Merge pull request #52 from cyberman54/development

v1.3.3
This commit is contained in:
Verkehrsrot 2018-04-27 21:31:32 +02:00 committed by GitHub
commit 9ff3522cd4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 111 additions and 124 deletions

View File

@ -174,113 +174,113 @@ void loadConfig() {
// overwrite defaults with valid values from NVRAM // overwrite defaults with valid values from NVRAM
if( nvs_get_i8(my_handle, "lorasf", &flash8) == ESP_OK ) { if( nvs_get_i8(my_handle, "lorasf", &flash8) == ESP_OK ) {
cfg.lorasf = flash8; cfg.lorasf = flash8;
ESP_LOGI(TAG, "lorasf = %i", flash8); ESP_LOGI(TAG, "lorasf = %d", flash8);
} else { } else {
ESP_LOGI(TAG, "lorasf set to default %i", cfg.lorasf); ESP_LOGI(TAG, "lorasf set to default %d", cfg.lorasf);
saveConfig(); saveConfig();
} }
if( nvs_get_i8(my_handle, "txpower", &flash8) == ESP_OK ) { if( nvs_get_i8(my_handle, "txpower", &flash8) == ESP_OK ) {
cfg.txpower = flash8; cfg.txpower = flash8;
ESP_LOGI(TAG, "txpower = %i", flash8); ESP_LOGI(TAG, "txpower = %d", flash8);
} else { } else {
ESP_LOGI(TAG, "txpower set to default %i", cfg.txpower); ESP_LOGI(TAG, "txpower set to default %d", cfg.txpower);
saveConfig(); saveConfig();
} }
if( nvs_get_i8(my_handle, "adrmode", &flash8) == ESP_OK ) { if( nvs_get_i8(my_handle, "adrmode", &flash8) == ESP_OK ) {
cfg.adrmode = flash8; cfg.adrmode = flash8;
ESP_LOGI(TAG, "adrmode = %i", flash8); ESP_LOGI(TAG, "adrmode = %d", flash8);
} else { } else {
ESP_LOGI(TAG, "adrmode set to default %i", cfg.adrmode); ESP_LOGI(TAG, "adrmode set to default %d", cfg.adrmode);
saveConfig(); saveConfig();
} }
if( nvs_get_i8(my_handle, "screensaver", &flash8) == ESP_OK ) { if( nvs_get_i8(my_handle, "screensaver", &flash8) == ESP_OK ) {
cfg.screensaver = flash8; cfg.screensaver = flash8;
ESP_LOGI(TAG, "screensaver = %i", flash8); ESP_LOGI(TAG, "screensaver = %d", flash8);
} else { } else {
ESP_LOGI(TAG, "screensaver set to default %i", cfg.screensaver); ESP_LOGI(TAG, "screensaver set to default %d", cfg.screensaver);
saveConfig(); saveConfig();
} }
if( nvs_get_i8(my_handle, "screenon", &flash8) == ESP_OK ) { if( nvs_get_i8(my_handle, "screenon", &flash8) == ESP_OK ) {
cfg.screenon = flash8; cfg.screenon = flash8;
ESP_LOGI(TAG, "screenon = %i", flash8); ESP_LOGI(TAG, "screenon = %d", flash8);
} else { } else {
ESP_LOGI(TAG, "screenon set to default %i", cfg.screenon); ESP_LOGI(TAG, "screenon set to default %d", cfg.screenon);
saveConfig(); saveConfig();
} }
if( nvs_get_i8(my_handle, "countermode", &flash8) == ESP_OK ) { if( nvs_get_i8(my_handle, "countermode", &flash8) == ESP_OK ) {
cfg.countermode = flash8; cfg.countermode = flash8;
ESP_LOGI(TAG, "countermode = %i", flash8); ESP_LOGI(TAG, "countermode = %d", flash8);
} else { } else {
ESP_LOGI(TAG, "countermode set to default %i", cfg.countermode); ESP_LOGI(TAG, "countermode set to default %d", cfg.countermode);
saveConfig(); saveConfig();
} }
if( nvs_get_i8(my_handle, "wifiscancycle", &flash8) == ESP_OK ) { if( nvs_get_i8(my_handle, "wifiscancycle", &flash8) == ESP_OK ) {
cfg.wifiscancycle = flash8; cfg.wifiscancycle = flash8;
ESP_LOGI(TAG, "wifiscancycle = %i", flash8); ESP_LOGI(TAG, "wifiscancycle = %d", flash8);
} else { } else {
ESP_LOGI(TAG, "WIFI scan cycle set to default %i", cfg.wifiscancycle); ESP_LOGI(TAG, "WIFI scan cycle set to default %d", cfg.wifiscancycle);
saveConfig(); saveConfig();
} }
if( nvs_get_i8(my_handle, "wifichancycle", &flash8) == ESP_OK ) { if( nvs_get_i8(my_handle, "wifichancycle", &flash8) == ESP_OK ) {
cfg.wifichancycle = flash8; cfg.wifichancycle = flash8;
ESP_LOGI(TAG, "wifichancycle = %i", flash8); ESP_LOGI(TAG, "wifichancycle = %d", flash8);
} else { } else {
ESP_LOGI(TAG, "WIFI channel cycle set to default %i", cfg.wifichancycle); ESP_LOGI(TAG, "WIFI channel cycle set to default %d", cfg.wifichancycle);
saveConfig(); saveConfig();
} }
if( nvs_get_i8(my_handle, "wifiant", &flash8) == ESP_OK ) { if( nvs_get_i8(my_handle, "wifiant", &flash8) == ESP_OK ) {
cfg.wifiant = flash8; cfg.wifiant = flash8;
ESP_LOGI(TAG, "wifiantenna = %i", flash8); ESP_LOGI(TAG, "wifiantenna = %d", flash8);
} else { } else {
ESP_LOGI(TAG, "WIFI antenna switch set to default %i", cfg.wifiant); ESP_LOGI(TAG, "WIFI antenna switch set to default %d", cfg.wifiant);
saveConfig(); saveConfig();
} }
if( nvs_get_i8(my_handle, "vendorfilter", &flash8) == ESP_OK ) { if( nvs_get_i8(my_handle, "vendorfilter", &flash8) == ESP_OK ) {
cfg.vendorfilter = flash8; cfg.vendorfilter = flash8;
ESP_LOGI(TAG, "vendorfilter = %i", flash8); ESP_LOGI(TAG, "vendorfilter = %d", flash8);
} else { } else {
ESP_LOGI(TAG, "Vendorfilter mode set to default %i", cfg.vendorfilter); ESP_LOGI(TAG, "Vendorfilter mode set to default %d", cfg.vendorfilter);
saveConfig(); saveConfig();
} }
if( nvs_get_i8(my_handle, "rgblum", &flash8) == ESP_OK ) { if( nvs_get_i8(my_handle, "rgblum", &flash8) == ESP_OK ) {
cfg.rgblum = flash8; cfg.rgblum = flash8;
ESP_LOGI(TAG, "rgbluminosity = %i", flash8); ESP_LOGI(TAG, "rgbluminosity = %d", flash8);
} else { } else {
ESP_LOGI(TAG, "RGB luminosity set to default %i", cfg.rgblum); ESP_LOGI(TAG, "RGB luminosity set to default %d", cfg.rgblum);
saveConfig(); saveConfig();
} }
if( nvs_get_i8(my_handle, "blescantime", &flash8) == ESP_OK ) { if( nvs_get_i8(my_handle, "blescantime", &flash8) == ESP_OK ) {
cfg.blescantime = flash8; cfg.blescantime = flash8;
ESP_LOGI(TAG, "blescantime = %i", flash8); ESP_LOGI(TAG, "blescantime = %d", flash8);
} else { } else {
ESP_LOGI(TAG, "BLEscantime set to default %i", cfg.blescantime); ESP_LOGI(TAG, "BLEscantime set to default %d", cfg.blescantime);
saveConfig(); saveConfig();
} }
if( nvs_get_i8(my_handle, "blescanmode", &flash8) == ESP_OK ) { if( nvs_get_i8(my_handle, "blescanmode", &flash8) == ESP_OK ) {
cfg.blescan = flash8; cfg.blescan = flash8;
ESP_LOGI(TAG, "BLEscanmode = %i", flash8); ESP_LOGI(TAG, "BLEscanmode = %d", flash8);
} else { } else {
ESP_LOGI(TAG, "BLEscanmode set to default %i", cfg.blescan); ESP_LOGI(TAG, "BLEscanmode set to default %d", cfg.blescan);
saveConfig(); saveConfig();
} }
if( nvs_get_i16(my_handle, "rssilimit", &flash16) == ESP_OK ) { if( nvs_get_i16(my_handle, "rssilimit", &flash16) == ESP_OK ) {
cfg.rssilimit = flash16; cfg.rssilimit = flash16;
ESP_LOGI(TAG, "rssilimit = %i", flash16); ESP_LOGI(TAG, "rssilimit = %d", flash16);
} else { } else {
ESP_LOGI(TAG, "rssilimit set to default %i", cfg.rssilimit); ESP_LOGI(TAG, "rssilimit set to default %d", cfg.rssilimit);
saveConfig(); saveConfig();
} }

View File

@ -48,12 +48,11 @@ extern uint8_t mydata[];
extern uint64_t uptimecounter; extern uint64_t uptimecounter;
extern unsigned long currentMillis ; extern unsigned long currentMillis ;
extern osjob_t sendjob; extern osjob_t sendjob;
extern char display_lora[], display_lmic[], display_mem[]; extern char display_lora[], display_lmic[];
extern int countermode, screensaver, adrmode, lorasf, txpower, rlim; extern int countermode, screensaver, adrmode, lorasf, txpower, rlim;
extern uint16_t macs_total, macs_wifi, macs_ble; // MAC counters extern uint16_t macs_total, macs_wifi, macs_ble; // MAC counters
extern bool joinstate; extern bool joinstate;
extern std::set<uint16_t> macs; extern std::set<uint16_t> macs;
extern const uint32_t heapmem;
#ifdef HAS_DISPLAY #ifdef HAS_DISPLAY
extern HAS_DISPLAY u8x8; extern HAS_DISPLAY u8x8;

View File

@ -109,7 +109,7 @@ void printKeys(void) {
void do_send(osjob_t* j){ void do_send(osjob_t* j){
uint8_t mydata[4]; uint8_t mydata[4];
uint16_t data;
// Sum of unique WIFI MACs seen // Sum of unique WIFI MACs seen
mydata[0] = (macs_wifi & 0xff00) >> 8; mydata[0] = (macs_wifi & 0xff00) >> 8;
mydata[1] = macs_wifi & 0xff; mydata[1] = macs_wifi & 0xff;
@ -123,12 +123,6 @@ void do_send(osjob_t* j){
mydata[3] = 0; mydata[3] = 0;
#endif #endif
// Total BLE+WIFI unique MACs seen
// TBD ?
//data = (uint16_t) macs.size();
//mydata[4] = (macs_total & 0xff00) >> 8;
//mydata[5] = macs_total & 0xff;
// Check if there is not a current TX/RX job running // Check if there is not a current TX/RX job running
if (LMIC.opmode & OP_TXRXPEND) { if (LMIC.opmode & OP_TXRXPEND) {
ESP_LOGI(TAG, "OP_TXRXPEND, not sending"); ESP_LOGI(TAG, "OP_TXRXPEND, not sending");
@ -138,9 +132,17 @@ void do_send(osjob_t* j){
LMIC_setTxData2(1, mydata, sizeof(mydata), (cfg.countermode & 0x02)); LMIC_setTxData2(1, mydata, sizeof(mydata), (cfg.countermode & 0x02));
ESP_LOGI(TAG, "Packet queued"); ESP_LOGI(TAG, "Packet queued");
sprintf(display_lmic, "PACKET QUEUED"); sprintf(display_lmic, "PACKET QUEUED");
// clear counter if not in cumulative counter mode
if (cfg.countermode != 1) {
reset_counters(); // clear macs container and reset all counters
reset_salt(); // get new salt for salting hashes
}
} }
// Next TX is scheduled after TX_COMPLETE event.
} // Schedule next transmission
os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(SEND_SECS * 2), do_send);
} // do_send()
void onEvent (ev_t ev) { void onEvent (ev_t ev) {
char buff[24]=""; char buff[24]="";
@ -161,8 +163,10 @@ void onEvent (ev_t ev) {
case EV_REJOIN_FAILED: strcpy_P(buff, PSTR("REJOIN FAILED")); break; case EV_REJOIN_FAILED: strcpy_P(buff, PSTR("REJOIN FAILED")); break;
case EV_JOINED: case EV_JOINED:
joinstate=true;
strcpy_P(buff, PSTR("JOINED")); strcpy_P(buff, PSTR("JOINED"));
sprintf(display_lora, ""); // erase "Join Wait" message from display
// Disable link check validation (automatically enabled // Disable link check validation (automatically enabled
// during join, but not supported by TTN at this time). // during join, but not supported by TTN at this time).
LMIC_setLinkCheckMode(0); LMIC_setLinkCheckMode(0);
@ -170,26 +174,21 @@ void onEvent (ev_t ev) {
LMIC_setAdrMode(cfg.adrmode); LMIC_setAdrMode(cfg.adrmode);
// Set data rate and transmit power (note: txpower seems to be ignored by the library) // Set data rate and transmit power (note: txpower seems to be ignored by the library)
switch_lora(cfg.lorasf,cfg.txpower); switch_lora(cfg.lorasf,cfg.txpower);
joinstate=true;
// show effective LoRa parameters after join // show effective LoRa parameters after join
ESP_LOGI(TAG, "ADR=%i, SF=%i, TXPOWER=%i", cfg.adrmode, cfg.lorasf, cfg.txpower); ESP_LOGI(TAG, "ADR=%d, SF=%d, TXPOWER=%d", cfg.adrmode, cfg.lorasf, cfg.txpower);
break; break;
case EV_TXCOMPLETE: case EV_TXCOMPLETE:
ESP_LOGI(TAG, "EV_TXCOMPLETE (includes waiting for RX windows)");
if (LMIC.txrxFlags & TXRX_ACK) {
ESP_LOGI(TAG, "Received ack");
sprintf(display_lmic, "RECEIVED ACK");
} else { strcpy_P(buff, (LMIC.txrxFlags & TXRX_ACK) ? PSTR("RECEIVED ACK") : PSTR("TX COMPLETE"));
sprintf(display_lmic, "TX COMPLETE"); sprintf(display_lora, ""); // erase previous LoRa message from display
}
if (LMIC.dataLen) { if (LMIC.dataLen) {
ESP_LOGI(TAG, "Received %d bytes of payload", LMIC.dataLen); ESP_LOGI(TAG, "Received %d bytes of payload, RSSI %d SNR %d", LMIC.dataLen, LMIC.rssi, (signed char)LMIC.snr / 4);
sprintf(display_lora, "Rcvd %d bytes", LMIC.dataLen);
// LMIC.snr = SNR twos compliment [dB] * 4 // LMIC.snr = SNR twos compliment [dB] * 4
// LMIC.rssi = RSSI [dBm] (-196...+63) // LMIC.rssi = RSSI [dBm] (-196...+63)
sprintf(display_lmic, "RSSI %d SNR %d", LMIC.rssi, (signed char)LMIC.snr / 4 ); sprintf(display_lora, "RSSI %d SNR %d", LMIC.rssi, (signed char)LMIC.snr / 4 );
// check if payload received on command port, then call remote command interpreter // check if payload received on command port, then call remote command interpreter
if ( (LMIC.txrxFlags & TXRX_PORT) && (LMIC.frame[LMIC.dataBeg-1] == RCMDPORT ) ) { if ( (LMIC.txrxFlags & TXRX_PORT) && (LMIC.frame[LMIC.dataBeg-1] == RCMDPORT ) ) {
@ -203,6 +202,7 @@ void onEvent (ev_t ev) {
} }
} }
break; break;
default: sprintf_P(buff, PSTR("UNKNOWN EVENT %d"), ev); break; default: sprintf_P(buff, PSTR("UNKNOWN EVENT %d"), ev); break;
} }
@ -212,6 +212,5 @@ void onEvent (ev_t ev) {
sprintf(display_lmic, buff); sprintf(display_lmic, buff);
} }
} // onEvent()
}

View File

@ -27,7 +27,6 @@ bool mac_add(uint8_t *paddr, int8_t rssi, bool sniff_type) {
bool added = false; bool added = false;
uint32_t addr2int, vendor2int; // temporary buffer for MAC and Vendor OUI uint32_t addr2int, vendor2int; // temporary buffer for MAC and Vendor OUI
uint16_t hashedmac; // temporary buffer for generated hash value uint16_t hashedmac; // temporary buffer for generated hash value
float memlevel; // % of used heap mem
// only last 3 MAC Address bytes are used for MAC address anonymization // only last 3 MAC Address bytes are used for MAC address anonymization
// but since it's uint32 we take 4 bytes to avoid 1st value to be 0 // but since it's uint32 we take 4 bytes to avoid 1st value to be 0
@ -51,9 +50,6 @@ bool mac_add(uint8_t *paddr, int8_t rssi, bool sniff_type) {
// Count only if MAC was not yet seen // Count only if MAC was not yet seen
if (added) { if (added) {
// Display heap memory left
memlevel = ESP.getFreeHeap() / heapmem * 100;
sprintf(display_mem, "%d%%", memlevel);
// increment counter and one blink led // increment counter and one blink led
if (sniff_type == MAC_SNIFF_WIFI ) { if (sniff_type == MAC_SNIFF_WIFI ) {
macs_wifi++; // increment Wifi MACs counter macs_wifi++; // increment Wifi MACs counter
@ -72,10 +68,10 @@ bool mac_add(uint8_t *paddr, int8_t rssi, bool sniff_type) {
} }
// Log scan result // Log scan result
ESP_LOGI(TAG, "%s RSSI %ddBi -> MAC %s -> Hash %04X -> WiFi:%d BLTH:%d %s -> %d Bytes left", ESP_LOGI(TAG, "%s %s RSSI %ddBi -> MAC %s -> Hash %04X -> WiFi:%d BLTH:%d -> %d Bytes left",
added ? "new " : "known",
sniff_type==MAC_SNIFF_WIFI ? "WiFi":"BLTH", sniff_type==MAC_SNIFF_WIFI ? "WiFi":"BLTH",
rssi, buff, hashedmac, macs_wifi, macs_ble, rssi, buff, hashedmac, macs_wifi, macs_ble,
added ? "new " : "known",
ESP.getFreeHeap()); ESP.getFreeHeap());
#ifdef VENDORFILTER #ifdef VENDORFILTER

View File

@ -46,7 +46,7 @@ unsigned long previousDisplaymillis = currentMillis; // Display refresh for stat
uint8_t DisplayState = 0; // globals for state machine uint8_t DisplayState = 0; // globals for state machine
uint16_t macs_total = 0, macs_wifi = 0, macs_ble = 0; // MAC counters globals for display uint16_t macs_total = 0, macs_wifi = 0, macs_ble = 0; // MAC counters globals for display
uint8_t channel = 0; // wifi channel rotation counter global for display uint8_t channel = 0; // wifi channel rotation counter global for display
char display_lora[16], display_lmic[16], display_mem[16]; // display buffers char display_lora[16], display_lmic[16]; // display buffers
led_states LEDState = LED_OFF; // LED state global for state machine led_states LEDState = LED_OFF; // LED state global for state machine
led_states previousLEDState = LED_ON; // This will force LED to be off at boot since State is OFF led_states previousLEDState = LED_ON; // This will force LED to be off at boot since State is OFF
unsigned long LEDBlinkStarted = 0; // When (in millis() led blink started) unsigned long LEDBlinkStarted = 0; // When (in millis() led blink started)
@ -54,7 +54,6 @@ uint16_t LEDBlinkDuration = 0; // How long the blink need to be
uint16_t LEDColor = COLOR_NONE; // state machine variable to set RGB LED color uint16_t LEDColor = COLOR_NONE; // state machine variable to set RGB LED color
bool joinstate = false; // LoRa network joined? global flag bool joinstate = false; // LoRa network joined? global flag
bool blinkdone = true; // flag for state machine for blinking LED once bool blinkdone = true; // flag for state machine for blinking LED once
const uint32_t heapmem = ESP.getFreeHeap(); // free heap memory after start (:= 100%)
std::set<uint16_t> macs; // associative container holds total of unique MAC adress hashes (Wifi + BLE) std::set<uint16_t> macs; // associative container holds total of unique MAC adress hashes (Wifi + BLE)
@ -142,14 +141,33 @@ void lorawan_loop(void * pvParameters) {
configASSERT( ( ( uint32_t ) pvParameters ) == 1 ); // FreeRTOS check configASSERT( ( ( uint32_t ) pvParameters ) == 1 ); // FreeRTOS check
static uint16_t lorawait = 0;
while(1) { while(1) {
// execute LMIC jobs
os_runloop_once(); os_runloop_once();
// indicate LMIC state on LEDs if present
#if (HAS_LED != NOT_A_PIN) || defined (HAS_RGB_LED) #if (HAS_LED != NOT_A_PIN) || defined (HAS_RGB_LED)
led_loop(); led_loop();
#endif #endif
/*
// check if payload is sent
while(LMIC.opmode & OP_TXRXPEND) {
if(!lorawait)
sprintf(display_lora, "LoRa wait");
lorawait++;
// in case sending really fails: reset LMIC and rejoin network
if( (lorawait % MAXLORARETRY ) == 0) {
ESP_LOGI(TAG, "Payload not sent, resetting LMIC and rejoin");
lorawait = 0;
LMIC_reset(); // Reset the MAC state. Session and pending data transfers will be discarded.
};
vTaskDelay(1000/portTICK_PERIOD_MS);
yield();
}
*/
vTaskDelay(10/portTICK_PERIOD_MS); vTaskDelay(10/portTICK_PERIOD_MS);
yield(); yield();
} }
@ -192,49 +210,15 @@ void sniffer_loop(void * pvParameters) {
configASSERT( ( ( uint32_t ) pvParameters ) == 1 ); // FreeRTOS check configASSERT( ( ( uint32_t ) pvParameters ) == 1 ); // FreeRTOS check
char buff[16];
int nloop=0, lorawait=0;
while (1) { while (1) {
nloop++; // actual number of wifi loops, controls cycle when data is sent for (channel = 1; channel <= WIFI_CHANNEL_MAX; channel++) {
// rotates variable channel 1..WIFI_CHANNEL_MAX
channel = (channel % WIFI_CHANNEL_MAX) + 1; // rotates variable channel 1..WIFI_CHANNEL_MAX wifi_sniffer_set_channel(channel);
wifi_sniffer_set_channel(channel); ESP_LOGD(TAG, "Wifi set channel %d", channel);
ESP_LOGD(TAG, "Wifi set channel %d", channel); vTaskDelay(cfg.wifichancycle*10 / portTICK_PERIOD_MS);
yield();
// duration of one wifi scan loop reached? then send data and begin new scan cycle }
if ( nloop >= ( (100 / cfg.wifichancycle) * (cfg.wifiscancycle * 2)) +1 ) {
nloop=0; channel=0; // reset wifi scan + channel loop counter
do_send(&sendjob); // Prepare and execute LoRaWAN data upload
// clear counter if not in cumulative counter mode
if (cfg.countermode != 1) {
reset_counters(); // clear macs container and reset all counters
reset_salt(); // get new salt for salting hashes
}
// check if payload is sent
lorawait = 0;
while(LMIC.opmode & OP_TXRXPEND) {
if(!lorawait)
sprintf(display_lora, "LoRa wait");
lorawait++;
// in case sending really fails: reset and rejoin network
if( (lorawait % MAXLORARETRY ) == 0) {
ESP_LOGI(TAG, "Payload not sent, trying reset and rejoin");
esp_restart();
};
vTaskDelay(1000/portTICK_PERIOD_MS);
yield();
}
sprintf(display_lora, ""); // clear LoRa wait message fromd display
} // end of send data cycle
vTaskDelay(cfg.wifichancycle*10 / portTICK_PERIOD_MS);
yield();
} // end of infinite wifi channel rotation loop } // end of infinite wifi channel rotation loop
} }
@ -329,15 +313,15 @@ uint64_t uptime() {
u8x8.printf("%-16s", "BLTH:off"); u8x8.printf("%-16s", "BLTH:off");
#endif #endif
// update free heap memory display (line 4) // update free memory display (line 4)
u8x8.setCursor(11,4); u8x8.setCursor(10,4);
u8x8.printf("%-5s", display_mem); u8x8.printf("%4dKB", ESP.getFreeHeap() / 1024);
// update RSSI limiter status & wifi channel display (line 5) // update RSSI limiter status & wifi channel display (line 5)
u8x8.setCursor(0,5); u8x8.setCursor(0,5);
u8x8.printf(!cfg.rssilimit ? "RLIM:off " : "RLIM:%-4d", cfg.rssilimit); u8x8.printf(!cfg.rssilimit ? "RLIM:off " : "RLIM:%-4d", cfg.rssilimit);
u8x8.setCursor(11,5); u8x8.setCursor(11,5);
u8x8.printf("ch:%02i", channel); u8x8.printf("ch:%02d", channel);
// update LoRa status display (line 6) // update LoRa status display (line 6)
u8x8.setCursor(0,6); u8x8.setCursor(0,6);
@ -556,7 +540,9 @@ ESP_LOGI(TAG, "Features %s", features);
#endif #endif
os_init(); // setup LMIC os_init(); // setup LMIC
LMIC_reset(); // Reset the MAC state. Session and pending data transfers will be discarded.
os_setCallback(&initjob, lora_init); // setup initial job & join network os_setCallback(&initjob, lora_init); // setup initial job & join network
wifi_sniffer_init(); // setup wifi in monitor mode and start MAC counting wifi_sniffer_init(); // setup wifi in monitor mode and start MAC counting
// initialize salt value using esp_random() called by random() in arduino-esp32 core // initialize salt value using esp_random() called by random() in arduino-esp32 core
@ -607,6 +593,13 @@ void loop() {
updateDisplay(); updateDisplay();
#endif #endif
// check free memory
if (ESP.getFreeHeap() <= MEM_LOW) {
do_send(&sendjob); // send count
reset_counters(); // clear macs container and reset all counters
reset_salt(); // get new salt for salting hashes
}
} }
/* end Aruino LOOP ------------------------------------------------------------ */ /* end Aruino LOOP ------------------------------------------------------------ */

View File

@ -1,6 +1,6 @@
// program version - note: increment version after modifications to configData_t struct!! // program version - note: increment version after modifications to configData_t struct!!
#define PROGVERSION "1.3.22" // use max 10 chars here! #define PROGVERSION "1.3.3" // use max 10 chars here!
#define PROGNAME "PAXCNT" #define PROGNAME "PAXCNT"
//--- Declarations --- //--- Declarations ---

View File

@ -32,9 +32,9 @@
#define WIFI_MY_COUNTRY "EU" // select locale for Wifi RF settings #define WIFI_MY_COUNTRY "EU" // select locale for Wifi RF settings
#define WIFI_CHANNEL_SWITCH_INTERVAL 50 // [seconds/100] -> 0,5 sec. #define WIFI_CHANNEL_SWITCH_INTERVAL 50 // [seconds/100] -> 0,5 sec.
// LoRa payload send cycle // LoRa payload send cycle --> take care of duty cycle of LoRaWAN network! <--
#define SEND_SECS 120 // [seconds/2] -> 240 sec. #define SEND_SECS 120 // [seconds/2] -> 240 sec.
//#define SEND_SECS 30 // [seconds/2] -> 60 sec. #define MEM_LOW 2048 // [Bytes] memory threshold triggering send cycle
// Default LoRa Spreadfactor // Default LoRa Spreadfactor
#define LORASFDEFAULT 9 // 7 ... 12 SF, according to LoRaWAN specs #define LORASFDEFAULT 9 // 7 ... 12 SF, according to LoRaWAN specs

View File

@ -74,22 +74,22 @@ void set_reset(int val) {
void set_rssi(int val) { void set_rssi(int val) {
cfg.rssilimit = val * -1; cfg.rssilimit = val * -1;
ESP_LOGI(TAG, "Remote command: set RSSI limit to %i", cfg.rssilimit); ESP_LOGI(TAG, "Remote command: set RSSI limit to %d", cfg.rssilimit);
}; };
void set_wifiscancycle(int val) { void set_wifiscancycle(int val) {
cfg.wifiscancycle = val; cfg.wifiscancycle = val;
ESP_LOGI(TAG, "Remote command: set Wifi scan cycle duration to %i seconds", cfg.wifiscancycle*2); ESP_LOGI(TAG, "Remote command: set Wifi scan cycle duration to %d seconds", cfg.wifiscancycle*2);
}; };
void set_wifichancycle(int val) { void set_wifichancycle(int val) {
cfg.wifichancycle = val; cfg.wifichancycle = val;
ESP_LOGI(TAG, "Remote command: set Wifi channel switch interval to %i seconds", cfg.wifichancycle/100); ESP_LOGI(TAG, "Remote command: set Wifi channel switch interval to %d seconds", cfg.wifichancycle/100);
}; };
void set_blescantime(int val) { void set_blescantime(int val) {
cfg.blescantime = val; cfg.blescantime = val;
ESP_LOGI(TAG, "Remote command: set BLE scan time to %i seconds", cfg.blescantime); ESP_LOGI(TAG, "Remote command: set BLE scan time to %d seconds", cfg.blescantime);
}; };
void set_countmode(int val) { void set_countmode(int val) {
@ -126,7 +126,7 @@ void set_display(int val) {
}; };
void set_lorasf(int val) { void set_lorasf(int val) {
ESP_LOGI(TAG, "Remote command: set LoRa SF to %i", val); ESP_LOGI(TAG, "Remote command: set LoRa SF to %d", val);
switch_lora(val, cfg.txpower); switch_lora(val, cfg.txpower);
}; };
@ -178,7 +178,7 @@ void set_rgblum(int val) {
}; };
void set_lorapower(int val) { void set_lorapower(int val) {
ESP_LOGI(TAG, "Remote command: set LoRa TXPOWER to %i", val); ESP_LOGI(TAG, "Remote command: set LoRa TXPOWER to %d", val);
switch_lora(cfg.lorasf, val); switch_lora(cfg.lorasf, val);
}; };
@ -195,7 +195,7 @@ void get_config (int val) {
memcpy(sendData, &cfg, size); memcpy(sendData, &cfg, size);
LMIC_setTxData2(RCMDPORT, sendData, size-1, 0); // send data unconfirmed on RCMD Port LMIC_setTxData2(RCMDPORT, sendData, size-1, 0); // send data unconfirmed on RCMD Port
delete sendData; // free memory delete sendData; // free memory
ESP_LOGI(TAG, "%i bytes queued in send queue", size-1); ESP_LOGI(TAG, "%d bytes queued in send queue", size-1);
}; };
void get_uptime (int val) { void get_uptime (int val) {
@ -205,7 +205,7 @@ void get_uptime (int val) {
memcpy(sendData, (unsigned char*)&uptimecounter , size); memcpy(sendData, (unsigned char*)&uptimecounter , size);
LMIC_setTxData2(RCMDPORT, sendData, size-1, 0); // send data unconfirmed on RCMD Port LMIC_setTxData2(RCMDPORT, sendData, size-1, 0); // send data unconfirmed on RCMD Port
delete sendData; // free memory delete sendData; // free memory
ESP_LOGI(TAG, "%i bytes queued in send queue", size-1); ESP_LOGI(TAG, "%d bytes queued in send queue", size-1);
}; };
void get_cputemp (int val) { void get_cputemp (int val) {
@ -216,7 +216,7 @@ void get_cputemp (int val) {
memcpy(sendData, (unsigned char*)&temp, size); memcpy(sendData, (unsigned char*)&temp, size);
LMIC_setTxData2(RCMDPORT, sendData, size-1, 0); // send data unconfirmed on RCMD Port LMIC_setTxData2(RCMDPORT, sendData, size-1, 0); // send data unconfirmed on RCMD Port
delete sendData; // free memory delete sendData; // free memory
ESP_LOGI(TAG, "%i bytes queued in send queue", size-1); ESP_LOGI(TAG, "%d bytes queued in send queue", size-1);
}; };
// assign previously defined functions to set of numeric remote commands // assign previously defined functions to set of numeric remote commands