timesync improvements

This commit is contained in:
Verkehrsrot 2019-03-16 21:01:43 +01:00
parent 7b95359452
commit af4cf1d09f
10 changed files with 163 additions and 135 deletions

View File

@ -5,7 +5,6 @@
#include "timekeeper.h" #include "timekeeper.h"
#define IF482_FRAME_SIZE (17) #define IF482_FRAME_SIZE (17)
#define IF482_PULSE_LENGTH (1000)
extern HardwareSerial IF482; extern HardwareSerial IF482;

View File

@ -7,7 +7,7 @@
#include "timekeeper.h" #include "timekeeper.h"
#define TIME_SYNC_SAMPLES 3 // number of time requests for averaging #define TIME_SYNC_SAMPLES 3 // number of time requests for averaging
#define TIME_SYNC_CYCLE 20 // seconds between two time requests #define TIME_SYNC_CYCLE 2 // seconds between two time requests
#define TIME_SYNC_TIMEOUT 120 // timeout seconds waiting for timeserver answer #define TIME_SYNC_TIMEOUT 120 // timeout seconds waiting for timeserver answer
#define TIME_SYNC_TRIGGER 100 // time deviation in millisec triggering a sync #define TIME_SYNC_TRIGGER 100 // time deviation in millisec triggering a sync
#define TIME_SYNC_FRAME_LENGTH 0x06 // timeserver answer frame length #define TIME_SYNC_FRAME_LENGTH 0x06 // timeserver answer frame length
@ -15,6 +15,6 @@
void send_timesync_req(void); void send_timesync_req(void);
int recv_timesync_ans(uint8_t buf[], uint8_t buf_len); int recv_timesync_ans(uint8_t buf[], uint8_t buf_len);
void process_timesync_req(void *taskparameter); void process_timesync_req(void *taskparameter);
void store_time_sync_req(time_t t_millisec); void store_time_sync_req(uint32_t t_millisec);
#endif #endif

View File

@ -30,10 +30,10 @@ description = Paxcounter is a proof-of-concept ESP32 device for metering passeng
[common] [common]
; for release_version use max. 10 chars total, use any decimal format like "a.b.c" ; for release_version use max. 10 chars total, use any decimal format like "a.b.c"
release_version = 1.7.38 release_version = 1.7.39
; DEBUG LEVEL: For production run set to 0, otherwise device will leak RAM while running! ; DEBUG LEVEL: For production run set to 0, otherwise device will leak RAM while running!
; 0=None, 1=Error, 2=Warn, 3=Info, 4=Debug, 5=Verbose ; 0=None, 1=Error, 2=Warn, 3=Info, 4=Debug, 5=Verbose
debug_level = 4 debug_level = 3
; UPLOAD MODE: select esptool to flash via USB/UART, select custom to upload to cloud for OTA ; UPLOAD MODE: select esptool to flash via USB/UART, select custom to upload to cloud for OTA
upload_protocol = esptool upload_protocol = esptool
;upload_protocol = custom ;upload_protocol = custom

View File

@ -22,7 +22,9 @@ void DCF77_Pulse(time_t t, uint8_t const *DCFpulse) {
TickType_t startTime = xTaskGetTickCount(); TickType_t startTime = xTaskGetTickCount();
uint8_t sec = second(t); uint8_t sec = second(t);
ESP_LOGD (TAG, "DCF second %d", sec); t = myTZ.toLocal(now());
ESP_LOGD(TAG, "[%02d:%02d:%02d.%03d] DCF second %d", hour(t), minute(t),
second(t), millisecond(), sec);
// induce 10 pulses // induce 10 pulses
for (uint8_t pulse = 0; pulse <= 9; pulse++) { for (uint8_t pulse = 0; pulse <= 9; pulse++) {
@ -100,8 +102,8 @@ uint8_t *IRAM_ATTR DCF77_Frame(time_t const tt) {
} // DCF77_Frame() } // DCF77_Frame()
// helper function to convert decimal to bcd digit // helper function to convert decimal to bcd digit
uint8_t IRAM_ATTR dec2bcd(uint8_t const dec, uint8_t const startpos, uint8_t const endpos, uint8_t IRAM_ATTR dec2bcd(uint8_t const dec, uint8_t const startpos,
uint8_t *DCFpulse) { uint8_t const endpos, uint8_t *DCFpulse) {
uint8_t data = (dec < 10) ? dec : ((dec / 10) << 4) + (dec % 10); uint8_t data = (dec < 10) ? dec : ((dec / 10) << 4) + (dec % 10);
uint8_t parity = 0; uint8_t parity = 0;
@ -116,6 +118,8 @@ uint8_t IRAM_ATTR dec2bcd(uint8_t const dec, uint8_t const startpos, uint8_t con
} }
// helper function to encode parity // helper function to encode parity
uint8_t IRAM_ATTR setParityBit(uint8_t const p) { return ((p & 1) ? dcf_1 : dcf_0); } uint8_t IRAM_ATTR setParityBit(uint8_t const p) {
return ((p & 1) ? dcf_1 : dcf_0);
}
#endif // HAS_DCF77 #endif // HAS_DCF77

View File

@ -90,15 +90,15 @@ HardwareSerial IF482(2); // use UART #2 (note: #1 may be in use for serial GPS)
void IF482_Pulse(time_t t) { void IF482_Pulse(time_t t) {
static const TickType_t txDelay = static const TickType_t txDelay =
pdMS_TO_TICKS(IF482_PULSE_LENGTH - tx_Ticks(IF482_FRAME_SIZE, HAS_IF482)); pdMS_TO_TICKS(1000) - tx_Ticks(IF482_FRAME_SIZE, HAS_IF482);
vTaskDelay(txDelay); // wait until moment to fire vTaskDelay(txDelay); // wait until moment to fire
IF482.print(IF482_Frame(t + 1)); // note: if482 telegram for *next* second IF482.print(IF482_Frame(t + 1)); // note: if482 telegram for *next* second
} }
String IRAM_ATTR IF482_Frame(time_t startTime) { String IRAM_ATTR IF482_Frame(time_t printTime) {
time_t t = myTZ.toLocal(startTime); time_t t = myTZ.toLocal(printTime);
char mon, out[IF482_FRAME_SIZE + 1]; char mon, out[IF482_FRAME_SIZE + 1];
switch (timeStatus()) { // indicates if time has been set and recently synced switch (timeStatus()) { // indicates if time has been set and recently synced
@ -118,7 +118,9 @@ String IRAM_ATTR IF482_Frame(time_t startTime) {
year(t) - 2000, month(t), day(t), weekday(t), hour(t), minute(t), year(t) - 2000, month(t), day(t), weekday(t), hour(t), minute(t),
second(t)); second(t));
ESP_LOGD(TAG, "IF482 = %s", out); t = myTZ.toLocal(now());
ESP_LOGD(TAG, "[%02d:%02d:%02d.%03d] IF482 = %s", hour(t), minute(t),
second(t), millisecond(), out);
return out; return out;
} }

View File

@ -232,10 +232,6 @@ void onEvent(ev_t ev) {
#if (TIME_SYNC_TIMESERVER) #if (TIME_SYNC_TIMESERVER)
// if last packet sent was a timesync request, store TX timestamp // if last packet sent was a timesync request, store TX timestamp
if (LMIC.pendTxPort == TIMEPORT) { if (LMIC.pendTxPort == TIMEPORT) {
// store_time_sync_req(now(now_micros), now_micros);
// adjust sampled OS time back in time to the nearest second boundary
//const ostime_t tAdjust = LMIC.netDeviceTimeFrac * ms2osticks(1000) / 256;
//store_time_sync_req(osticks2ms(LMIC.txend - tAdjust)); // milliseconds
store_time_sync_req(osticks2ms(LMIC.txend)); // milliseconds store_time_sync_req(osticks2ms(LMIC.txend)); // milliseconds
} }
#endif #endif
@ -244,7 +240,7 @@ void onEvent(ev_t ev) {
: PSTR("TX_COMPLETE")); : PSTR("TX_COMPLETE"));
sprintf(display_line6, " "); // clear previous lmic status sprintf(display_line6, " "); // clear previous lmic status
if (LMIC.dataLen) { // did we receive data -> display info if (LMIC.dataLen) { // did we receive payload data -> display info
ESP_LOGI(TAG, "Received %d bytes of payload, RSSI %d SNR %d", ESP_LOGI(TAG, "Received %d bytes of payload, RSSI %d SNR %d",
LMIC.dataLen, LMIC.rssi, LMIC.snr / 4); LMIC.dataLen, LMIC.rssi, LMIC.snr / 4);
sprintf(display_line6, "RSSI %d SNR %d", LMIC.rssi, LMIC.snr / 4); sprintf(display_line6, "RSSI %d SNR %d", LMIC.rssi, LMIC.snr / 4);
@ -429,12 +425,16 @@ esp_err_t lora_stack_init() {
void lora_enqueuedata(MessageBuffer_t *message, sendprio_t prio) { void lora_enqueuedata(MessageBuffer_t *message, sendprio_t prio) {
// enqueue message in LORA send queue // enqueue message in LORA send queue
BaseType_t ret; BaseType_t ret;
MessageBuffer_t DummyBuffer;
switch (prio) { switch (prio) {
case prio_high: case prio_high:
// clear space in queue if full, then fallthrough to normal
if (uxQueueSpacesAvailable == 0)
xQueueReceive(LoraSendQueue, &DummyBuffer, (TickType_t)0);
case prio_normal:
ret = xQueueSendToFront(LoraSendQueue, (void *)message, (TickType_t)0); ret = xQueueSendToFront(LoraSendQueue, (void *)message, (TickType_t)0);
break; break;
case prio_low: case prio_low:
case prio_normal:
default: default:
ret = xQueueSendToBack(LoraSendQueue, (void *)message, (TickType_t)0); ret = xQueueSendToBack(LoraSendQueue, (void *)message, (TickType_t)0);
break; break;

View File

@ -36,8 +36,7 @@ looptask 1 1 arduino core -> runs the LMIC LoRa stack
irqhandler 1 1 executes tasks triggered by timer irq irqhandler 1 1 executes tasks triggered by timer irq
gpsloop 1 2 reads data from GPS via serial or i2c gpsloop 1 2 reads data from GPS via serial or i2c
bmeloop 1 1 reads data from BME sensor via i2c bmeloop 1 1 reads data from BME sensor via i2c
timesync_ans 1 0 temporary task for receiving time sync requests timesync_req 1 4 temporary task for processing time sync requests
timesync_req 1 0 temporary task for sending time sync requests
IDLE 1 0 ESP32 arduino scheduler -> runs wifi channel rotator IDLE 1 0 ESP32 arduino scheduler -> runs wifi channel rotator
Low priority numbers denote low priority tasks. Low priority numbers denote low priority tasks.
@ -165,7 +164,6 @@ void setup() {
ARDUINO_LMIC_VERSION_GET_MINOR(ARDUINO_LMIC_VERSION), ARDUINO_LMIC_VERSION_GET_MINOR(ARDUINO_LMIC_VERSION),
ARDUINO_LMIC_VERSION_GET_PATCH(ARDUINO_LMIC_VERSION), ARDUINO_LMIC_VERSION_GET_PATCH(ARDUINO_LMIC_VERSION),
ARDUINO_LMIC_VERSION_GET_LOCAL(ARDUINO_LMIC_VERSION)); ARDUINO_LMIC_VERSION_GET_LOCAL(ARDUINO_LMIC_VERSION));
ESP_LOGI(TAG, "DEVEUI: ");
showLoraKeys(); showLoraKeys();
#endif // HAS_LORA #endif // HAS_LORA

View File

@ -150,12 +150,16 @@ esp_err_t spi_init() {
void spi_enqueuedata(MessageBuffer_t *message, sendprio_t prio) { void spi_enqueuedata(MessageBuffer_t *message, sendprio_t prio) {
// enqueue message in SPI send queue // enqueue message in SPI send queue
BaseType_t ret; BaseType_t ret;
MessageBuffer_t DummyBuffer;
switch (prio) { switch (prio) {
case prio_high: case prio_high:
// clear space in queue if full, then fallthrough to normal
if (!uxQueueSpacesAvailable(SPISendQueue))
xQueueReceive(SPISendQueue, &DummyBuffer, (TickType_t)0);
case prio_normal:
ret = xQueueSendToFront(SPISendQueue, (void *)message, (TickType_t)0); ret = xQueueSendToFront(SPISendQueue, (void *)message, (TickType_t)0);
break; break;
case prio_low: case prio_low:
case prio_normal:
default: default:
ret = xQueueSendToBack(SPISendQueue, (void *)message, (TickType_t)0); ret = xQueueSendToBack(SPISendQueue, (void *)message, (TickType_t)0);
break; break;

View File

@ -219,12 +219,12 @@ void clock_loop(void *taskparameter) { // ClockTask
xTaskNotifyWait(0x00, ULONG_MAX, &printtime, xTaskNotifyWait(0x00, ULONG_MAX, &printtime,
portMAX_DELAY); // wait for timepulse portMAX_DELAY); // wait for timepulse
// no confident time -> we suppress clock output
if (timeStatus() == timeNotSet)
continue;
t = time_t(printtime); // UTC time seconds t = time_t(printtime); // UTC time seconds
// no confident time -> suppress clock output
if ((timeStatus() == timeNotSet) || !(timeIsValid(t)))
continue;
#if defined HAS_IF482 #if defined HAS_IF482
IF482_Pulse(t); IF482_Pulse(t);

View File

@ -27,6 +27,7 @@ typedef std::chrono::system_clock myClock;
typedef myClock::time_point myClock_timepoint; typedef myClock::time_point myClock_timepoint;
typedef std::chrono::duration<long long int, std::ratio<1, 1000>> typedef std::chrono::duration<long long int, std::ratio<1, 1000>>
myClock_msecTick; myClock_msecTick;
typedef std::chrono::duration<double> myClock_secTick;
myClock_timepoint time_sync_tx[TIME_SYNC_SAMPLES]; myClock_timepoint time_sync_tx[TIME_SYNC_SAMPLES];
myClock_timepoint time_sync_rx[TIME_SYNC_SAMPLES]; myClock_timepoint time_sync_rx[TIME_SYNC_SAMPLES];
@ -39,14 +40,13 @@ void send_timesync_req() {
ESP_LOGI(TAG, "Timeserver sync request already pending"); ESP_LOGI(TAG, "Timeserver sync request already pending");
return; return;
} else { } else {
ESP_LOGI(TAG, "Timeserver sync request started"); ESP_LOGI(TAG, "[%0.3f] Timeserver sync request started", millis() / 1000.0);
lora_time_sync_pending = true; lora_time_sync_pending = true;
// clear timestamp array // initialize timestamp array
for (uint8_t i = 0; i < TIME_SYNC_SAMPLES; i++) { for (uint8_t i = 0; i < TIME_SYNC_SAMPLES; i++)
time_sync_tx[i] = time_sync_rx[i] = myClock_timepoint(); // set to epoch time_sync_tx[i] = time_sync_rx[i] = myClock_timepoint();
}
// kick off temporary task for timeserver handshake processing // kick off temporary task for timeserver handshake processing
if (!timeSyncReqTask) if (!timeSyncReqTask)
@ -54,12 +54,132 @@ void send_timesync_req() {
"timesync_req", // name of task "timesync_req", // name of task
2048, // stack size of task 2048, // stack size of task
(void *)1, // task parameter (void *)1, // task parameter
0, // priority of the task 4, // priority of the task
&timeSyncReqTask, // task handle &timeSyncReqTask, // task handle
1); // CPU core 1); // CPU core
} }
} }
// task for sending time sync requests
void process_timesync_req(void *taskparameter) {
uint32_t seq_no = 0, time_to_set_us;
long long int time_to_set_ms;
uint16_t time_to_set_fraction_msec;
uint8_t k = 0, i = 0;
time_t time_to_set;
auto time_offset = myClock_msecTick::zero();
// wait until we are joined
while (!LMIC.devaddr) {
vTaskDelay(pdMS_TO_TICKS(2000));
}
// enqueue timestamp samples in lora sendqueue
for (uint8_t i = 0; i < TIME_SYNC_SAMPLES; i++) {
// wrap around seqNo 0 .. 254
time_sync_seqNo = (time_sync_seqNo >= 255) ? 0 : time_sync_seqNo + 1;
// send sync request to server
payload.reset();
payload.addByte(time_sync_seqNo);
SendPayload(TIMEPORT, prio_high);
// process answer, wait for notification from recv_timesync_ans()
if ((xTaskNotifyWait(0x00, ULONG_MAX, &seq_no,
pdMS_TO_TICKS(TIME_SYNC_TIMEOUT * 1000)) == pdFALSE) ||
(seq_no != time_sync_seqNo)) {
ESP_LOGW(TAG, "[%0.3f] Timeserver handshake failed", millis() / 1000.0);
goto finish;
} // no valid sequence received before timeout
else { // calculate time diff from collected timestamps
k = seq_no % TIME_SYNC_SAMPLES;
auto t_tx = time_point_cast<milliseconds>(
time_sync_tx[k]); // timepoint when node TX_completed
auto t_rx = time_point_cast<milliseconds>(
time_sync_rx[k]); // timepoint when message was seen on gateway
time_offset += t_rx - t_tx; // cumulate timepoint diffs
if (i < TIME_SYNC_SAMPLES - 1) {
// wait until next cycle
vTaskDelay(pdMS_TO_TICKS(TIME_SYNC_CYCLE * 1000));
} else {
// send flush to open a receive window for last time_sync_ans
payload.reset();
payload.addByte(0x99);
SendPayload(RCMDPORT, prio_high);
}
}
} // for
// calculate time offset from collected diffs
time_offset /= TIME_SYNC_SAMPLES;
ESP_LOGD(TAG, "[%0.3f] avg time diff: %0.3f sec", millis() / 1000.0,
myClock_secTick(time_offset).count());
// calculate absolute time with millisecond precision
time_to_set_ms = (long long)now(time_to_set_us) * 1000LL +
time_to_set_us / 1000LL + time_offset.count();
// convert to seconds
time_to_set = (time_t)(time_to_set_ms / 1000LL);
// calculate fraction milliseconds
time_to_set_fraction_msec = (uint16_t)(time_to_set_ms % 1000LL);
ESP_LOGD(TAG, "[%0.3f] Calculated UTC epoch time: %d.%03d sec",
millis() / 1000.0, time_to_set, time_to_set_fraction_msec);
// adjust system time
if (timeIsValid(time_to_set)) {
if (abs(time_offset.count()) >=
TIME_SYNC_TRIGGER) { // milliseconds threshold
// wait until top of second
ESP_LOGD(TAG, "[%0.3f] waiting %d ms", millis() / 1000.0,
1000 - time_to_set_fraction_msec);
vTaskDelay(pdMS_TO_TICKS(1000 - time_to_set_fraction_msec));
// sync timer pps to top of second
if (ppsIRQ) {
timerRestart(ppsIRQ); // reset pps timer
CLOCKIRQ(); // fire clock pps interrupt
}
setTime(time_to_set + 1);
timeSource = _lora;
timesyncer.attach(TIME_SYNC_INTERVAL * 60,
timeSync); // set to regular repeat
ESP_LOGI(TAG, "[%0.3f] Timesync finished, time adjusted by %.3f sec",
millis() / 1000.0, myClock_secTick(time_offset).count());
} else
ESP_LOGI(TAG, "Timesync finished, time not adjusted, is up to date");
} else
ESP_LOGW(TAG, "Invalid time received from timeserver");
finish:
lora_time_sync_pending = false;
timeSyncReqTask = NULL;
vTaskDelete(NULL); // end task
}
// called from lorawan.cpp after time_sync_req was sent
void store_time_sync_req(uint32_t t_millisec) {
uint8_t k = time_sync_seqNo % TIME_SYNC_SAMPLES;
time_sync_tx[k] += milliseconds(t_millisec);
ESP_LOGD(TAG, "[%0.3f] Timesync request #%d sent at %d.%03d",
millis() / 1000.0, time_sync_seqNo, t_millisec / 1000,
t_millisec % 1000);
}
// process timeserver timestamp answer, called from lorawan.cpp // process timeserver timestamp answer, called from lorawan.cpp
int recv_timesync_ans(uint8_t buf[], uint8_t buf_len) { int recv_timesync_ans(uint8_t buf[], uint8_t buf_len) {
@ -80,8 +200,8 @@ int recv_timesync_ans(uint8_t buf[], uint8_t buf_len) {
else else
return 0; // failure return 0; // failure
ESP_LOGD(TAG, "Timesync request #%d rcvd at %d", seq_no, ESP_LOGD(TAG, "[%0.3f] Timesync request #%d rcvd at %d.%03d",
myClock::to_time_t(time_sync_rx[k])); millis() / 1000.0, seq_no, timestamp_sec, timestamp_msec);
// inform processing task // inform processing task
if (timeSyncReqTask) if (timeSyncReqTask)
@ -90,103 +210,4 @@ int recv_timesync_ans(uint8_t buf[], uint8_t buf_len) {
return 1; // success return 1; // success
} }
// task for sending time sync requests
void process_timesync_req(void *taskparameter) {
uint8_t k = 0, i = 0;
uint32_t seq_no = 0;
// milliseconds time_offset(0);
auto time_offset = myClock_msecTick::zero();
int time_offset_msec;
time_t time_to_set;
// enqueue timestamp samples in lora sendqueue
for (uint8_t i = 0; i < TIME_SYNC_SAMPLES; i++) {
// wrap around seqNo 0 .. 254
time_sync_seqNo = (time_sync_seqNo >= 255) ? 0 : time_sync_seqNo + 1;
// send sync request to server
payload.reset();
payload.addByte(time_sync_seqNo);
SendPayload(TIMEPORT, prio_high);
// process answer
if ((xTaskNotifyWait(0x00, ULONG_MAX, &seq_no,
pdMS_TO_TICKS(TIME_SYNC_TIMEOUT * 1000)) == pdFALSE) ||
(seq_no != time_sync_seqNo)) {
ESP_LOGW(TAG, "Timeserver handshake failed");
goto finish;
} // no valid sequence received before timeout
else { // calculate time diff from collected timestamps
k = seq_no % TIME_SYNC_SAMPLES;
auto t_tx = time_point_cast<milliseconds>(
time_sync_tx[k]); // timepoint when node TX_completed
auto t_rx = time_point_cast<milliseconds>(
time_sync_rx[k]); // timepoint when message was seen on gateway
time_offset += t_rx - t_tx; // cumulate timepoint diffs
ESP_LOGD(TAG, "time_offset: %lldms", time_offset.count());
if (i < TIME_SYNC_SAMPLES - 1) // wait until next cycle
vTaskDelay(pdMS_TO_TICKS(TIME_SYNC_CYCLE * 1000));
}
} // for
// calculate time offset from collected diffs and set time if necessary
ESP_LOGD(TAG, "Avg time diff: %lldms", time_offset.count());
time_offset /= TIME_SYNC_SAMPLES;
// 1sec wait for top of second
time_to_set = now() + time_offset.count() / 1000 + 1;
ESP_LOGD(TAG, "Calculated UTC epoch time: %d", time_to_set);
// adjust system time
if (timeIsValid(time_to_set)) {
if (abs(time_offset.count()) >=
TIME_SYNC_TRIGGER) { // milliseconds threshold
// wait until top of second
time_offset_msec = abs(time_offset.count()) % 1000;
ESP_LOGD(TAG, "waiting %dms", 1000 - time_offset_msec);
vTaskDelay(pdMS_TO_TICKS(1000 - time_offset_msec));
// sync timer pps to top of second
if (ppsIRQ) {
timerRestart(ppsIRQ); // reset pps timer
CLOCKIRQ(); // fire clock pps interrupt
}
setTime(time_to_set);
timeSource = _lora;
timesyncer.attach(TIME_SYNC_INTERVAL * 60,
timeSync); // set to regular repeat
ESP_LOGI(TAG, "Timesync finished, time adjusted by %lld ms",
time_offset.count());
} else
ESP_LOGI(TAG, "Timesync finished, time not adjusted, is up to date");
} else
ESP_LOGW(TAG, "Invalid time received from timeserver");
finish:
lora_time_sync_pending = false;
timeSyncReqTask = NULL;
vTaskDelete(NULL); // end task
}
// called from lorawan.cpp after time_sync_req was sent
void store_time_sync_req(time_t t_millisec) {
uint8_t k = time_sync_seqNo % TIME_SYNC_SAMPLES;
time_sync_tx[k] += milliseconds(t_millisec);
ESP_LOGD(TAG, "Timesync request #%d sent at %d", time_sync_seqNo,
myClock::to_time_t(time_sync_tx[k]));
}
#endif #endif