LOGD(TAG, "RSSI : %d", p->scan_rst.rssi);
if ((cfg.rssilimit) &&
(p->scan_rst.rssi < cfg.rssilimit)) { // rssi is negative value
ESP_LOGI(TAG, "BLTH RSSI %d -> ignoring (limit: %d)", p->scan_rst.rssi,
cfg.rssilimit);
break;
}
#ifdef VENDORFILTER
if ((p->scan_rst.ble_addr_type == BLE_ADDR_TYPE_RANDOM) ||
(p->scan_rst.ble_addr_type == BLE_ADDR_TYPE_RPA_RANDOM)) {
ESP_LOGD(TAG, "BT device filtered");
break;
}
#endif
// add this device and show new count total if it was not previously added
mac_add((uint8_t *)p->scan_rst.bda, p->scan_rst.rssi, MAC_SNIFF_BLE);
/* to be improved in vendorfilter if:
// you can search for elements in the payload using the
// function esp_ble_resolve_adv_data()
//
// Like this, that scans for the "Complete name" (looking inside the
payload buffer)
// uint8_t len;
// uint8_t *data = esp_ble_resolve_adv_data(p->scan_rst.ble_adv,
ESP_BLE_AD_TYPE_NAME_CMPL, &len);
filter BLE devices using their advertisements to get filter alternative to
vendor OUI if vendorfiltering is on, we ...
- want to count: mobile phones and tablets
- don't want to count: beacons, peripherals (earphones, headsets,
printers), cars and machines see
https://github.com/nkolban/ESP32_BLE_Arduino/blob/master/src/BLEAdvertisedDevice.cpp
http://www.libelium.com/products/meshlium/smartphone-detection/
https://www.question-defense.com/2013/01/12/bluetooth-cod-bluetooth-class-of-deviceclass-of-service-explained
https://www.bluetooth.com/specifications/assigned-numbers/baseband
"The Class of Device (CoD) in case of Bluetooth which allows us to
differentiate the type of device (smartphone, handsfree, computer,
LAN/network AP). With this parameter we can differentiate among
pedestrians and vehicles."
*/
} // evaluate sniffed packet
break;
default:
break;
}
} // gap_callback_handler
esp_err_t register_ble_callback(void) {
ESP_LOGI(TAG, "Register GAP callback");
// This function is called to occur gap event, such as scan result.
// register the scan callback function to the gap module
ESP_ERROR_CHECK(esp_ble_gap_register_callback(&gap_callback_handler));
static esp_ble_scan_params_t ble_scan_params = {
.scan_type = BLE_SCAN_TYPE_PASSIVE,
.own_addr_type = BLE_ADDR_TYPE_RANDOM,
#ifdef VENDORFILTER
.scan_filter_policy = BLE_SCAN_FILTER_ALLOW_WLIST_PRA_DIR,
// ADV_IND, ADV_NONCONN_IND, ADV_SCAN_IND packets are used for broadcasting
// data in broadcast applications (e.g., Beacons), so we don't want them in
// vendorfilter mode
#else
.scan_filter_policy = BLE_SCAN_FILTER_ALLOW_ALL,
#endif
.scan_interval =
(uint16_t)(cfg.blescantime * 10 / 0.625), // Time = N * 0.625 msec
.scan_window = (uint16_t)(BLESCANWINDOW / 0.625) // Time = N * 0.625 msec
};
ESP_LOGI(TAG, "Set GAP scan parameters");
// This function is called to set scan parameters.
ESP_ERROR_CHECK(esp_ble_gap_set_scan_params(&ble_scan_params));
return ESP_OK;
} // register_ble_callback
void start_BLEscan(void) {
ESP_LOGI(TAG, "Initializing bluetooth scanner ...");
// Initialize BT controller to allocate task and other resource.
esp_bt_controller_config_t bt_cfg = BT_CONTROLLER_INIT_CONFIG_DEFAULT();
bt_cfg.controller_task_stack_size =
BLESTACKSIZE; // set BT stack size to value configured in paxcounter.conf
ESP_ERROR_CHECK(esp_bt_controller_init(&bt_cfg));
ESP_ERROR_CHECK(esp_bt_controller_enable(ESP_BT_MODE_BTDM));
// Init and alloc the resource for bluetooth stack, must be done prior to
// every bluetooth stuff
ESP_ERROR_CHECK(esp_bluedroid_init());
ESP_ERROR_CHECK(esp_bluedroid_enable());
// Register callback function for capturing bluetooth packets
ESP_ERROR_CHECK(register_ble_callback());
ESP_LOGI(TAG, "Bluetooth scanner started");
} // start_BLEscan
void stop_BLEscan(void) {
ESP_LOGI(TAG, "Shutting down bluetooth scanner ...");
ESP_ERROR_CHECK(esp_ble_gap_register_callback(NULL));
ESP_ERROR_CHECK(esp_bluedroid_disable());
ESP_ERROR_CHECK(esp_bluedroid_deinit());
ESP_ERROR_CHECK(esp_bt_controller_disable());
ESP_ERROR_CHECK(esp_bt_controller_deinit());
ESP_LOGI(TAG, "Bluetooth scanner stopped");
} // stop_BLEscan
#endif // BLECOUNTER

View File

@ -5,7 +5,7 @@
#include <nvs_flash.h>
// Local logging tag
static const char *TAG = "configmanager";
static const char TAG[] = "flash";
nvs_handle my_handle;
@ -13,126 +13,151 @@ esp_err_t err;
// defined in antenna.cpp
#ifdef HAS_ANTENNA_SWITCH
void antenna_select(const uint8_t _ant);
void antenna_select(const uint8_t _ant);
#endif
// populate cfg vars with factory settings
void defaultConfig() {
cfg.lorasf = LORASFDEFAULT; // 7-12, initial lora spreadfactor defined in paxcounter.conf
cfg.txpower = 15; // 2-15, lora tx power
cfg.adrmode = 1; // 0=disabled, 1=enabled
cfg.screensaver = 0; // 0=disabled, 1=enabled
cfg.screenon = 1; // 0=disbaled, 1=enabled
cfg.countermode = 0; // 0=cyclic, 1=cumulative, 2=cyclic confirmed
cfg.rssilimit = 0; // threshold for rssilimiter, negative value!
cfg.sendcycle = SEND_SECS; // payload send cycle [seconds/2]
cfg.wifichancycle = WIFI_CHANNEL_SWITCH_INTERVAL; // wifi channel switch cycle [seconds/100]
cfg.blescantime = BLESCANTIME; // BLE scan cycle duration [seconds]
cfg.blescan = 1; // 0=disabled, 1=enabled
cfg.wifiant = 0; // 0=internal, 1=external (for LoPy/LoPy4)
cfg.vendorfilter = 1; // 0=disabled, 1=enabled
cfg.rgblum = RGBLUMINOSITY; // RGB Led luminosity (0..100%)
cfg.lorasf = LORASFDEFAULT; // 7-12, initial lora sf, see pacounter.conf
cfg.txpower = 15; // 2-15, lora tx power
cfg.adrmode = 1; // 0=disabled, 1=enabled
cfg.screensaver = 0; // 0=disabled, 1=enabled
cfg.screenon = 1; // 0=disabled, 1=enabled
cfg.countermode = 0; // 0=cyclic, 1=cumulative, 2=cyclic confirmed
cfg.rssilimit = 0; // threshold for rssilimiter, negative value!
cfg.sendcycle = SEND_SECS; // payload send cycle [seconds/2]
cfg.wifichancycle =
WIFI_CHANNEL_SWITCH_INTERVAL; // wifi channel switch cycle [seconds/100]
cfg.blescantime =
BLESCANINTERVAL /
10; // BT channel scan cycle [seconds/100], default 1 (= 10ms)
cfg.blescan = 1; // 0=disabled, 1=enabled
cfg.wifiant = 0; // 0=internal, 1=external (for LoPy/LoPy4)
cfg.vendorfilter = 1; // 0=disabled, 1=enabled
cfg.rgblum = RGBLUMINOSITY; // RGB Led luminosity (0..100%)
cfg.gpsmode = 1; // 0=disabled, 1=enabled
strncpy( cfg.version, PROGVERSION, sizeof(cfg.version)-1 );
strncpy(cfg.version, PROGVERSION, sizeof(cfg.version) - 1);
}
void open_storage() {
err = nvs_flash_init();
if (err == ESP_ERR_NVS_NO_FREE_PAGES) {
// NVS partition was truncated and needs to be erased
// Retry nvs_flash_init
ESP_ERROR_CHECK(nvs_flash_erase());
err = nvs_flash_init();
if (err == ESP_ERR_NVS_NO_FREE_PAGES) {
// NVS partition was truncated and needs to be erased
// Retry nvs_flash_init
ESP_ERROR_CHECK(nvs_flash_erase());
err = nvs_flash_init();
}
ESP_ERROR_CHECK( err );
}
ESP_ERROR_CHECK(err);
// Open
ESP_LOGI(TAG, "Opening NVS");
err = nvs_open("config", NVS_READWRITE, &my_handle);
if (err != ESP_OK)
ESP_LOGI(TAG, "Error (%d) opening NVS handle", err);
else
ESP_LOGI(TAG, "Done");
// Open
ESP_LOGI(TAG, "Opening NVS");
err = nvs_open("config", NVS_READWRITE, &my_handle);
if (err != ESP_OK)
ESP_LOGI(TAG, "Error (%d) opening NVS handle", err);
else
ESP_LOGI(TAG, "Done");
}
// erase all keys and values in NVRAM
void eraseConfig() {
ESP_LOGI(TAG, "Clearing settings in NVS");
open_storage();
if (err == ESP_OK) {
nvs_erase_all(my_handle);
nvs_commit(my_handle);
nvs_close(my_handle);
ESP_LOGI(TAG, "Done");}
else {
ESP_LOGW(TAG, "NVS erase failed"); }
ESP_LOGI(TAG, "Clearing settings in NVS");
open_storage();
if (err == ESP_OK) {
nvs_erase_all(my_handle);
nvs_commit(my_handle);
nvs_close(my_handle);
ESP_LOGI(TAG, "Done");
} else {
ESP_LOGW(TAG, "NVS erase failed");
}
}
// save current configuration from RAM to NVRAM
void saveConfig() {
ESP_LOGI(TAG, "Storing settings in NVS");
open_storage();
ESP_LOGI(TAG, "Storing settings in NVS");
open_storage();
if (err == ESP_OK) {
int8_t flash8 = 0;
int16_t flash16 = 0;
size_t required_size;
char storedversion[10];
if (nvs_get_str(my_handle, "version", storedversion, &required_size) !=
ESP_OK ||
strcmp(storedversion, cfg.version) != 0)
nvs_set_str(my_handle, "version", cfg.version);
if (nvs_get_i8(my_handle, "lorasf", &flash8) != ESP_OK ||
flash8 != cfg.lorasf)
nvs_set_i8(my_handle, "lorasf", cfg.lorasf);
if (nvs_get_i8(my_handle, "txpower", &flash8) != ESP_OK ||
flash8 != cfg.txpower)
nvs_set_i8(my_handle, "txpower", cfg.txpower);
if (nvs_get_i8(my_handle, "adrmode", &flash8) != ESP_OK ||
flash8 != cfg.adrmode)
nvs_set_i8(my_handle, "adrmode", cfg.adrmode);
if (nvs_get_i8(my_handle, "screensaver", &flash8) != ESP_OK ||
flash8 != cfg.screensaver)
nvs_set_i8(my_handle, "screensaver", cfg.screensaver);
if (nvs_get_i8(my_handle, "screenon", &flash8) != ESP_OK ||
flash8 != cfg.screenon)
nvs_set_i8(my_handle, "screenon", cfg.screenon);
if (nvs_get_i8(my_handle, "countermode", &flash8) != ESP_OK ||
flash8 != cfg.countermode)
nvs_set_i8(my_handle, "countermode", cfg.countermode);
if (nvs_get_i8(my_handle, "sendcycle", &flash8) != ESP_OK ||
flash8 != cfg.sendcycle)
nvs_set_i8(my_handle, "sendcycle", cfg.sendcycle);
if (nvs_get_i8(my_handle, "wifichancycle", &flash8) != ESP_OK ||
flash8 != cfg.wifichancycle)
nvs_set_i8(my_handle, "wifichancycle", cfg.wifichancycle);
if (nvs_get_i8(my_handle, "blescantime", &flash8) != ESP_OK ||
flash8 != cfg.blescantime)
nvs_set_i8(my_handle, "blescantime", cfg.blescantime);
if (nvs_get_i8(my_handle, "blescanmode", &flash8) != ESP_OK ||
flash8 != cfg.blescan)
nvs_set_i8(my_handle, "blescanmode", cfg.blescan);
if (nvs_get_i8(my_handle, "wifiant", &flash8) != ESP_OK ||
flash8 != cfg.wifiant)
nvs_set_i8(my_handle, "wifiant", cfg.wifiant);
if (nvs_get_i8(my_handle, "vendorfilter", &flash8) != ESP_OK ||
flash8 != cfg.vendorfilter)
nvs_set_i8(my_handle, "vendorfilter", cfg.vendorfilter);
if (nvs_get_i8(my_handle, "rgblum", &flash8) != ESP_OK ||
flash8 != cfg.rgblum)
nvs_set_i8(my_handle, "rgblum", cfg.rgblum);
if (nvs_get_i8(my_handle, "gpsmode", &flash8) != ESP_OK ||
flash8 != cfg.gpsmode)
nvs_set_i8(my_handle, "gpsmode", cfg.gpsmode);
if (nvs_get_i16(my_handle, "rssilimit", &flash16) != ESP_OK ||
flash16 != cfg.rssilimit)
nvs_set_i16(my_handle, "rssilimit", cfg.rssilimit);
err = nvs_commit(my_handle);
nvs_close(my_handle);
if (err == ESP_OK) {
int8_t flash8 = 0;
int16_t flash16 = 0;
size_t required_size;
char storedversion[10];
if( nvs_get_str(my_handle, "version", storedversion, &required_size) != ESP_OK || strcmp(storedversion, cfg.version) != 0 )
nvs_set_str(my_handle, "version", cfg.version);
if( nvs_get_i8(my_handle, "lorasf", &flash8) != ESP_OK || flash8 != cfg.lorasf )
nvs_set_i8(my_handle, "lorasf", cfg.lorasf);
if( nvs_get_i8(my_handle, "txpower", &flash8) != ESP_OK || flash8 != cfg.txpower )
nvs_set_i8(my_handle, "txpower", cfg.txpower);
if( nvs_get_i8(my_handle, "adrmode", &flash8) != ESP_OK || flash8 != cfg.adrmode )
nvs_set_i8(my_handle, "adrmode", cfg.adrmode);
if( nvs_get_i8(my_handle, "screensaver", &flash8) != ESP_OK || flash8 != cfg.screensaver )
nvs_set_i8(my_handle, "screensaver", cfg.screensaver);
if( nvs_get_i8(my_handle, "screenon", &flash8) != ESP_OK || flash8 != cfg.screenon )
nvs_set_i8(my_handle, "screenon", cfg.screenon);
if( nvs_get_i8(my_handle, "countermode", &flash8) != ESP_OK || flash8 != cfg.countermode )
nvs_set_i8(my_handle, "countermode", cfg.countermode);
if( nvs_get_i8(my_handle, "sendcycle", &flash8) != ESP_OK || flash8 != cfg.sendcycle )
nvs_set_i8(my_handle, "sendcycle", cfg.sendcycle);
if( nvs_get_i8(my_handle, "wifichancycle", &flash8) != ESP_OK || flash8 != cfg.wifichancycle )
nvs_set_i8(my_handle, "wifichancycle", cfg.wifichancycle);
if( nvs_get_i8(my_handle, "blescantime", &flash8) != ESP_OK || flash8 != cfg.blescantime )
nvs_set_i8(my_handle, "blescantime", cfg.blescantime);
if( nvs_get_i8(my_handle, "blescanmode", &flash8) != ESP_OK || flash8 != cfg.blescan )
nvs_set_i8(my_handle, "blescanmode", cfg.blescan);
if( nvs_get_i8(my_handle, "wifiant", &flash8) != ESP_OK || flash8 != cfg.wifiant )
nvs_set_i8(my_handle, "wifiant", cfg.wifiant);
if( nvs_get_i8(my_handle, "vendorfilter", &flash8) != ESP_OK || flash8 != cfg.vendorfilter )
nvs_set_i8(my_handle, "vendorfilter", cfg.vendorfilter);
if( nvs_get_i8(my_handle, "rgblum", &flash8) != ESP_OK || flash8 != cfg.rgblum )
nvs_set_i8(my_handle, "rgblum", cfg.rgblum);
if( nvs_get_i16(my_handle, "rssilimit", &flash16) != ESP_OK || flash16 != cfg.rssilimit )
nvs_set_i16(my_handle, "rssilimit", cfg.rssilimit);
err = nvs_commit(my_handle);
nvs_close(my_handle);
if ( err == ESP_OK ) {
ESP_LOGI(TAG, "Done");
} else {
ESP_LOGW(TAG, "NVS config write failed");
}
ESP_LOGI(TAG, "Done");
} else {
ESP_LOGW(TAG, "Error (%d) opening NVS handle", err);
ESP_LOGW(TAG, "NVS config write failed");
}
} else {
ESP_LOGW(TAG, "Error (%d) opening NVS handle", err);
}
}
// set and save cfg.version
@ -148,31 +173,33 @@ void loadConfig() {
ESP_LOGI(TAG, "Reading settings from NVS");
open_storage();
if (err != ESP_OK) {
ESP_LOGW(TAG,"Error (%d) opening NVS handle, storing defaults", err);
saveConfig(); } // saves factory settings to NVRAM
ESP_LOGW(TAG, "Error (%d) opening NVS handle, storing defaults", err);
saveConfig();
} // saves factory settings to NVRAM
else {
int8_t flash8 = 0;
int8_t flash8 = 0;
int16_t flash16 = 0;
size_t required_size;
// check if configuration stored in NVRAM matches PROGVERSION
if( nvs_get_str(my_handle, "version", NULL, &required_size) == ESP_OK ) {
if (nvs_get_str(my_handle, "version", NULL, &required_size) == ESP_OK) {
nvs_get_str(my_handle, "version", cfg.version, &required_size);
ESP_LOGI(TAG, "NVRAM settings version = %s", cfg.version);
if (strcmp(cfg.version, PROGVERSION)) {
ESP_LOGI(TAG, "migrating NVRAM settings to new version %s", PROGVERSION);
ESP_LOGI(TAG, "migrating NVRAM settings to new version %s",
PROGVERSION);
nvs_close(my_handle);
migrateVersion();
}
} else {
ESP_LOGI(TAG, "new version %s, deleting NVRAM settings", PROGVERSION);
nvs_close(my_handle);
eraseConfig();
migrateVersion();
ESP_LOGI(TAG, "new version %s, deleting NVRAM settings", PROGVERSION);
nvs_close(my_handle);
eraseConfig();
migrateVersion();
}
// overwrite defaults with valid values from NVRAM
if( nvs_get_i8(my_handle, "lorasf", &flash8) == ESP_OK ) {
if (nvs_get_i8(my_handle, "lorasf", &flash8) == ESP_OK) {
cfg.lorasf = flash8;
ESP_LOGI(TAG, "lorasf = %d", flash8);
} else {
@ -180,7 +207,7 @@ void loadConfig() {
saveConfig();
}
if( nvs_get_i8(my_handle, "txpower", &flash8) == ESP_OK ) {
if (nvs_get_i8(my_handle, "txpower", &flash8) == ESP_OK) {
cfg.txpower = flash8;
ESP_LOGI(TAG, "txpower = %d", flash8);
} else {
@ -188,7 +215,7 @@ void loadConfig() {
saveConfig();
}
if( nvs_get_i8(my_handle, "adrmode", &flash8) == ESP_OK ) {
if (nvs_get_i8(my_handle, "adrmode", &flash8) == ESP_OK) {
cfg.adrmode = flash8;
ESP_LOGI(TAG, "adrmode = %d", flash8);
} else {
@ -196,7 +223,7 @@ void loadConfig() {
saveConfig();
}
if( nvs_get_i8(my_handle, "screensaver", &flash8) == ESP_OK ) {
if (nvs_get_i8(my_handle, "screensaver", &flash8) == ESP_OK) {
cfg.screensaver = flash8;
ESP_LOGI(TAG, "screensaver = %d", flash8);
} else {
@ -204,7 +231,7 @@ void loadConfig() {
saveConfig();
}
if( nvs_get_i8(my_handle, "screenon", &flash8) == ESP_OK ) {
if (nvs_get_i8(my_handle, "screenon", &flash8) == ESP_OK) {
cfg.screenon = flash8;
ESP_LOGI(TAG, "screenon = %d", flash8);
} else {
@ -212,7 +239,7 @@ void loadConfig() {
saveConfig();
}
if( nvs_get_i8(my_handle, "countermode", &flash8) == ESP_OK ) {
if (nvs_get_i8(my_handle, "countermode", &flash8) == ESP_OK) {
cfg.countermode = flash8;
ESP_LOGI(TAG, "countermode = %d", flash8);
} else {
@ -220,7 +247,7 @@ void loadConfig() {
saveConfig();
}
if( nvs_get_i8(my_handle, "sendcycle", &flash8) == ESP_OK ) {
if (nvs_get_i8(my_handle, "sendcycle", &flash8) == ESP_OK) {
cfg.sendcycle = flash8;
ESP_LOGI(TAG, "sendcycle = %d", flash8);
} else {
@ -228,7 +255,7 @@ void loadConfig() {
saveConfig();
}
if( nvs_get_i8(my_handle, "wifichancycle", &flash8) == ESP_OK ) {
if (nvs_get_i8(my_handle, "wifichancycle", &flash8) == ESP_OK) {
cfg.wifichancycle = flash8;
ESP_LOGI(TAG, "wifichancycle = %d", flash8);
} else {
@ -236,7 +263,7 @@ void loadConfig() {
saveConfig();
}
if( nvs_get_i8(my_handle, "wifiant", &flash8) == ESP_OK ) {
if (nvs_get_i8(my_handle, "wifiant", &flash8) == ESP_OK) {
cfg.wifiant = flash8;
ESP_LOGI(TAG, "wifiantenna = %d", flash8);
} else {
@ -244,7 +271,7 @@ void loadConfig() {
saveConfig();
}
if( nvs_get_i8(my_handle, "vendorfilter", &flash8) == ESP_OK ) {
if (nvs_get_i8(my_handle, "vendorfilter", &flash8) == ESP_OK) {
cfg.vendorfilter = flash8;
ESP_LOGI(TAG, "vendorfilter = %d", flash8);
} else {
@ -252,7 +279,7 @@ void loadConfig() {
saveConfig();
}
if( nvs_get_i8(my_handle, "rgblum", &flash8) == ESP_OK ) {
if (nvs_get_i8(my_handle, "rgblum", &flash8) == ESP_OK) {
cfg.rgblum = flash8;
ESP_LOGI(TAG, "rgbluminosity = %d", flash8);
} else {
@ -260,7 +287,7 @@ void loadConfig() {
saveConfig();
}
if( nvs_get_i8(my_handle, "blescantime", &flash8) == ESP_OK ) {
if (nvs_get_i8(my_handle, "blescantime", &flash8) == ESP_OK) {
cfg.blescantime = flash8;
ESP_LOGI(TAG, "blescantime = %d", flash8);
} else {
@ -268,7 +295,7 @@ void loadConfig() {
saveConfig();
}
if( nvs_get_i8(my_handle, "blescanmode", &flash8) == ESP_OK ) {
if (nvs_get_i8(my_handle, "blescanmode", &flash8) == ESP_OK) {
cfg.blescan = flash8;
ESP_LOGI(TAG, "BLEscanmode = %d", flash8);
} else {
@ -276,7 +303,7 @@ void loadConfig() {
saveConfig();
}
if( nvs_get_i16(my_handle, "rssilimit", &flash16) == ESP_OK ) {
if (nvs_get_i16(my_handle, "rssilimit", &flash16) == ESP_OK) {
cfg.rssilimit = flash16;
ESP_LOGI(TAG, "rssilimit = %d", flash16);
} else {
@ -284,13 +311,21 @@ void loadConfig() {
saveConfig();
}
if (nvs_get_i8(my_handle, "gpsmode", &flash8) == ESP_OK) {
cfg.gpsmode = flash8;
ESP_LOGI(TAG, "GPSmode = %d", flash8);
} else {
ESP_LOGI(TAG, "GPSmode set to default %d", cfg.gpsmode);
saveConfig();
}
nvs_close(my_handle);
ESP_LOGI(TAG, "Done");
// put actions to be triggered after config loaded here
#ifdef HAS_ANTENNA_SWITCH // set antenna type, if device has one
antenna_select(cfg.wifiant);
#endif
}
#ifdef HAS_ANTENNA_SWITCH // set antenna type, if device has one
antenna_select(cfg.wifiant);
#endif
}
}

8
src/configmanager.h Normal file
View File

@ -0,0 +1,8 @@
#ifndef CONFIGMANAGER_H
#define CONFIGMANAGER_H
void eraseConfig(void);
void saveConfig(void);
void loadConfig(void);
#endif

View File

@ -8,7 +8,12 @@
// OLED Display
#ifdef HAS_DISPLAY
#include <U8x8lib.h>
#include <U8x8lib.h>
#endif
// GPS
#ifdef HAS_GPS
#include <TinyGPS++.h>
#endif
// LMIC-Arduino LoRaWAN Stack
@ -17,7 +22,7 @@
// LED controls
#ifdef HAS_RGB_LED
#include <SmartLeds.h>
#include <SmartLeds.h>
#endif
#include "rgb_led.h"
@ -26,34 +31,44 @@
// Struct holding devices's runtime configuration
typedef struct {
uint8_t lorasf; // 7-12, lora spreadfactor
uint8_t txpower; // 2-15, lora tx power
uint8_t adrmode; // 0=disabled, 1=enabled
uint8_t screensaver; // 0=disabled, 1=enabled
uint8_t screenon; // 0=disabled, 1=enabled
uint8_t countermode; // 0=cyclic unconfirmed, 1=cumulative, 2=cyclic confirmed
int16_t rssilimit; // threshold for rssilimiter, negative value!
uint8_t sendcycle; // payload send cycle [seconds/2]
uint8_t wifichancycle; // wifi channel switch cycle [seconds/100]
uint8_t blescantime; // BLE scan cycle duration [seconds]
uint8_t blescan; // 0=disabled, 1=enabled
uint8_t wifiant; // 0=internal, 1=external (for LoPy/LoPy4)
uint8_t vendorfilter; // 0=disabled, 1=enabled
uint8_t rgblum; // RGB Led luminosity (0..100%)
char version[10]; // Firmware version
} configData_t;
uint8_t lorasf; // 7-12, lora spreadfactor
uint8_t txpower; // 2-15, lora tx power
uint8_t adrmode; // 0=disabled, 1=enabled
uint8_t screensaver; // 0=disabled, 1=enabled
uint8_t screenon; // 0=disabled, 1=enabled
uint8_t countermode; // 0=cyclic unconfirmed, 1=cumulative, 2=cyclic confirmed
int16_t rssilimit; // threshold for rssilimiter, negative value!
uint8_t sendcycle; // payload send cycle [seconds/2]
uint8_t wifichancycle; // wifi channel switch cycle [seconds/100]
uint8_t blescantime; // BLE scan cycle duration [seconds]
uint8_t blescan; // 0=disabled, 1=enabled
uint8_t wifiant; // 0=internal, 1=external (for LoPy/LoPy4)
uint8_t vendorfilter; // 0=disabled, 1=enabled
uint8_t rgblum; // RGB Led luminosity (0..100%)
uint8_t gpsmode; // 0=disabled, 1=enabled
char version[10]; // Firmware version
} configData_t;
#ifdef HAS_GPS
typedef struct {
uint32_t latitude;
uint32_t longitude;
uint8_t satellites;
uint16_t hdop;
uint16_t altitude;
} gpsStatus_t;
extern gpsStatus_t gps_status; // struct for storing gps data
extern TinyGPSPlus gps; // Make TinyGPS++ instance globally availabe
#endif
extern configData_t cfg;
extern uint8_t mydata[];
extern uint64_t uptimecounter;
extern osjob_t sendjob;
extern osjob_t sendjob, rcmdjob;
extern char display_lora[], display_lmic[];
extern int countermode, screensaver, adrmode, lorasf, txpower, rlim;
extern uint16_t macs_total, macs_wifi, macs_ble; // MAC counters
extern bool joinstate;
extern std::set<uint16_t> macs;
extern hw_timer_t * channelSwitch; // hardware timer used for wifi channel switching
#ifdef HAS_DISPLAY
extern HAS_DISPLAY u8x8;
#endif
extern hw_timer_t
*channelSwitch; // hardware timer used for wifi channel switching
extern xref2u1_t rcmd_data; // buffer for rcommand results size
extern u1_t rcmd_data_size; // buffer for rcommand results size

79
src/gpsread.cpp Normal file
View File

@ -0,0 +1,79 @@
#ifdef HAS_GPS
#include "globals.h"
// Local logging tag
static const char TAG[] = "main";
// read GPS data and cast to global struct
void gps_read() {
gps_status.latitude = (uint32_t)(gps.location.lat() * 1000000);
gps_status.longitude = (uint32_t)(gps.location.lng() * 1000000);
gps_status.satellites = (uint8_t)gps.satellites.value();
gps_status.hdop = (uint16_t)gps.hdop.value();
gps_status.altitude = (uint16_t)gps.altitude.meters();
}
// GPS serial feed FreeRTos Task
void gps_loop(void *pvParameters) {
configASSERT(((uint32_t)pvParameters) == 1); // FreeRTOS check
// initialize and, if needed, configure, GPS
#if defined GPS_SERIAL
HardwareSerial GPS_Serial(1);
#elif defined GPS_I2C
// to be done
#endif
while (1) {
if (cfg.gpsmode) {
#if defined GPS_SERIAL
// serial connect to GPS device
GPS_Serial.begin(GPS_SERIAL);
while (cfg.gpsmode) {
// feed GPS decoder with serial NMEA data from GPS device
while (GPS_Serial.available()) {
gps.encode(GPS_Serial.read());
}
vTaskDelay(1 / portTICK_PERIOD_MS); // reset watchdog
}
// after GPS function was disabled, close connect to GPS device
GPS_Serial.end();
#elif defined GPS_I2C
// I2C connect to GPS device with 100 kHz
Wire.begin(GPS_I2C_PINS, 100000);
Wire.beginTransmission(GPS_I2C_ADDRESS_WRITE);
Wire.write(0x00);
i2c_ret == Wire.beginTransmission(GPS_I2C_ADDRESS_READ);
if (i2c_ret == 0) { // check if device seen on i2c bus
while (cfg.gpsmode) {
// feed GPS decoder with serial NMEA data from GPS device
while (Wire.available()) {
Wire.requestFrom(GPS_I2C_ADDRESS_READ, 255);
gps.encode(Wire.read());
vTaskDelay(1 / portTICK_PERIOD_MS); // reset watchdog
}
}
// after GPS function was disabled, close connect to GPS device
Wire.endTransmission();
Wire.setClock(400000); // Set back to 400KHz to speed up OLED
}
#endif
}
vTaskDelay(1 / portTICK_PERIOD_MS); // reset watchdog
} // end of infinite loop
} // gps_loop()
#endif // HAS_GPS

19
src/hal/fipy.h Normal file
View File

@ -0,0 +1,19 @@
// Hardware related definitions for Pycom FiPy Board
#define CFG_sx1272_radio 1
#define HAS_LED NOT_A_PIN // FiPy has no on board LED, so we use RGB LED
#define HAS_RGB_LED GPIO_NUM_0 // WS2812B RGB LED on GPIO0
// Hardware pin definitions for Pycom FiPy board
#define PIN_SPI_SS GPIO_NUM_18
#define PIN_SPI_MOSI GPIO_NUM_27
#define PIN_SPI_MISO GPIO_NUM_19
#define PIN_SPI_SCK GPIO_NUM_5
#define RST LMIC_UNUSED_PIN
#define DIO0 GPIO_NUM_23 // LoRa IRQ
#define DIO1 GPIO_NUM_23 // workaround
#define DIO2 LMIC_UNUSED_PIN
// select WIFI antenna (internal = onboard / external = u.fl socket)
#define HAS_ANTENNA_SWITCH GPIO_NUM_21 // pin for switching wifi antenna
#define WIFI_ANTENNA 0 // 0 = internal, 1 = external

View File

@ -8,18 +8,18 @@
#define HAS_BUTTON GPIO_NUM_0 // button "PROG" on board
// re-define pin definitions of pins_arduino.h
#define PIN_SPI_SS 18 // ESP32 GPIO18 (Pin18) -- SX1276 NSS (Pin19) SPI Chip Select Input
#define PIN_SPI_MOSI 27 // ESP32 GPIO27 (Pin27) -- SX1276 MOSI (Pin18) SPI Data Input
#define PIN_SPI_MISO 19 // ESP32 GPIO19 (Pin19) -- SX1276 MISO (Pin17) SPI Data Output
#define PIN_SPI_SCK 5 // ESP32 GPIO5 (Pin5) -- SX1276 SCK (Pin16) SPI Clock Input
#define PIN_SPI_SS GPIO_NUM_18 // ESP32 GPIO18 (Pin18) -- SX1276 NSS (Pin19) SPI Chip Select Input
#define PIN_SPI_MOSI GPIO_NUM_27 // ESP32 GPIO27 (Pin27) -- SX1276 MOSI (Pin18) SPI Data Input
#define PIN_SPI_MISO GPIO_NUM_19 // ESP32 GPIO19 (Pin19) -- SX1276 MISO (Pin17) SPI Data Output
#define PIN_SPI_SCK GPIO_NUM_5 // ESP32 GPIO5 (Pin5) -- SX1276 SCK (Pin16) SPI Clock Input
// non arduino pin definitions
#define RST 14 // ESP32 GPIO14 (Pin14) -- SX1276 NRESET (Pin7) Reset Trigger Input
#define DIO0 26 // ESP32 GPIO26 (Pin15) -- SX1276 DIO0 (Pin8) used by LMIC for detecting LoRa RX_Done & TX_Done
#define DIO1 33 // ESP32 GPIO33 (Pin13) -- SX1276 DIO1 (Pin9) used by LMIC for detecting LoRa RX_Timeout
#define RST GPIO_NUM_14 // ESP32 GPIO14 (Pin14) -- SX1276 NRESET (Pin7) Reset Trigger Input
#define DIO0 GPIO_NUM_26 // ESP32 GPIO26 (Pin15) -- SX1276 DIO0 (Pin8) used by LMIC for detecting LoRa RX_Done & TX_Done
#define DIO1 GPIO_NUM_33 // ESP32 GPIO33 (Pin13) -- SX1276 DIO1 (Pin9) used by LMIC for detecting LoRa RX_Timeout
#define DIO2 LMIC_UNUSED_PIN // 32 ESP32 GPIO32 (Pin12) -- SX1276 DIO2 (Pin10) not used by LMIC for LoRa (Timeout for FSK only)
// Hardware pin definitions for Heltec LoRa-32 Board with OLED SSD1306 I2C Display
#define OLED_RST 16 // ESP32 GPIO16 (Pin16) -- SD1306 RST
#define OLED_SDA 4 // ESP32 GPIO4 (Pin4) -- SD1306 D1+D2
#define OLED_SCL 15 // ESP32 GPIO15 (Pin15) -- SD1306 D0
#define OLED_RST GPIO_NUM_16 // ESP32 GPIO16 (Pin16) -- SD1306 RST
#define OLED_SDA GPIO_NUM_4 // ESP32 GPIO4 (Pin4) -- SD1306 D1+D2
#define OLED_SCL GPIO_NUM_15 // ESP32 GPIO15 (Pin15) -- SD1306 D0

View File

@ -2,17 +2,26 @@
#define CFG_sx1272_radio 1
#define HAS_LED NOT_A_PIN // LoPy4 has no on board LED, so we use RGB LED on LoPy4
#define HAS_RGB_LED 0 // WS2812B RGB LED on GPIO0
#define HAS_RGB_LED GPIO_NUM_0 // WS2812B RGB LED on GPIO0
// !!EXPERIMENTAL - not tested yet!!
// uncomment this only if your LoPy lives on a Pytrack expansion board with GPS
// see http://www.quectel.com/UploadImage/Downlad/Quectel_L76-L_I2C_Application_Note_V1.0.pdf
//#define HAS_GPS 1
//#define GPS_I2C_PINS GPIO_NUM_9, GPIO_NUM_8 // SDA, SCL
//#define GPS_I2C_ADDRESS_READ 0x21
//#define GPS_I2C_ADDRESS_WRITE 0x20
//#define HAS_BUTTON GPIO_NUM_4
// Hardware pin definitions for Pycom LoPy board
#define PIN_SPI_SS 17
#define PIN_SPI_MOSI 27
#define PIN_SPI_MISO 19
#define PIN_SPI_SCK 5
#define RST 18
#define DIO0 23 // LoRa IRQ
#define DIO1 23 // workaround
#define DIO2 LMIC_UNUSED_PIN // 23 workaround
#define PIN_SPI_SS GPIO_NUM_17
#define PIN_SPI_MOSI GPIO_NUM_27
#define PIN_SPI_MISO GPIO_NUM_19
#define PIN_SPI_SCK GPIO_NUM_5
#define RST GPIO_NUM_18
#define DIO0 GPIO_NUM_23 // LoRa IRQ
#define DIO1 GPIO_NUM_23 // workaround
#define DIO2 LMIC_UNUSED_PIN
// select WIFI antenna (internal = onboard / external = u.fl socket)
#define HAS_ANTENNA_SWITCH 16 // pin for switching wifi antenna

View File

@ -2,17 +2,26 @@
#define CFG_sx1276_radio 1
#define HAS_LED NOT_A_PIN // LoPy4 has no on board LED, so we use RGB LED on LoPy4
#define HAS_RGB_LED 0 // WS2812B RGB LED on GPIO0
#define HAS_RGB_LED GPIO_NUM_0 // WS2812B RGB LED on GPIO0
// !!EXPERIMENTAL - not tested yet!!f
// uncomment this only if your LoPy lives on a Pytrack expansion board with GPS
// see http://www.quectel.com/UploadImage/Downlad/Quectel_L76-L_I2C_Application_Note_V1.0.pdf
//#define HAS_GPS 1
//#define GPS_I2C_PINS GPIO_NUM_9, GPIO_NUM_8 // SDA, SCL
//#define GPS_I2C_ADDRESS_READ 0x21
//#define GPS_I2C_ADDRESS_WRITE 0x20
//#define HAS_BUTTON GPIO_NUM_4
// Hardware pin definitions for Pycom LoPy4 board
#define PIN_SPI_SS 18
#define PIN_SPI_MOSI 27
#define PIN_SPI_MISO 19
#define PIN_SPI_SCK 5
#define PIN_SPI_SS GPIO_NUM_18
#define PIN_SPI_MOSI GPIO_NUM_27
#define PIN_SPI_MISO GPIO_NUM_19
#define PIN_SPI_SCK GPIO_NUM_5
#define RST LMIC_UNUSED_PIN
#define DIO0 23 // LoRa IRQ
#define DIO1 23 // workaround
#define DIO2 LMIC_UNUSED_PIN // 23 workaround
#define DIO0 GPIO_NUM_23 // LoRa IRQ
#define DIO1 GPIO_NUM_23 // workaround
#define DIO2 LMIC_UNUSED_PIN
// select WIFI antenna (internal = onboard / external = u.fl socket)
#define HAS_ANTENNA_SWITCH 21 // pin for switching wifi antenna

22
src/hal/ttgobeam.h Normal file
View File

@ -0,0 +1,22 @@
// Hardware related definitions for TTGO T-Beam board
#define CFG_sx1276_radio 1 // HPD13A LoRa SoC
#define HAS_LED GPIO_NUM_21 // on board green LED_G1
//#define HAS_BUTTON GPIO_NUM_39 // on board button "BOOT" (next to reset button) !! seems not to work!!
#define HAS_BATTERY_PROBE ADC1_GPIO35_CHANNEL // battery probe GPIO pin -> ADC1_CHANNEL_7
#define BATT_FACTOR 2 // voltage divider 100k/100k on board
#define HAS_GPS 1 // use on board GPS
#define GPS_SERIAL 9600, SERIAL_8N1, GPIO_NUM_12, GPIO_NUM_15 // UBlox NEO 6M or 7M with default configuration
// re-define pin definitions of pins_arduino.h
#define PIN_SPI_SS GPIO_NUM_18 // ESP32 GPIO18 (Pin18) -- HPD13A NSS/SEL (Pin4) SPI Chip Select Input
#define PIN_SPI_MOSI GPIO_NUM_27 // ESP32 GPIO27 (Pin27) -- HPD13A MOSI/DSI (Pin6) SPI Data Input
#define PIN_SPI_MISO GPIO_NUM_19 // ESP32 GPIO19 (Pin19) -- HPD13A MISO/DSO (Pin7) SPI Data Output
#define PIN_SPI_SCK GPIO_NUM_5 // ESP32 GPIO5 (Pin5) -- HPD13A SCK (Pin5) SPI Clock Input
// non arduino pin definitions
#define RST LMIC_UNUSED_PIN // connected to ESP32 RST/EN
#define DIO0 GPIO_NUM_26 // ESP32 GPIO26 <-> HPD13A IO0
#define DIO1 GPIO_NUM_32 // Lora1 <-> HPD13A IO1 // !! NEEDS EXTERNAL WIRING !!
#define DIO2 LMIC_UNUSED_PIN // Lora2 <-> HPD13A IO2 // not needed for LoRa

View File

@ -9,18 +9,18 @@
#define HAS_BUTTON GPIO_NUM_0 // button "PRG" on board
// re-define pin definitions of pins_arduino.h
#define PIN_SPI_SS 18 // ESP32 GPIO18 (Pin18) -- SX1276 NSS (Pin19) SPI Chip Select Input
#define PIN_SPI_MOSI 27 // ESP32 GPIO27 (Pin27) -- SX1276 MOSI (Pin18) SPI Data Input
#define PIN_SPI_MISO 19 // ESP32 GPIO19 (Pin19) -- SX1276 MISO (Pin17) SPI Data Output
#define PIN_SPI_SCK 5 // ESP32 GPIO5 (Pin5) -- SX1276 SCK (Pin16) SPI Clock Input
#define PIN_SPI_SS GPIO_NUM_18 // ESP32 GPIO18 (Pin18) -- SX1276 NSS (Pin19) SPI Chip Select Input
#define PIN_SPI_MOSI GPIO_NUM_27 // ESP32 GPIO27 (Pin27) -- SX1276 MOSI (Pin18) SPI Data Input
#define PIN_SPI_MISO GPIO_NUM_19 // ESP32 GPIO19 (Pin19) -- SX1276 MISO (Pin17) SPI Data Output
#define PIN_SPI_SCK GPIO_NUM_5 // ESP32 GPIO5 (Pin5) -- SX1276 SCK (Pin16) SPI Clock Input
// non arduino pin definitions
#define RST 14 // ESP32 GPIO14 (Pin14) -- SX1276 NRESET (Pin7) Reset Trigger Input
#define DIO0 26 // ESP32 GPIO26 (Pin15) -- SX1276 DIO0 (Pin8) used by LMIC for detecting LoRa RX_Done & TX_Done
#define DIO1 33 // ESP32 GPIO33 (Pin13) -- SX1276 DIO1 (Pin9) used by LMIC for detecting LoRa RX_Timeout
#define RST GPIO_NUM_14 // ESP32 GPIO14 (Pin14) -- SX1276 NRESET (Pin7) Reset Trigger Input
#define DIO0 GPIO_NUM_26 // ESP32 GPIO26 (Pin15) -- SX1276 DIO0 (Pin8) used by LMIC for detecting LoRa RX_Done & TX_Done
#define DIO1 GPIO_NUM_33 // ESP32 GPIO33 (Pin13) -- SX1276 DIO1 (Pin9) used by LMIC for detecting LoRa RX_Timeout
#define DIO2 LMIC_UNUSED_PIN // 32 ESP32 GPIO32 (Pin12) -- SX1276 DIO2 (Pin10) not used by LMIC for LoRa (Timeout for FSK only)
// Hardware pin definitions for TTGOv1 Board with OLED SSD1306 I2C Display
#define OLED_RST 16 // ESP32 GPIO16 (Pin16) -- SD1306 Reset
#define OLED_SDA 4 // ESP32 GPIO4 (Pin4) -- SD1306 Data
#define OLED_SCL 15 // ESP32 GPIO15 (Pin15) -- SD1306 Clock
#define OLED_RST GPIO_NUM_16 // ESP32 GPIO16 (Pin16) -- SD1306 Reset
#define OLED_SDA GPIO_NUM_4 // ESP32 GPIO4 (Pin4) -- SD1306 Data
#define OLED_SCL GPIO_NUM_15 // ESP32 GPIO15 (Pin15) -- SD1306 Clock

View File

@ -10,21 +10,21 @@
#define DISABLE_BROWNOUT 1 // comment out if you want to keep brownout feature
// re-define pin definitions of pins_arduino.h
#define PIN_SPI_SS 18 // ESP32 GPIO18 (Pin18) -- HPD13A NSS/SEL (Pin4) SPI Chip Select Input
#define PIN_SPI_MOSI 27 // ESP32 GPIO27 (Pin27) -- HPD13A MOSI/DSI (Pin6) SPI Data Input
#define PIN_SPI_MISO 19 // ESP32 GPIO19 (Pin19) -- HPD13A MISO/DSO (Pin7) SPI Data Output
#define PIN_SPI_SCK 5 // ESP32 GPIO5 (Pin5) -- HPD13A SCK (Pin5) SPI Clock Input
#define PIN_SPI_SS GPIO_NUM_18 // ESP32 GPIO18 (Pin18) -- HPD13A NSS/SEL (Pin4) SPI Chip Select Input
#define PIN_SPI_MOSI GPIO_NUM_27 // ESP32 GPIO27 (Pin27) -- HPD13A MOSI/DSI (Pin6) SPI Data Input
#define PIN_SPI_MISO GPIO_NUM_19 // ESP32 GPIO19 (Pin19) -- HPD13A MISO/DSO (Pin7) SPI Data Output
#define PIN_SPI_SCK GPIO_NUM_5 // ESP32 GPIO5 (Pin5) -- HPD13A SCK (Pin5) SPI Clock Input
// non arduino pin definitions
#define RST LMIC_UNUSED_PIN // connected to ESP32 RST/EN
#define DIO0 26 // ESP32 GPIO26 wired on PCB to HPD13A
#define DIO1 33 // HPDIO1 on pcb, needs to be wired external to GPIO33
#define DIO0 GPIO_NUM_26 // ESP32 GPIO26 wired on PCB to HPD13A
#define DIO1 GPIO_NUM_33 // HPDIO1 on pcb, needs to be wired external to GPIO33
#define DIO2 LMIC_UNUSED_PIN // 32 HPDIO2 on pcb, needs to be wired external to GPIO32 (not necessary for LoRa, only FSK)
// Hardware pin definitions for TTGO V2 Board with OLED SSD1306 0,96" I2C Display
#define OLED_RST U8X8_PIN_NONE // connected to CPU RST/EN
#define OLED_SDA 21 // ESP32 GPIO4 (Pin4) -- SD1306 D1+D2
#define OLED_SCL 22 // ESP32 GPIO15 (Pin15) -- SD1306 D0
#define OLED_SDA GPIO_NUM_21 // ESP32 GPIO4 (Pin4) -- SD1306 D1+D2
#define OLED_SCL GPIO_NUM_22 // ESP32 GPIO15 (Pin15) -- SD1306 D0
/*

26
src/hal/ttgov21.h Normal file
View File

@ -0,0 +1,26 @@
// Hardware related definitions for TTGO V2.1 Board
#define CFG_sx1276_radio 1 // HPD13A LoRa SoC
#define HAS_DISPLAY U8X8_SSD1306_128X64_NONAME_HW_I2C
#define DISPLAY_FLIP 1 // rotated display
#define HAS_LED GPIO_NUM_23 // green on board LED_G3 (not in initial board version)
#define HAS_BATTERY_PROBE ADC1_GPIO35_CHANNEL // battery probe GPIO pin -> ADC1_CHANNEL_7
#define BATT_FACTOR 2 // voltage divider 100k/100k on board
// re-define pin definitions of pins_arduino.h
#define PIN_SPI_SS GPIO_NUM_18 // ESP32 GPIO18 (Pin18) -- HPD13A NSS/SEL (Pin4) SPI Chip Select Input
#define PIN_SPI_MOSI GPIO_NUM_27 // ESP32 GPIO27 (Pin27) -- HPD13A MOSI/DSI (Pin6) SPI Data Input
#define PIN_SPI_MISO GPIO_NUM_19 // ESP32 GPIO19 (Pin19) -- HPD13A MISO/DSO (Pin7) SPI Data Output
#define PIN_SPI_SCK GPIO_NUM_5 // ESP32 GPIO5 (Pin5) -- HPD13A SCK (Pin5) SPI Clock Input
// non arduino pin definitions
#define RST LMIC_UNUSED_PIN // connected to ESP32 RST/EN
#define DIO0 GPIO_NUM_26 // ESP32 GPIO26 <-> HPD13A IO0
#define DIO1 GPIO_NUM_33 // ESP32 GPIO33 <-> HPDIO1 <-> HPD13A IO1
#define DIO2 GPIO_NUM_32 // ESP32 GPIO32 <-> HPDIO2 <-> HPD13A IO2
// Hardware pin definitions for TTGO V2 Board with OLED SSD1306 0,96" I2C Display
#define OLED_RST U8X8_PIN_NONE // connected to CPU RST/EN
#define OLED_SDA GPIO_NUM_21 // ESP32 GPIO4 (Pin4) -- SD1306 D1+D2
#define OLED_SCL GPIO_NUM_22 // ESP32 GPIO15 (Pin15) -- SD1306 D0

View File

@ -1,26 +1,31 @@
/************************************************************
* LMIC LoRaWAN configuration
*
* Read the values from TTN console (or whatever applies)
*
*
* Read the values from TTN console (or whatever applies), insert them here,
* and rename this file to src/loraconf.h
*
* Note that DEVEUI, APPEUI and APPKEY should all be specified in MSB format.
* (This is different from standard LMIC-Arduino which expects DEVEUI and APPEUI
* in LSB format.)
* Set your DEVEUI here, if you have one. You can leave this untouched,
* then the DEVEUI will be generated during runtime from device's MAC adress
* and will be displayed on device's screen as well as on serial console.
*
* NOTE: Use MSB format (as displayed in TTN console, so you can cut & paste
* from there)
* For TTN, APPEUI in MSB format always starts with 0x70, 0xB3, 0xD5
*
* Note: If using a board with Microchip 24AA02E64 Uinique ID for deveui,
* the DEVEUI will be overwriten by the one contained in the Microchip module
*
************************************************************/
#include <Arduino.h>
/*
static const u1_t DEVEUI[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
// Set your DEVEUI here, if you have one. You can leave this untouched,
// then the DEVEUI will be generated during runtime from device's MAC adress
// Note: Use same format as in TTN console (cut & paste, for your convenience)
// *** Take care : If Using a board with Microchip 24AA02E64 Uinique ID for deveui, **
// *** this DEVEUI will be overwriten by the one contained in the Microchip module ***
static const u1_t DEVEUI[8]={ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
static const u1_t APPEUI[8] = {0x70, 0xB3, 0xD5, 0x00, 0x00, 0x00, 0x00, 0x00};
// Note: Use msb format for APPEUI as in TTN console (cut & paste, for your convenience)
// For TTN, APPEUI always starts with 0x70, 0xB3, 0xD5
static const u1_t APPEUI[8]={ 0x70, 0xB3, 0xD5, 0x00, 0x00, 0x00, 0x00, 0x00 };
// Note: Use msb format for APPEUI as in TTN console (cut & paste, for your convenience)
static const u1_t APPKEY[16] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
*/
static const u1_t APPKEY[16] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

View File

@ -7,11 +7,11 @@
#include <hal/hal.h>
#ifdef MCP_24AA02E64_I2C_ADDRESS
#include <Wire.h> // Needed for 24AA02E64, does not hurt anything if included and not used
#include <Wire.h> // Needed for 24AA02E64, does not hurt anything if included and not used
#endif
// Local logging Tag
static const char *TAG = "lorawan";
static const char TAG[] = "lora";
// functions defined in rcommand.cpp
void rcommand(uint8_t cmd, uint8_t arg);
@ -19,198 +19,252 @@ void switch_lora(uint8_t sf, uint8_t tx);
// DevEUI generator using devices's MAC address
void gen_lora_deveui(uint8_t *pdeveui) {
uint8_t *p = pdeveui, dmac[6];
int i = 0;
esp_efuse_mac_get_default(dmac);
// deveui is LSB, we reverse it so TTN DEVEUI display
// will remain the same as MAC address
// MAC is 6 bytes, devEUI 8, set first 2 ones
// with an arbitrary value
*p++ = 0xFF;
*p++ = 0xFE;
// Then next 6 bytes are mac address reversed
for ( i=0; i<6 ; i++) {
*p++ = dmac[5-i];
}
uint8_t *p = pdeveui, dmac[6];
int i = 0;
esp_efuse_mac_get_default(dmac);
// deveui is LSB, we reverse it so TTN DEVEUI display
// will remain the same as MAC address
// MAC is 6 bytes, devEUI 8, set first 2 ones
// with an arbitrary value
*p++ = 0xFF;
*p++ = 0xFE;
// Then next 6 bytes are mac address reversed
for (i = 0; i < 6; i++) {
*p++ = dmac[5 - i];
}
}
// Function to do a byte swap in a byte array
void RevBytes(unsigned char* b, size_t c)
{
void RevBytes(unsigned char *b, size_t c) {
u1_t i;
for (i = 0; i < c / 2; i++)
{ unsigned char t = b[i];
for (i = 0; i < c / 2; i++) {
unsigned char t = b[i];
b[i] = b[c - 1 - i];
b[c - 1 - i] = t; }
b[c - 1 - i] = t;
}
}
void get_hard_deveui(uint8_t *pdeveui) {
// read DEVEUI from Microchip 24AA02E64 2Kb serial eeprom if present
// read DEVEUI from Microchip 24AA02E64 2Kb serial eeprom if present
#ifdef MCP_24AA02E64_I2C_ADDRESS
uint8_t i2c_ret;
// Init this just in case, no more to 100KHz
Wire.begin(OLED_SDA, OLED_SCL, 100000);
uint8_t i2c_ret;
// Init this just in case, no more to 100KHz
Wire.begin(OLED_SDA, OLED_SCL, 100000);
Wire.beginTransmission(MCP_24AA02E64_I2C_ADDRESS);
Wire.write(MCP_24AA02E64_MAC_ADDRESS);
i2c_ret = Wire.endTransmission();
// check if device seen on i2c bus
if (i2c_ret == 0) {
char deveui[32] = "";
uint8_t data;
Wire.beginTransmission(MCP_24AA02E64_I2C_ADDRESS);
Wire.write(MCP_24AA02E64_MAC_ADDRESS);
i2c_ret = Wire.endTransmission();
// check if device seen on i2c bus
if (i2c_ret == 0) {
char deveui[32]="";
uint8_t data;
Wire.beginTransmission(MCP_24AA02E64_I2C_ADDRESS);
Wire.write(MCP_24AA02E64_MAC_ADDRESS);
Wire.requestFrom(MCP_24AA02E64_I2C_ADDRESS, 8);
while (Wire.available()) {
data = Wire.read();
sprintf(deveui+strlen(deveui), "%02X ", data);
*pdeveui++ = data;
}
i2c_ret = Wire.endTransmission();
ESP_LOGI(TAG, "Serial EEPROM 24AA02E64 found, read DEVEUI %s", deveui);
} else {
ESP_LOGI(TAG, "Serial EEPROM 24AA02E64 not found ret=%d", i2c_ret);
Wire.write(MCP_24AA02E64_MAC_ADDRESS);
Wire.requestFrom(MCP_24AA02E64_I2C_ADDRESS, 8);
while (Wire.available()) {
data = Wire.read();
sprintf(deveui + strlen(deveui), "%02X ", data);
*pdeveui++ = data;
}
// Set back to 400KHz to speed up OLED
Wire.setClock(400000);
#endif // MCP 24AA02E64
i2c_ret = Wire.endTransmission();
ESP_LOGI(TAG, "Serial EEPROM 24AA02E64 found, read DEVEUI %s", deveui);
} else {
ESP_LOGI(TAG, "Serial EEPROM 24AA02E64 not found ret=%d", i2c_ret);
}
// Set back to 400KHz to speed up OLED
Wire.setClock(400000);
#endif // MCP 24AA02E64
}
#ifdef VERBOSE
// Display a key
void printKey(const char * name, const uint8_t * key, uint8_t len, bool lsb) {
uint8_t start=lsb?len:0;
uint8_t end = lsb?0:len;
const uint8_t * p ;
char keystring[len+1] = "", keybyte[3];
for (uint8_t i=0; i<len ; i++) {
p = lsb ? key+len-i-1 : key+i;
sprintf(keybyte, "%02X", * p);
strncat(keystring, keybyte, 2);
}
void printKey(const char *name, const uint8_t *key, uint8_t len, bool lsb) {
const uint8_t *p;
char keystring[len + 1] = "", keybyte[3];
for (uint8_t i = 0; i < len; i++) {
p = lsb ? key + len - i - 1 : key + i;
sprintf(keybyte, "%02X", *p);
strncat(keystring, keybyte, 2);
}
ESP_LOGI(TAG, "%s: %s", name, keystring);
}
// Display OTAA keys
void printKeys(void) {
// LMIC may not have used callback to fill
// all EUI buffer so we do it here to a temp
// buffer to be able to display them
uint8_t buf[32];
os_getDevEui((u1_t*) buf);
printKey("DevEUI", buf, 8, true);
os_getArtEui((u1_t*) buf);
printKey("AppEUI", buf, 8, true);
os_getDevKey((u1_t*) buf);
printKey("AppKey", buf, 16, false);
// LMIC may not have used callback to fill
// all EUI buffer so we do it here to a temp
// buffer to be able to display them
uint8_t buf[32];
os_getDevEui((u1_t *)buf);
printKey("DevEUI", buf, 8, true);
os_getArtEui((u1_t *)buf);
printKey("AppEUI", buf, 8, true);
os_getDevKey((u1_t *)buf);
printKey("AppKey", buf, 16, false);
}
#endif // VERBOSE
void do_send(osjob_t* j){
uint8_t mydata[4];
void do_send(osjob_t *j) {
// Schedule next transmission
os_setTimedCallback(&sendjob, os_getTime() + sec2osticks(cfg.sendcycle * 2),
do_send);
// Sum of unique WIFI MACs seen
mydata[0] = (macs_wifi & 0xff00) >> 8;
mydata[1] = macs_wifi & 0xff;
#ifdef BLECOUNTER
// Sum of unique BLE MACs seen
mydata[2] = (macs_ble & 0xff00) >> 8;
mydata[3] = macs_ble & 0xff;
#else
mydata[2] = 0;
mydata[3] = 0;
#endif
// Check if there is a pending TX/RX job running
if (LMIC.opmode & OP_TXRXPEND) {
ESP_LOGI(TAG, "LoRa busy, rescheduling");
sprintf(display_lmic, "LORA BUSY");
return;
}
// Check if there is not a current TX/RX job running
if (LMIC.opmode & OP_TXRXPEND) {
ESP_LOGI(TAG, "OP_TXRXPEND, not sending");
sprintf(display_lmic, "LORA BUSY");
} else {
// Prepare upstream data transmission at the next possible time.
LMIC_setTxData2(1, mydata, sizeof(mydata), (cfg.countermode & 0x02));
ESP_LOGI(TAG, "Packet queued");
sprintf(display_lmic, "PACKET QUEUED");
// clear counter if not in cumulative counter mode
if (cfg.countermode != 1) {
reset_counters(); // clear macs container and reset all counters
reset_salt(); // get new salt for salting hashes
}
}
// prepare payload with sum of unique WIFI MACs seen
static uint8_t mydata[4];
// Schedule next transmission
os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(cfg.sendcycle * 2), do_send);
mydata[0] = (macs_wifi & 0xff00) >> 8;
mydata[1] = macs_wifi & 0xff;
if (cfg.blescan) {
// append sum of unique BLE MACs seen to payload
mydata[2] = (macs_ble & 0xff00) >> 8;
mydata[3] = macs_ble & 0xff;
} else {
mydata[2] = 0;
mydata[3] = 0;
}
#ifdef HAS_GPS
static uint8_t gpsdata[18];
if (cfg.gpsmode && gps.location.isValid()) {
gps_read();
memcpy(gpsdata, mydata, 4);
memcpy(gpsdata + 4, &gps_status, sizeof(gps_status));
ESP_LOGI(TAG, "lat=%.6f / lon=%.6f | %u Sats | HDOP=%.1f | Altitude=%u m",
gps_status.latitude / (float)1000000,
gps_status.longitude / (float)1000000, gps_status.satellites,
gps_status.hdop / (float)100, gps_status.altitude);
LMIC_setTxData2(COUNTERPORT, gpsdata, sizeof(gpsdata),
(cfg.countermode & 0x02));
ESP_LOGI(TAG, "%d bytes queued to send", sizeof(gpsdata));
} else {
#endif
LMIC_setTxData2(COUNTERPORT, mydata, sizeof(mydata),
(cfg.countermode & 0x02));
ESP_LOGI(TAG, "%d bytes queued to send", sizeof(mydata));
#ifdef HAS_GPS
}
#endif
sprintf(display_lmic, "PACKET QUEUED");
// clear counter if not in cumulative counter mode
if (cfg.countermode != 1) {
reset_counters(); // clear macs container and reset all counters
reset_salt(); // get new salt for salting hashes
ESP_LOGI(TAG, "Counter cleared (countermode = %d)", cfg.countermode);
}
} // do_send()
void onEvent (ev_t ev) {
char buff[24]="";
switch(ev) {
case EV_SCAN_TIMEOUT: strcpy_P(buff, PSTR("SCAN TIMEOUT")); break;
case EV_BEACON_FOUND: strcpy_P(buff, PSTR("BEACON FOUND")); break;
case EV_BEACON_MISSED: strcpy_P(buff, PSTR("BEACON MISSED")); break;
case EV_BEACON_TRACKED: strcpy_P(buff, PSTR("BEACON TRACKED")); break;
case EV_JOINING: strcpy_P(buff, PSTR("JOINING")); break;
case EV_LOST_TSYNC: strcpy_P(buff, PSTR("LOST TSYNC")); break;
case EV_RESET: strcpy_P(buff, PSTR("RESET")); break;
case EV_RXCOMPLETE: strcpy_P(buff, PSTR("RX COMPLETE")); break;
case EV_LINK_DEAD: strcpy_P(buff, PSTR("LINK DEAD")); break;
case EV_LINK_ALIVE: strcpy_P(buff, PSTR("LINK ALIVE")); break;
case EV_RFU1: strcpy_P(buff, PSTR("RFUI")); break;
case EV_JOIN_FAILED: strcpy_P(buff, PSTR("JOIN FAILED")); break;
case EV_REJOIN_FAILED: strcpy_P(buff, PSTR("REJOIN FAILED")); break;
case EV_JOINED:
void onEvent(ev_t ev) {
char buff[24] = "";
joinstate=true;
strcpy_P(buff, PSTR("JOINED"));
switch (ev) {
case EV_SCAN_TIMEOUT:
strcpy_P(buff, PSTR("SCAN TIMEOUT"));
break;
case EV_BEACON_FOUND:
strcpy_P(buff, PSTR("BEACON FOUND"));
break;
case EV_BEACON_MISSED:
strcpy_P(buff, PSTR("BEACON MISSED"));
break;
case EV_BEACON_TRACKED:
strcpy_P(buff, PSTR("BEACON TRACKED"));
break;
case EV_JOINING:
strcpy_P(buff, PSTR("JOINING"));
break;
case EV_LOST_TSYNC:
strcpy_P(buff, PSTR("LOST TSYNC"));
break;
case EV_RESET:
strcpy_P(buff, PSTR("RESET"));
break;
case EV_RXCOMPLETE:
strcpy_P(buff, PSTR("RX COMPLETE"));
break;
case EV_LINK_DEAD:
strcpy_P(buff, PSTR("LINK DEAD"));
break;
case EV_LINK_ALIVE:
strcpy_P(buff, PSTR("LINK ALIVE"));
break;
case EV_RFU1:
strcpy_P(buff, PSTR("RFUI"));
break;
case EV_JOIN_FAILED:
strcpy_P(buff, PSTR("JOIN FAILED"));
break;
case EV_REJOIN_FAILED:
strcpy_P(buff, PSTR("REJOIN FAILED"));
break;
// Disable link check validation (automatically enabled
// during join, but not supported by TTN at this time).
LMIC_setLinkCheckMode(0);
// set data rate adaptation
LMIC_setAdrMode(cfg.adrmode);
// Set data rate and transmit power (note: txpower seems to be ignored by the library)
switch_lora(cfg.lorasf,cfg.txpower);
// show effective LoRa parameters after join
ESP_LOGI(TAG, "ADR=%d, SF=%d, TXPOWER=%d", cfg.adrmode, cfg.lorasf, cfg.txpower);
break;
case EV_JOINED:
case EV_TXCOMPLETE:
strcpy_P(buff, PSTR("JOINED"));
sprintf(display_lora, " "); // clear previous lmic status
strcpy_P(buff, (LMIC.txrxFlags & TXRX_ACK) ? PSTR("RECEIVED ACK") : PSTR("TX COMPLETE"));
sprintf(display_lora, ""); // erase previous LoRa message from display
if (LMIC.dataLen) {
ESP_LOGI(TAG, "Received %d bytes of payload, RSSI %d SNR %d", LMIC.dataLen, LMIC.rssi, (signed char)LMIC.snr / 4);
// LMIC.snr = SNR twos compliment [dB] * 4
// LMIC.rssi = RSSI [dBm] (-196...+63)
sprintf(display_lora, "RSSI %d SNR %d", LMIC.rssi, (signed char)LMIC.snr / 4 );
// set data rate adaptation
LMIC_setAdrMode(cfg.adrmode);
// Set data rate and transmit power (note: txpower seems to be ignored by
// the library)
switch_lora(cfg.lorasf, cfg.txpower);
// check if payload received on command port, then call remote command interpreter
if ( (LMIC.txrxFlags & TXRX_PORT) && (LMIC.frame[LMIC.dataBeg-1] == RCMDPORT ) ) {
// caution: buffering LMIC values here because rcommand() can modify LMIC.frame
unsigned char* buffer = new unsigned char[MAX_LEN_FRAME];
memcpy(buffer, LMIC.frame, MAX_LEN_FRAME); //Copy data from cfg to char*
int i, k = LMIC.dataBeg, l = LMIC.dataBeg+LMIC.dataLen-2;
for (i=k; i<=l; i+=2)
rcommand(buffer[i], buffer[i+1]);
delete[] buffer; //free memory
}
}
break;
// show effective LoRa parameters after join
ESP_LOGI(TAG, "ADR=%d, SF=%d, TXPOWER=%d", cfg.adrmode, cfg.lorasf,
cfg.txpower);
break;
default: sprintf_P(buff, PSTR("UNKNOWN EVENT %d"), ev); break;
case EV_TXCOMPLETE:
strcpy_P(buff, (LMIC.txrxFlags & TXRX_ACK) ? PSTR("RECEIVED ACK")
: PSTR("TX COMPLETE"));
sprintf(display_lora, " "); // clear previous lmic status
if (LMIC.dataLen) {
ESP_LOGI(TAG, "Received %d bytes of payload, RSSI %d SNR %d",
LMIC.dataLen, LMIC.rssi, (signed char)LMIC.snr / 4);
// LMIC.snr = SNR twos compliment [dB] * 4
// LMIC.rssi = RSSI [dBm] (-196...+63)
sprintf(display_lora, "RSSI %d SNR %d", LMIC.rssi,
(signed char)LMIC.snr / 4);
// check if payload received on command port, then call remote command
// interpreter
if ((LMIC.txrxFlags & TXRX_PORT) &&
(LMIC.frame[LMIC.dataBeg - 1] == RCMDPORT)) {
// caution: buffering LMIC values here because rcommand() can modify
// LMIC.frame
unsigned char *buffer = new unsigned char[MAX_LEN_FRAME];
memcpy(buffer, LMIC.frame, MAX_LEN_FRAME); // Copy data from cfg to
// char*
int i, k = LMIC.dataBeg, l = LMIC.dataBeg + LMIC.dataLen - 2;
for (i = k; i <= l; i += 2) {
rcommand(buffer[i], buffer[i + 1]);
}
delete[] buffer; // free memory
}
}
break;
default:
sprintf_P(buff, PSTR("UNKNOWN EVENT %d"), ev);
break;
}
// Log & Display if asked
if (*buff) {
ESP_LOGI(TAG, "EV_%s", buff);
sprintf(display_lmic, buff);
}
// Log & Display if asked
if (*buff) {
ESP_LOGI(TAG, "EV_%s", buff);
sprintf(display_lmic, buff);
}
} // onEvent()

10
src/lorawan.h Normal file
View File

@ -0,0 +1,10 @@
#ifndef LORAWAN_H
#define LORAWAN_H
void onEvent(ev_t ev);
void do_send(osjob_t *j);
void gen_lora_deveui(uint8_t *pdeveui);
void RevBytes(unsigned char *b, size_t c);
void get_hard_deveui(uint8_t *pdeveui);
#endif

View File

@ -3,115 +3,134 @@
#include "globals.h"
#ifdef VENDORFILTER
#include <array>
#include <algorithm>
#include "vendor_array.h"
#include "vendor_array.h"
#endif
// Local logging tag
static const char *TAG = "macsniff";
static const char TAG[] = "wifi";
static wifi_country_t wifi_country = {.cc=WIFI_MY_COUNTRY, .schan=WIFI_CHANNEL_MIN, .nchan=WIFI_CHANNEL_MAX, .policy=WIFI_COUNTRY_POLICY_MANUAL};
static wifi_country_t wifi_country = {.cc = WIFI_MY_COUNTRY,
.schan = WIFI_CHANNEL_MIN,
.nchan = WIFI_CHANNEL_MAX,
.policy = WIFI_COUNTRY_POLICY_MANUAL};
// globals
uint16_t salt;
uint16_t reset_salt(void) {
salt = random(65536); // get new 16bit random for salting hashes and set global salt var
return salt;
salt = random(65536); // get new 16bit random for salting hashes
return salt;
}
bool mac_add(uint8_t *paddr, int8_t rssi, bool sniff_type) {
char buff[16]; // temporary buffer for printf
bool added = false;
uint32_t addr2int, vendor2int; // temporary buffer for MAC and Vendor OUI
uint16_t hashedmac; // temporary buffer for generated hash value
char buff[16]; // temporary buffer for printf
bool added = false;
uint32_t addr2int, vendor2int; // temporary buffer for MAC and Vendor OUI
uint16_t hashedmac; // temporary buffer for generated hash value
// only last 3 MAC Address bytes are used for MAC address anonymization
// but since it's uint32 we take 4 bytes to avoid 1st value to be 0
addr2int = ( (uint32_t)paddr[2] ) | ( (uint32_t)paddr[3] << 8 ) | ( (uint32_t)paddr[4] << 16 ) | ( (uint32_t)paddr[5] << 24 );
// only last 3 MAC Address bytes are used for MAC address anonymization
// but since it's uint32 we take 4 bytes to avoid 1st value to be 0
addr2int = ((uint32_t)paddr[2]) | ((uint32_t)paddr[3] << 8) |
((uint32_t)paddr[4] << 16) | ((uint32_t)paddr[5] << 24);
#ifdef VENDORFILTER
vendor2int = ( (uint32_t)paddr[2] ) | ( (uint32_t)paddr[1] << 8 ) | ( (uint32_t)paddr[0] << 16 );
// use OUI vendor filter list only on Wifi, not on BLE
if ( (sniff_type==MAC_SNIFF_BLE) || std::find(vendors.begin(), vendors.end(), vendor2int) != vendors.end() )
{
#endif
#ifdef VENDORFILTER
vendor2int = ((uint32_t)paddr[2]) | ((uint32_t)paddr[1] << 8) |
((uint32_t)paddr[0] << 16);
// use OUI vendor filter list only on Wifi, not on BLE
if ((sniff_type == MAC_SNIFF_BLE) ||
std::find(vendors.begin(), vendors.end(), vendor2int) != vendors.end()) {
#endif
// salt and hash MAC, and if new unique one, store identifier in container and increment counter on display
// https://en.wikipedia.org/wiki/MAC_Address_Anonymization
addr2int += (uint32_t)salt; // add 16-bit salt to pseudo MAC
snprintf(buff, sizeof(buff), "%08X", addr2int); // convert unsigned 32-bit salted MAC to 8 digit hex string
hashedmac = rokkit(&buff[3], 5); // hash MAC last string value, use 5 chars to fit hash in uint16_t container
auto newmac = macs.insert(hashedmac); // add hashed MAC to total container if new unique
added = newmac.second ? true:false; // true if hashed MAC is unique in container
// salt and hash MAC, and if new unique one, store identifier in container
// and increment counter on display
// https://en.wikipedia.org/wiki/MAC_Address_Anonymization
addr2int += (uint32_t)salt; // add 16-bit salt to pseudo MAC
snprintf(
buff, sizeof(buff), "%08X",
addr2int); // convert unsigned 32-bit salted MAC to 8 digit hex string
hashedmac = rokkit(&buff[3], 5); // hash MAC last string value, use 5 chars
// to fit hash in uint16_t container
auto newmac = macs.insert(hashedmac); // add hashed MAC, if new unique
added = newmac.second ? true
: false; // true if hashed MAC is unique in container
// Count only if MAC was not yet seen
if (added) {
// increment counter and one blink led
if (sniff_type == MAC_SNIFF_WIFI ) {
macs_wifi++; // increment Wifi MACs counter
#if (HAS_LED != NOT_A_PIN) || defined (HAS_RGB_LED)
blink_LED(COLOR_GREEN, 50);
#endif
}
#ifdef BLECOUNTER
else if (sniff_type == MAC_SNIFF_BLE ) {
macs_ble++; // increment BLE Macs counter
#if (HAS_LED != NOT_A_PIN) || defined (HAS_RGB_LED)
blink_LED(COLOR_MAGENTA, 50);
#endif
}
#endif
}
// increment counter and one blink led
if (sniff_type == MAC_SNIFF_WIFI) {
macs_wifi++; // increment Wifi MACs counter
#if (HAS_LED != NOT_A_PIN) || defined(HAS_RGB_LED)
blink_LED(COLOR_GREEN, 50);
#endif
}
#ifdef BLECOUNTER
else if (sniff_type == MAC_SNIFF_BLE) {
macs_ble++; // increment BLE Macs counter
#if (HAS_LED != NOT_A_PIN) || defined(HAS_RGB_LED)
blink_LED(COLOR_MAGENTA, 50);
#endif
}
#endif
}
// Log scan result
ESP_LOGI(TAG, "%s %s RSSI %ddBi -> MAC %s -> Hash %04X -> WiFi:%d BLTH:%d -> %d Bytes left",
added ? "new " : "known",
sniff_type==MAC_SNIFF_WIFI ? "WiFi":"BLTH",
rssi, buff, hashedmac, macs_wifi, macs_ble,
ESP.getFreeHeap());
ESP_LOGI(TAG,
"%s %s RSSI %ddBi -> MAC %s -> Hash %04X -> WiFi:%d BLTH:%d -> "
"%d Bytes left",
added ? "new " : "known",
sniff_type == MAC_SNIFF_WIFI ? "WiFi" : "BLTH", rssi, buff,
hashedmac, macs_wifi, macs_ble, ESP.getFreeHeap());
#ifdef VENDORFILTER
} else {
// Very noisy
// ESP_LOGD(TAG, "Filtered MAC %02X:%02X:%02X:%02X:%02X:%02X", paddr[0],paddr[1],paddr[2],paddr[3],paddr[5],paddr[5]);
}
#endif
#ifdef VENDORFILTER
} else {
// Very noisy
// ESP_LOGD(TAG, "Filtered MAC %02X:%02X:%02X:%02X:%02X:%02X",
// paddr[0],paddr[1],paddr[2],paddr[3],paddr[5],paddr[5]);
}
#endif
// True if MAC WiFi/BLE was new
return added; // function returns bool if a new and unique Wifi or BLE mac was counted (true) or not (false)
// True if MAC WiFi/BLE was new
return added; // function returns bool if a new and unique Wifi or BLE mac was
// counted (true) or not (false)
}
void wifi_sniffer_init(void) {
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
cfg.nvs_enable = 0; // we don't need any wifi settings from NVRAM
wifi_promiscuous_filter_t filter = {.filter_mask = WIFI_PROMIS_FILTER_MASK_MGMT}; // we need only MGMT frames
ESP_ERROR_CHECK(esp_wifi_init(&cfg)); // configure Wifi with cfg
ESP_ERROR_CHECK(esp_wifi_set_country(&wifi_country)); // set locales for RF and channels
ESP_ERROR_CHECK(esp_wifi_set_storage(WIFI_STORAGE_RAM)); // we don't need NVRAM
ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_NULL));
ESP_ERROR_CHECK(esp_wifi_set_promiscuous_filter(&filter)); // set MAC frame filter
ESP_ERROR_CHECK(esp_wifi_set_promiscuous_rx_cb(&wifi_sniffer_packet_handler));
ESP_ERROR_CHECK(esp_wifi_set_promiscuous(true)); // now switch on monitor mode
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
cfg.nvs_enable = 0; // we don't need any wifi settings from NVRAM
wifi_promiscuous_filter_t filter = {
.filter_mask = WIFI_PROMIS_FILTER_MASK_MGMT}; // we need only MGMT frames
ESP_ERROR_CHECK(esp_wifi_init(&cfg)); // configure Wifi with cfg
ESP_ERROR_CHECK(
esp_wifi_set_country(&wifi_country)); // set locales for RF and channels
ESP_ERROR_CHECK(
esp_wifi_set_storage(WIFI_STORAGE_RAM)); // we don't need NVRAM
// ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_NULL));
ESP_ERROR_CHECK(
esp_wifi_set_promiscuous_filter(&filter)); // set MAC frame filter
ESP_ERROR_CHECK(esp_wifi_set_promiscuous_rx_cb(&wifi_sniffer_packet_handler));
ESP_ERROR_CHECK(esp_wifi_set_promiscuous(true)); // now switch on monitor mode
}
void wifi_sniffer_set_channel(uint8_t channel) {
esp_wifi_set_channel(channel, WIFI_SECOND_CHAN_NONE);
esp_wifi_set_channel(channel, WIFI_SECOND_CHAN_NONE);
}
void wifi_sniffer_packet_handler(void* buff, wifi_promiscuous_pkt_type_t type) {
const wifi_promiscuous_pkt_t *ppkt = (wifi_promiscuous_pkt_t *)buff;
const wifi_ieee80211_packet_t *ipkt = (wifi_ieee80211_packet_t *)ppkt->payload;
const wifi_ieee80211_mac_hdr_t *hdr = &ipkt->hdr;
if (( cfg.rssilimit == 0 ) || (ppkt->rx_ctrl.rssi > cfg.rssilimit )) { // rssi is negative value
uint8_t *p = (uint8_t *) hdr->addr2;
mac_add(p, ppkt->rx_ctrl.rssi, MAC_SNIFF_WIFI) ;
} else {
ESP_LOGI(TAG, "WiFi RSSI %d -> ignoring (limit: %d)", ppkt->rx_ctrl.rssi, cfg.rssilimit);
}
}
// using IRAM_:ATTR here to speed up callback function
IRAM_ATTR void wifi_sniffer_packet_handler(void *buff,
wifi_promiscuous_pkt_type_t type) {
const wifi_promiscuous_pkt_t *ppkt = (wifi_promiscuous_pkt_t *)buff;
const wifi_ieee80211_packet_t *ipkt =
(wifi_ieee80211_packet_t *)ppkt->payload;
const wifi_ieee80211_mac_hdr_t *hdr = &ipkt->hdr;
if ((cfg.rssilimit) &&
(ppkt->rx_ctrl.rssi < cfg.rssilimit)) { // rssi is negative value
ESP_LOGI(TAG, "WiFi RSSI %d -> ignoring (limit: %d)", ppkt->rx_ctrl.rssi,
cfg.rssilimit);
} else {
uint8_t *p = (uint8_t *)hdr->addr2;
mac_add(p, ppkt->rx_ctrl.rssi, MAC_SNIFF_WIFI);
}
}

View File

@ -1,22 +1,25 @@
#ifndef MACSNIFF_H
#define MACSNIFF_H
// ESP32 Functions
#include <esp_wifi.h>
#define MAC_SNIFF_WIFI 0
#define MAC_SNIFF_BLE 1
#define MAC_SNIFF_BLE 1
typedef struct {
unsigned frame_ctrl:16;
unsigned duration_id:16;
uint8_t addr1[6]; /* receiver address */
uint8_t addr2[6]; /* sender address */
uint8_t addr3[6]; /* filtering address */
unsigned sequence_ctrl:16;
uint8_t addr4[6]; /* optional */
unsigned frame_ctrl : 16;
unsigned duration_id : 16;
uint8_t addr1[6]; /* receiver address */
uint8_t addr2[6]; /* sender address */
uint8_t addr3[6]; /* filtering address */
unsigned sequence_ctrl : 16;
uint8_t addr4[6]; /* optional */
} wifi_ieee80211_mac_hdr_t;
typedef struct {
wifi_ieee80211_mac_hdr_t hdr;
uint8_t payload[0]; /* network data ended with 4 bytes csum (CRC32) */
wifi_ieee80211_mac_hdr_t hdr;
uint8_t payload[0]; /* network data ended with 4 bytes csum (CRC32) */
} wifi_ieee80211_packet_t;
uint16_t reset_salt(void);
@ -25,4 +28,6 @@ void wifi_sniffer_set_channel(uint8_t channel);
void wifi_sniffer_packet_handler(void *buff, wifi_promiscuous_pkt_type_t type);
// function defined in rokkithash.cpp
uint32_t rokkit(const char * , int );
uint32_t rokkit(const char *, int);
#endif

File diff suppressed because it is too large Load Diff

View File

@ -1,19 +1,21 @@
// program version - note: increment version after modifications to configData_t struct!!
#define PROGVERSION "1.3.4" // use max 10 chars here!
#define PROGNAME "PAXCNT"
#include "configmanager.h"
#include "lorawan.h"
#include "macsniff.h"
// program version - note: increment version after modifications to configData_t
// struct!!
#define PROGVERSION "1.3.81" // use max 10 chars here!
#define PROGNAME "PAXCNT"
//--- Declarations ---
enum led_states {
LED_OFF,
LED_ON
};
enum led_states { LED_OFF, LED_ON };
#if defined(CFG_eu868)
const char lora_datarate[] = {"1211100908077BFSNA"};
#elif defined(CFG_us915)
const char lora_datarate[] = {"100908078CNA121110090807"};
const char lora_datarate[] = {"1211100908077BFSNA"};
#elif defined(CFG_us915)
const char lora_datarate[] = {"100908078CNA121110090807"};
#endif
//--- Prototypes ---
@ -23,22 +25,14 @@ void reset_counters(void);
void blink_LED(uint16_t set_color, uint16_t set_blinkduration);
void led_loop(void);
// defined in configmanager.cpp
void eraseConfig(void);
void saveConfig(void);
void loadConfig(void);
// defined in lorawan.cpp
void onEvent(ev_t ev);
void do_send(osjob_t* j);
void gen_lora_deveui(uint8_t * pdeveui);
void RevBytes(unsigned char* b, size_t c);
void get_hard_deveui(uint8_t *pdeveui);
// defined in wifisniffer.cpp
void wifi_sniffer_init(void);
void wifi_sniffer_set_channel(uint8_t channel);
void wifi_sniffer_packet_handler(void *buff, wifi_promiscuous_pkt_type_t type);
// defined in blescan.cpp
void bt_loop(void *ignore);
#ifdef BLECOUNTER
void start_BLEscan(void);
void stop_BLEscan(void);
#endif
// defined in gpsread.cpp
#ifdef HAS_GPS
void gps_read(void);
void gps_loop(void *pvParameters);
#endif

View File

@ -7,23 +7,25 @@
// set this to include BLE counting and vendor filter functions
#define VENDORFILTER 1 // comment out if you want to count things, not people
#define BLECOUNTER 1 // comment out if you don't want BLE count
#define BLECOUNTER 1 // comment out if you don't want BLE count, saves power & memory
// BLE scan parameters
#define BLESCANTIME 11 // [seconds] scan duration, see note below
#define BLESCANWINDOW 10 // [milliseconds] scan window, see below, 3 .. 10240, default 10
#define BLESCANINTERVAL 10 // [milliseconds] how long to wait between scans, 3 .. 10240, default 10
#define BLESTACKSIZE 8192 // stack size for esp_bt_controller
#define BLESCANTIME 0 // [seconds] scan duration, 0 means infinite [default], see note below
#define BLESCANWINDOW 80 // [milliseconds] scan window, see below, 3 .. 10240, default 80ms
#define BLESCANINTERVAL 80 // [illiseconds] scan interval, see below, 3 .. 10240, default 80ms = 100% duty cycle
/* Note: guide for setting bluetooth parameters
*
* |< Scan Window > |< Scan Window > |< Scan Window > |
* |< Scan Interval >|< Scan Interval >|< Scan Interval >|
* |< Scan duration >|
* |< Scan Window > |< Scan Window > | ... |< Scan Window > |
* |< Scan Interval >|< Scan Interval >| ... |< Scan Interval >|
* |< Scan duration >|
*
* Scan duration sets how long scanning should be going on, interrupting a wifi scan cycle.
* Scan window sets how much of the interval should be occupied by scanning.
* Scan duration sets how long scanning should be going on, before starting a new scan cycle. 0 means infinite (default).
* Scan window sets how much of the interval should be occupied by scanning. Should be >= BLESCANINTERVAL.
* Scan interval is how long scanning should be done on each channel. BLE uses 3 channels for advertising.
* -> Adjust these values with power consumption in mind if power is limited.
* -> Scan interval can be changed during runtime by remote comammand.
*/
// WiFi scan parameters
@ -35,11 +37,14 @@
// LoRa payload send cycle --> take care of duty cycle of LoRaWAN network! <--
#define SEND_SECS 120 // [seconds/2] -> 240 sec.
#define MEM_LOW 2048 // [Bytes] low memory threshold triggering a send cycle
#define RETRANSMIT_RCMD 5 // [seconds] wait time before retransmitting rcommand results
// Default LoRa Spreadfactor
#define LORASFDEFAULT 9 // 7 ... 12 SF, according to LoRaWAN specs
#define MAXLORARETRY 500 // maximum count of TX retries if LoRa busy
#define RCMDPORT 2 // LoRaWAN Port on which device listenes for remote commands
#define GPSPORT 3 // LoRaWAN Port on which device sends gps data
#define COUNTERPORT 1 // LoRaWAN Port on which device sends counts
// Default RGB LED luminosity (in %)
#define RGBLUMINOSITY 30 // 30%

View File

@ -1,6 +1,7 @@
// remote command interpreter
// parses multiple number of command / value pairs from LoRaWAN remote command port (RCMDPORT)
// checks commands and executes each command with 1 argument per command
// parses multiple number of command / value pairs from LoRaWAN remote command
// port (RCMDPORT) checks commands and executes each command with 1 argument per
// command
// Basic Config
#include "globals.h"
@ -10,252 +11,355 @@
#include <hal/hal.h>
// Local logging tag
static const char *TAG = "rcommand";
static const char TAG[] = "main";
// table of remote commands and assigned functions
typedef struct {
const uint8_t nam;
void (*func)(uint8_t);
const bool store;
const uint8_t nam;
void (*func)(uint8_t);
const bool store;
} cmd_t;
// function defined in antenna.cpp
#ifdef HAS_ANTENNA_SWITCH
void antenna_select(const uint8_t _ant);
void antenna_select(const uint8_t _ant);
#endif
// function defined in adcread.cpp
#ifdef HAS_BATTERY_PROBE
uint32_t read_voltage(void);
#endif
// function sends result of get commands to LoRaWAN network
void do_transmit(osjob_t *j) {
// check if there is a pending TX/RX job running, if yes then reschedule
// transmission
if (LMIC.opmode & OP_TXRXPEND) {
ESP_LOGI(TAG, "LoRa busy, rescheduling");
sprintf(display_lmic, "LORA BUSY");
os_setTimedCallback(&rcmdjob, os_getTime() + sec2osticks(RETRANSMIT_RCMD),
do_transmit);
}
LMIC_setTxData2(RCMDPORT, rcmd_data, rcmd_data_size,
0); // send data unconfirmed on RCMD Port
ESP_LOGI(TAG, "%d bytes queued to send", rcmd_data_size);
sprintf(display_lmic, "PACKET QUEUED");
}
// help function to transmit result of get commands, since callback function
// do_transmit() cannot have params
void transmit(xref2u1_t mydata, u1_t mydata_size) {
rcmd_data = mydata;
rcmd_data_size = mydata_size;
do_transmit(&rcmdjob);
}
// help function to assign LoRa datarates to numeric spreadfactor values
void switch_lora (uint8_t sf, uint8_t tx) {
if ( tx > 20 ) return;
cfg.txpower = tx;
switch (sf) {
case 7: LMIC_setDrTxpow(DR_SF7,tx); cfg.lorasf=sf; break;
case 8: LMIC_setDrTxpow(DR_SF8,tx); cfg.lorasf=sf; break;
case 9: LMIC_setDrTxpow(DR_SF9,tx); cfg.lorasf=sf; break;
case 10: LMIC_setDrTxpow(DR_SF10,tx); cfg.lorasf=sf; break;
case 11:
#if defined(CFG_eu868)
LMIC_setDrTxpow(DR_SF11,tx); cfg.lorasf=sf; break;
#elif defined(CFG_us915)
LMIC_setDrTxpow(DR_SF11CR,tx); cfg.lorasf=sf; break;
#endif
case 12:
#if defined(CFG_eu868)
LMIC_setDrTxpow(DR_SF12,tx); cfg.lorasf=sf; break;
#elif defined(CFG_us915)
LMIC_setDrTxpow(DR_SF12CR,tx); cfg.lorasf=sf; break;
#endif
default: break;
}
void switch_lora(uint8_t sf, uint8_t tx) {
if (tx > 20)
return;
cfg.txpower = tx;
switch (sf) {
case 7:
LMIC_setDrTxpow(DR_SF7, tx);
cfg.lorasf = sf;
break;
case 8:
LMIC_setDrTxpow(DR_SF8, tx);
cfg.lorasf = sf;
break;
case 9:
LMIC_setDrTxpow(DR_SF9, tx);
cfg.lorasf = sf;
break;
case 10:
LMIC_setDrTxpow(DR_SF10, tx);
cfg.lorasf = sf;
break;
case 11:
#if defined(CFG_eu868)
LMIC_setDrTxpow(DR_SF11, tx);
cfg.lorasf = sf;
break;
#elif defined(CFG_us915)
LMIC_setDrTxpow(DR_SF11CR, tx);
cfg.lorasf = sf;
break;
#endif
case 12:
#if defined(CFG_eu868)
LMIC_setDrTxpow(DR_SF12, tx);
cfg.lorasf = sf;
break;
#elif defined(CFG_us915)
LMIC_setDrTxpow(DR_SF12CR, tx);
cfg.lorasf = sf;
break;
#endif
default:
break;
}
}
// set of functions that can be triggered by remote commands
void set_reset(uint8_t val) {
switch (val) {
case 0: // restart device
ESP_LOGI(TAG, "Remote command: restart device");
sprintf(display_lora, "Reset pending");
vTaskDelay(10000/portTICK_PERIOD_MS); // wait for LMIC to confirm LoRa downlink to server
esp_restart();
break;
case 1: // reset MAC counter
ESP_LOGI(TAG, "Remote command: reset MAC counter");
reset_counters(); // clear macs
reset_salt(); // get new salt
sprintf(display_lora, "Reset counter");
break;
case 2: // reset device to factory settings
ESP_LOGI(TAG, "Remote command: reset device to factory settings");
sprintf(display_lora, "Factory reset");
eraseConfig();
break;
}
switch (val) {
case 0: // restart device
ESP_LOGI(TAG, "Remote command: restart device");
sprintf(display_lora, "Reset pending");
vTaskDelay(
10000 /
portTICK_PERIOD_MS); // wait for LMIC to confirm LoRa downlink to server
esp_restart();
break;
case 1: // reset MAC counter
ESP_LOGI(TAG, "Remote command: reset MAC counter");
reset_counters(); // clear macs
reset_salt(); // get new salt
sprintf(display_lora, "Reset counter");
break;
case 2: // reset device to factory settings
ESP_LOGI(TAG, "Remote command: reset device to factory settings");
sprintf(display_lora, "Factory reset");
eraseConfig();
break;
}
};
void set_rssi(uint8_t val) {
cfg.rssilimit = val * -1;
ESP_LOGI(TAG, "Remote command: set RSSI limit to %d", cfg.rssilimit);
};
cfg.rssilimit = val * -1;
ESP_LOGI(TAG, "Remote command: set RSSI limit to %d", cfg.rssilimit);
};
void set_sendcycle(uint8_t val) {
cfg.sendcycle = val;
ESP_LOGI(TAG, "Remote command: set payload send cycle to %d seconds", cfg.sendcycle*2);
};
cfg.sendcycle = val;
ESP_LOGI(TAG, "Remote command: set payload send cycle to %d seconds",
cfg.sendcycle * 2);
};
void set_wifichancycle(uint8_t val) {
cfg.wifichancycle = val;
// modify wifi channel rotation IRQ
timerAlarmWrite(channelSwitch, cfg.wifichancycle * 10000, true); // reload interrupt after each trigger of channel switch cycle
ESP_LOGI(TAG, "Remote command: set Wifi channel switch interval to %.1f seconds", cfg.wifichancycle/float(100));
};
cfg.wifichancycle = val;
// modify wifi channel rotation IRQ
timerAlarmWrite(
channelSwitch, cfg.wifichancycle * 10000,
true); // reload interrupt after each trigger of channel switch cycle
ESP_LOGI(TAG,
"Remote command: set Wifi channel switch interval to %.1f seconds",
cfg.wifichancycle / float(100));
};
void set_blescantime(uint8_t val) {
cfg.blescantime = val;
ESP_LOGI(TAG, "Remote command: set BLE scan time to %d seconds", cfg.blescantime);
cfg.blescantime = val;
ESP_LOGI(TAG, "Remote command: set BLE scan time to %.1f seconds",
cfg.blescantime / float(100));
#ifdef BLECOUNTER
// stop & restart BLE scan task to apply new parameter
if (cfg.blescan) {
stop_BLEscan();
start_BLEscan();
}
#endif
};
void set_countmode(uint8_t val) {
switch (val) {
case 0: // cyclic unconfirmed
cfg.countermode = 0;
ESP_LOGI(TAG, "Remote command: set counter mode to cyclic unconfirmed");
break;
case 1: // cumulative
cfg.countermode = 1;
ESP_LOGI(TAG, "Remote command: set counter mode to cumulative");
break;
default: // cyclic confirmed
cfg.countermode = 2;
ESP_LOGI(TAG, "Remote command: set counter mode to cyclic confirmed");
break;
}
switch (val) {
case 0: // cyclic unconfirmed
cfg.countermode = 0;
ESP_LOGI(TAG, "Remote command: set counter mode to cyclic unconfirmed");
break;
case 1: // cumulative
cfg.countermode = 1;
ESP_LOGI(TAG, "Remote command: set counter mode to cumulative");
break;
default: // cyclic confirmed
cfg.countermode = 2;
ESP_LOGI(TAG, "Remote command: set counter mode to cyclic confirmed");
break;
}
};
void set_screensaver(uint8_t val) {
ESP_LOGI(TAG, "Remote command: set screen saver to %s ", val ? "on" : "off");
switch (val) {
case 1: cfg.screensaver = val; break;
default: cfg.screensaver = 0; break;
}
ESP_LOGI(TAG, "Remote command: set screen saver to %s ", val ? "on" : "off");
switch (val) {
case 1:
cfg.screensaver = val;
break;
default:
cfg.screensaver = 0;
break;
}
};
void set_display(uint8_t val) {
ESP_LOGI(TAG, "Remote command: set screen to %s", val ? "on" : "off");
switch (val) {
case 1: cfg.screenon = val; break;
default: cfg.screenon = 0; break;
}
ESP_LOGI(TAG, "Remote command: set screen to %s", val ? "on" : "off");
switch (val) {
case 1:
cfg.screenon = val;
break;
default:
cfg.screenon = 0;
break;
}
};
void set_gps(uint8_t val) {
ESP_LOGI(TAG, "Remote command: set GPS to %s", val ? "on" : "off");
switch (val) {
case 1:
cfg.gpsmode = val;
break;
default:
cfg.gpsmode = 0;
break;
}
};
void set_lorasf(uint8_t val) {
ESP_LOGI(TAG, "Remote command: set LoRa SF to %d", val);
switch_lora(val, cfg.txpower);
ESP_LOGI(TAG, "Remote command: set LoRa SF to %d", val);
switch_lora(val, cfg.txpower);
};
void set_loraadr(uint8_t val) {
ESP_LOGI(TAG, "Remote command: set LoRa ADR mode to %s", val ? "on" : "off");
switch (val) {
case 1: cfg.adrmode = val; break;
default: cfg.adrmode = 0; break;
}
LMIC_setAdrMode(cfg.adrmode);
ESP_LOGI(TAG, "Remote command: set LoRa ADR mode to %s", val ? "on" : "off");
switch (val) {
case 1:
cfg.adrmode = val;
break;
default:
cfg.adrmode = 0;
break;
}
LMIC_setAdrMode(cfg.adrmode);
};
void set_blescan(uint8_t val) {
ESP_LOGI(TAG, "Remote command: set BLE scan mode to %s", val ? "on" : "off");
switch (val) {
case 0:
cfg.blescan = 0;
macs_ble = 0; // clear BLE counter
break;
default:
cfg.blescan = 1;
break;
}
ESP_LOGI(TAG, "Remote command: set BLE scanner to %s", val ? "on" : "off");
switch (val) {
case 0:
cfg.blescan = 0;
macs_ble = 0; // clear BLE counter
#ifdef BLECOUNTER
stop_BLEscan();
#endif
break;
default:
cfg.blescan = 1;
#ifdef BLECOUNTER
start_BLEscan();
#endif
break;
}
};
void set_wifiant(uint8_t val) {
ESP_LOGI(TAG, "Remote command: set Wifi antenna to %s", val ? "external" : "internal");
switch (val) {
case 1: cfg.wifiant = val; break;
default: cfg.wifiant = 0; break;
}
#ifdef HAS_ANTENNA_SWITCH
antenna_select(cfg.wifiant);
#endif
ESP_LOGI(TAG, "Remote command: set Wifi antenna to %s",
val ? "external" : "internal");
switch (val) {
case 1:
cfg.wifiant = val;
break;
default:
cfg.wifiant = 0;
break;
}
#ifdef HAS_ANTENNA_SWITCH
antenna_select(cfg.wifiant);
#endif
};
void set_vendorfilter(uint8_t val) {
ESP_LOGI(TAG, "Remote command: set vendorfilter mode to %s", val ? "on" : "off");
switch (val) {
case 1: cfg.vendorfilter = val; break;
default: cfg.vendorfilter = 0; break;
}
ESP_LOGI(TAG, "Remote command: set vendorfilter mode to %s",
val ? "on" : "off");
switch (val) {
case 1:
cfg.vendorfilter = val;
break;
default:
cfg.vendorfilter = 0;
break;
}
};
void set_rgblum(uint8_t val) {
// Avoid wrong parameters
cfg.rgblum = (val>=0 && val<=100) ? (uint8_t) val : RGBLUMINOSITY;
ESP_LOGI(TAG, "Remote command: set RGB Led luminosity %d", cfg.rgblum);
// Avoid wrong parameters
cfg.rgblum = (val >= 0 && val <= 100) ? (uint8_t)val : RGBLUMINOSITY;
ESP_LOGI(TAG, "Remote command: set RGB Led luminosity %d", cfg.rgblum);
};
void set_lorapower(uint8_t val) {
ESP_LOGI(TAG, "Remote command: set LoRa TXPOWER to %d", val);
switch_lora(cfg.lorasf, val);
ESP_LOGI(TAG, "Remote command: set LoRa TXPOWER to %d", val);
switch_lora(cfg.lorasf, val);
};
void set_noop (uint8_t val) {
ESP_LOGI(TAG, "Remote command: noop - doing nothing");
void get_config(uint8_t val) {
ESP_LOGI(TAG, "Remote command: get configuration");
transmit((byte *)&cfg, sizeof(cfg));
};
void get_config (uint8_t val) {
ESP_LOGI(TAG, "Remote command: get configuration");
int size = sizeof(configData_t);
// declare send buffer (char byte array)
unsigned char *sendData = new unsigned char[size];
// copy current configuration (struct) to send buffer
memcpy(sendData, &cfg, size);
LMIC_setTxData2(RCMDPORT, sendData, size-1, 0); // send data unconfirmed on RCMD Port
delete sendData; // free memory
ESP_LOGI(TAG, "%d bytes queued in send queue", size-1);
void get_uptime(uint8_t val) {
ESP_LOGI(TAG, "Remote command: get uptime");
transmit((byte *)&uptimecounter, sizeof(uptimecounter));
};
void get_uptime (uint8_t val) {
ESP_LOGI(TAG, "Remote command: get uptime");
int size = sizeof(uptimecounter);
unsigned char *sendData = new unsigned char[size];
memcpy(sendData, (unsigned char*)&uptimecounter , size);
LMIC_setTxData2(RCMDPORT, sendData, size-1, 0); // send data unconfirmed on RCMD Port
delete sendData; // free memory
ESP_LOGI(TAG, "%d bytes queued in send queue", size-1);
void get_cputemp(uint8_t val) {
ESP_LOGI(TAG, "Remote command: get cpu temperature");
float temp = temperatureRead();
transmit((byte *)&temp, sizeof(temp));
};
void get_cputemp (uint8_t val) {
ESP_LOGI(TAG, "Remote command: get cpu temperature");
float temp = temperatureRead();
int size = sizeof(temp);
unsigned char *sendData = new unsigned char[size];
memcpy(sendData, (unsigned char*)&temp, size);
LMIC_setTxData2(RCMDPORT, sendData, size-1, 0); // send data unconfirmed on RCMD Port
delete sendData; // free memory
ESP_LOGI(TAG, "%d bytes queued in send queue", size-1);
void get_voltage(uint8_t val) {
ESP_LOGI(TAG, "Remote command: get battery voltage");
#ifdef HAS_BATTERY_PROBE
uint16_t voltage = read_voltage();
#else
uint16_t voltage = 0;
#endif
transmit((byte *)&voltage, sizeof(voltage));
};
void get_gps(uint8_t val) {
ESP_LOGI(TAG, "Remote command: get gps status");
#ifdef HAS_GPS
gps_read();
transmit((byte *)&gps_status, sizeof(gps_status));
ESP_LOGI(TAG, "lat=%f / lon=%f | Sats=%u | HDOP=%u | Alti=%u",
gps_status.latitude / 1000000, gps_status.longitude / 1000000,
gps_status.satellites, gps_status.hdop, gps_status.altitude);
#else
ESP_LOGE(TAG, "GPS not present");
#endif
};
// assign previously defined functions to set of numeric remote commands
// format: opcode, function, flag (1 = do make settings persistent / 0 = don't)
//
cmd_t table[] = {
{0x01, set_rssi, true},
{0x02, set_countmode, true},
{0x03, set_noop, false},
{0x04, set_display, true},
{0x05, set_lorasf, true},
{0x06, set_lorapower, true},
{0x07, set_loraadr, true},
{0x08, set_screensaver, true},
{0x09, set_reset, false},
{0x0a, set_sendcycle, true},
{0x0b, set_wifichancycle, true},
{0x0c, set_blescantime, true},
{0x0d, set_vendorfilter, false},
{0x0e, set_blescan, true},
{0x0f, set_wifiant, true},
{0x10, set_rgblum, true},
{0x80, get_config, false},
{0x81, get_uptime, false},
{0x82, get_cputemp, false}
};
//
cmd_t table[] = {{0x01, set_rssi, true}, {0x02, set_countmode, true},
{0x03, set_gps, true}, {0x04, set_display, true},
{0x05, set_lorasf, true}, {0x06, set_lorapower, true},
{0x07, set_loraadr, true}, {0x08, set_screensaver, true},
{0x09, set_reset, false}, {0x0a, set_sendcycle, true},
{0x0b, set_wifichancycle, true}, {0x0c, set_blescantime, true},
{0x0d, set_vendorfilter, false}, {0x0e, set_blescan, true},
{0x0f, set_wifiant, true}, {0x10, set_rgblum, true},
{0x80, get_config, false}, {0x81, get_uptime, false},
{0x82, get_cputemp, false}, {0x83, get_voltage, false},
{0x84, get_gps, false}};
// check and execute remote command
void rcommand(uint8_t cmd, uint8_t arg) {
int i = sizeof(table) / sizeof(table[0]); // number of commands in command table
bool store_flag = false;
while(i--) {
if(cmd == table[i].nam) { // check if valid command
table[i].func(arg); // then execute assigned function
if ( table[i].store ) store_flag = true; // set save flag if function needs to store configuration
break; // exit check loop, since command was found
}
int i =
sizeof(table) / sizeof(table[0]); // number of commands in command table
bool store_flag = false;
while (i--) {
if (cmd == table[i].nam) { // check if valid command
table[i].func(arg); // then execute assigned function
if (table[i].store)
store_flag =
true; // set save flag if function needs to store configuration
break; // exit check loop, since command was found
}
if (store_flag) saveConfig(); // if save flag is set: store new configuration in NVS to make it persistent
}
if (store_flag)
saveConfig(); // if save flag is set: store new configuration in NVS to make
// it persistent
}

View File

@ -6,23 +6,22 @@
// RGB Led instance
SmartLed rgb_led(LED_WS2812, 1, HAS_RGB_LED);
float rgb_CalcColor(float p, float q, float t)
{
if (t < 0.0f)
t += 1.0f;
if (t > 1.0f)
t -= 1.0f;
float rgb_CalcColor(float p, float q, float t) {
if (t < 0.0f)
t += 1.0f;
if (t > 1.0f)
t -= 1.0f;
if (t < 1.0f / 6.0f)
return p + (q - p) * 6.0f * t;
if (t < 1.0f / 6.0f)
return p + (q - p) * 6.0f * t;
if (t < 0.5f)
return q;
if (t < 0.5f)
return q;
if (t < 2.0f / 3.0f)
return p + ((q - p) * (2.0f / 3.0f - t) * 6.0f);
if (t < 2.0f / 3.0f)
return p + ((q - p) * (2.0f / 3.0f - t) * 6.0f);
return p;
return p;
}
// ------------------------------------------------------------------------
@ -30,45 +29,41 @@ float rgb_CalcColor(float p, float q, float t)
// HslColor using H, S, L values (0.0 - 1.0)
// L should be limited to between (0.0 - 0.5)
// ------------------------------------------------------------------------
RGBColor rgb_hsl2rgb(float h, float s, float l)
{
RGBColor RGB_color;
float r;
float g;
float b;
RGBColor rgb_hsl2rgb(float h, float s, float l) {
RGBColor RGB_color;
float r;
float g;
float b;
if (s == 0.0f || l == 0.0f)
{
r = g = b = l; // achromatic or black
}
else
{
float q = l < 0.5f ? l * (1.0f + s) : l + s - (l * s);
float p = 2.0f * l - q;
r = rgb_CalcColor(p, q, h + 1.0f / 3.0f);
g = rgb_CalcColor(p, q, h);
b = rgb_CalcColor(p, q, h - 1.0f / 3.0f);
}
if (s == 0.0f || l == 0.0f) {
r = g = b = l; // achromatic or black
} else {
float q = l < 0.5f ? l * (1.0f + s) : l + s - (l * s);
float p = 2.0f * l - q;
r = rgb_CalcColor(p, q, h + 1.0f / 3.0f);
g = rgb_CalcColor(p, q, h);
b = rgb_CalcColor(p, q, h - 1.0f / 3.0f);
}
RGB_color.R = (uint8_t)(r * 255.0f);
RGB_color.G = (uint8_t)(g * 255.0f);
RGB_color.B = (uint8_t)(b * 255.0f);
RGB_color.R = (uint8_t)(r * 255.0f);
RGB_color.G = (uint8_t)(g * 255.0f);
RGB_color.B = (uint8_t)(b * 255.0f);
return RGB_color;
return RGB_color;
}
void rgb_set_color(uint16_t hue) {
if (hue == COLOR_NONE) {
// Off
rgb_led[0] = Rgb(0,0,0);
rgb_led[0] = Rgb(0, 0, 0);
} else {
// see http://www.workwithcolor.com/blue-color-hue-range-01.htm
// H (is color from 0..360) should be between 0.0 and 1.0
// S is saturation keep it to 1
// L is brightness should be between 0.0 and 0.5
// cfg.rgblum is between 0 and 100 (percent)
RGBColor target = rgb_hsl2rgb( hue / 360.0f, 1.0f, 0.005f * cfg.rgblum);
//uint32_t color = target.R<<16 | target.G<<8 | target.B;
RGBColor target = rgb_hsl2rgb(hue / 360.0f, 1.0f, 0.005f * cfg.rgblum);
// uint32_t color = target.R<<16 | target.G<<8 | target.B;
rgb_led[0] = Rgb(target.R, target.G, target.B);
}
// Show

View File

@ -3,27 +3,26 @@
// value for HSL color
// see http://www.workwithcolor.com/blue-color-hue-range-01.htm
#define COLOR_RED 0
#define COLOR_ORANGE 30
#define COLOR_ORANGE_YELLOW 45
#define COLOR_YELLOW 60
#define COLOR_YELLOW_GREEN 90
#define COLOR_GREEN 120
#define COLOR_GREEN_CYAN 165
#define COLOR_CYAN 180
#define COLOR_CYAN_BLUE 210
#define COLOR_BLUE 240
#define COLOR_BLUE_MAGENTA 275
#define COLOR_MAGENTA 300
#define COLOR_PINK 350
#define COLOR_WHITE 360
#define COLOR_NONE 999
#define COLOR_RED 0
#define COLOR_ORANGE 30
#define COLOR_ORANGE_YELLOW 45
#define COLOR_YELLOW 60
#define COLOR_YELLOW_GREEN 90
#define COLOR_GREEN 120
#define COLOR_GREEN_CYAN 165
#define COLOR_CYAN 180
#define COLOR_CYAN_BLUE 210
#define COLOR_BLUE 240
#define COLOR_BLUE_MAGENTA 275
#define COLOR_MAGENTA 300
#define COLOR_PINK 350
#define COLOR_WHITE 360
#define COLOR_NONE 999
struct RGBColor
{
uint8_t R;
uint8_t G;
uint8_t B;
struct RGBColor {
uint8_t R;
uint8_t G;
uint8_t B;
};
// Exported Functions

View File

@ -36,48 +36,52 @@
#include <inttypes.h>
uint32_t rokkit(const char * data, int len) {
uint32_t rokkit(const char *data, int len) {
uint32_t hash, tmp;
int rem;
if (len <= 0 || data == 0) return 0;
hash = len;
rem = len & 3;
len >>= 2;
if (len <= 0 || data == 0)
return 0;
hash = len;
rem = len & 3;
len >>= 2;
/* Main loop */
while (len > 0) {
hash += *((uint16_t*)data);
tmp = (*((uint16_t*)(data+2)) << 11) ^ hash;
hash = (hash << 16) ^ tmp;
data += 2*2;
hash += hash >> 11;
len--;
}
/* Main loop */
while (len > 0) {
hash += *((uint16_t *)data);
tmp = (*((uint16_t *)(data + 2)) << 11) ^ hash;
hash = (hash << 16) ^ tmp;
data += 2 * 2;
hash += hash >> 11;
len--;
}
/* Handle end cases */
switch (rem) {
case 3: hash += *((uint16_t*)data);
hash ^= hash << 16;
hash ^= ((signed char)data[2]) << 18;
hash += hash >> 11;
break;
case 2: hash += *((uint16_t*)data);
hash ^= hash << 11;
hash += hash >> 17;
break;
case 1: hash += (signed char)*data;
hash ^= hash << 10;
hash += hash >> 1;
}
/* Force "avalanching" of final 127 bits */
hash ^= hash << 3;
hash += hash >> 5;
hash ^= hash << 4;
/* Handle end cases */
switch (rem) {
case 3:
hash += *((uint16_t *)data);
hash ^= hash << 16;
hash ^= ((signed char)data[2]) << 18;
hash += hash >> 11;
break;
case 2:
hash += *((uint16_t *)data);
hash ^= hash << 11;
hash += hash >> 17;
hash ^= hash << 25;
hash += hash >> 6;
break;
case 1:
hash += (signed char)*data;
hash ^= hash << 10;
hash += hash >> 1;
}
return hash;
/* Force "avalanching" of final 127 bits */
hash ^= hash << 3;
hash += hash >> 5;
hash ^= hash << 4;
hash += hash >> 17;
hash ^= hash << 25;
hash += hash >> 6;
return hash;
}

File diff suppressed because it is too large Load Diff