Delete SoftwareSerial.cpp

This commit is contained in:
August Quint 2020-02-05 16:43:27 +01:00 committed by GitHub
parent d7155fd25b
commit 8e1fee23bb
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1,542 +0,0 @@
/*
SoftwareSerial.cpp - Implementation of the Arduino software serial for ESP8266/ESP32.
Copyright (c) 2015-2016 Peter Lerup. All rights reserved.
Copyright (c) 2018-2019 Dirk O. Kaar. All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "SoftwareSerial.h"
#include <Arduino.h>
#ifdef ESP32
#define xt_rsil(a) (a)
#define xt_wsr_ps(a)
#endif
constexpr uint8_t BYTE_ALL_BITS_SET = ~static_cast<uint8_t>(0);
SoftwareSerial::SoftwareSerial() {
m_isrOverflow = false;
}
SoftwareSerial::SoftwareSerial(int8_t rxPin, int8_t txPin, bool invert)
{
m_isrOverflow = false;
m_rxPin = rxPin;
m_txPin = txPin;
m_invert = invert;
}
SoftwareSerial::~SoftwareSerial() {
end();
}
bool SoftwareSerial::isValidGPIOpin(int8_t pin) {
#if defined(ESP8266)
return (pin >= 0 && pin <= 5) || (pin >= 12 && pin <= 15);
#elif defined(ESP32)
return pin == 0 || pin == 2 || (pin >= 4 && pin <= 5) || (pin >= 12 && pin <= 19) ||
(pin >= 21 && pin <= 23) || (pin >= 25 && pin <= 27) || (pin >= 32 && pin <= 35);
#else
return true;
#endif
}
void SoftwareSerial::begin(uint32_t baud, SoftwareSerialConfig config,
int8_t rxPin, int8_t txPin,
bool invert, int bufCapacity, int isrBufCapacity) {
if (-1 != rxPin) m_rxPin = rxPin;
if (-1 != txPin) m_txPin = txPin;
m_oneWire = (m_rxPin == m_txPin);
m_invert = invert;
m_dataBits = 5 + (config & 07);
m_parityMode = static_cast<SoftwareSerialParity>(config & 070);
m_stopBits = 1 + ((config & 0300) ? 1 : 0);
m_pduBits = m_dataBits + static_cast<bool>(m_parityMode) + m_stopBits;
m_bitCycles = (ESP.getCpuFreqMHz() * 1000000UL + baud / 2) / baud;
m_intTxEnabled = true;
if (isValidGPIOpin(m_rxPin)) {
std::unique_ptr<circular_queue<uint8_t> > buffer(new circular_queue<uint8_t>((bufCapacity > 0) ? bufCapacity : 64));
m_buffer = move(buffer);
if (m_parityMode)
{
std::unique_ptr<circular_queue<uint8_t> > parityBuffer(new circular_queue<uint8_t>((bufCapacity > 0) ? (bufCapacity + 7) / 8 : 8));
m_parityBuffer = move(parityBuffer);
m_parityInPos = m_parityOutPos = 1;
}
std::unique_ptr<circular_queue<uint32_t> > isrBuffer(new circular_queue<uint32_t>((isrBufCapacity > 0) ? isrBufCapacity : (sizeof(uint8_t) * 8 + 2) * bufCapacity));
m_isrBuffer = move(isrBuffer);
if (m_buffer && (!m_parityMode || m_parityBuffer) && m_isrBuffer) {
m_rxValid = true;
pinMode(m_rxPin, INPUT_PULLUP);
}
}
if (isValidGPIOpin(m_txPin)
#ifdef ESP8266
|| ((m_txPin == 16) && !m_oneWire)) {
#else
) {
#endif
m_txValid = true;
if (!m_oneWire) {
pinMode(m_txPin, OUTPUT);
digitalWrite(m_txPin, !m_invert);
}
}
if (!m_rxEnabled) { enableRx(true); }
}
void SoftwareSerial::end()
{
enableRx(false);
m_txValid = false;
if (m_buffer) {
m_buffer.reset();
}
m_parityBuffer.reset();
if (m_isrBuffer) {
m_isrBuffer.reset();
}
}
uint32_t SoftwareSerial::baudRate() {
return ESP.getCpuFreqMHz() * 1000000UL / m_bitCycles;
}
void SoftwareSerial::setTransmitEnablePin(int8_t txEnablePin) {
if (isValidGPIOpin(txEnablePin)) {
m_txEnableValid = true;
m_txEnablePin = txEnablePin;
pinMode(m_txEnablePin, OUTPUT);
digitalWrite(m_txEnablePin, LOW);
}
else {
m_txEnableValid = false;
}
}
void SoftwareSerial::enableIntTx(bool on) {
m_intTxEnabled = on;
}
void SoftwareSerial::enableTx(bool on) {
if (m_txValid && m_oneWire) {
if (on) {
enableRx(false);
pinMode(m_txPin, OUTPUT);
digitalWrite(m_txPin, !m_invert);
}
else {
pinMode(m_rxPin, INPUT_PULLUP);
enableRx(true);
}
}
}
void SoftwareSerial::enableRx(bool on) {
if (m_rxValid) {
if (on) {
m_rxCurBit = m_pduBits - 1;
// Init to stop bit level and current cycle
m_isrLastCycle = (ESP.getCycleCount() | 1) ^ m_invert;
if (m_bitCycles >= (ESP.getCpuFreqMHz() * 1000000UL) / 74880UL)
attachInterruptArg(digitalPinToInterrupt(m_rxPin), reinterpret_cast<void (*)(void*)>(rxBitISR), this, CHANGE);
else
attachInterruptArg(digitalPinToInterrupt(m_rxPin), reinterpret_cast<void (*)(void*)>(rxBitSyncISR), this, m_invert ? RISING : FALLING);
}
else {
detachInterrupt(digitalPinToInterrupt(m_rxPin));
}
m_rxEnabled = on;
}
}
int SoftwareSerial::read() {
if (!m_rxValid) { return -1; }
if (!m_buffer->available()) {
rxBits();
if (!m_buffer->available()) { return -1; }
}
auto val = m_buffer->pop();
if (m_parityBuffer)
{
m_lastReadParity = m_parityBuffer->peek() & m_parityOutPos;
m_parityOutPos <<= 1;
if (!m_parityOutPos)
{
m_parityOutPos = 1;
m_parityBuffer->pop();
}
}
return val;
}
size_t SoftwareSerial::read(uint8_t * buffer, size_t size) {
if (!m_rxValid) { return 0; }
size_t avail;
if (0 == (avail = m_buffer->pop_n(buffer, size))) {
rxBits();
avail = m_buffer->pop_n(buffer, size);
}
if (!avail) return 0;
if (m_parityBuffer) {
uint32_t parityBits = avail;
while (m_parityOutPos >>= 1) ++parityBits;
m_parityOutPos = (1 << (parityBits % 8));
m_parityBuffer->pop_n(nullptr, parityBits / 8);
}
return avail;
}
size_t SoftwareSerial::readBytes(uint8_t * buffer, size_t size) {
if (!m_rxValid || !size) { return 0; }
size_t count = 0;
const auto start = millis();
do {
count += read(&buffer[count], size - count);
if (count >= size) break;
yield();
} while (millis() - start < _timeout);
return count;
}
int SoftwareSerial::available() {
if (!m_rxValid) { return 0; }
rxBits();
int avail = m_buffer->available();
if (!avail) {
optimistic_yield(10000UL);
}
return avail;
}
void ICACHE_RAM_ATTR SoftwareSerial::preciseDelay(bool sync) {
if (!sync)
{
// Reenable interrupts while delaying to avoid other tasks piling up
if (!m_intTxEnabled) { xt_wsr_ps(m_savedPS); }
auto expired = ESP.getCycleCount() - m_periodStart;
if (expired < m_periodDuration)
{
auto ms = (m_periodDuration - expired) / ESP.getCpuFreqMHz() / 1000UL;
if (ms) delay(ms);
}
while ((ESP.getCycleCount() - m_periodStart) < m_periodDuration) { optimistic_yield(10000); }
// Disable interrupts again
if (!m_intTxEnabled) { m_savedPS = xt_rsil(15); }
}
else
{
while ((ESP.getCycleCount() - m_periodStart) < m_periodDuration) {}
}
m_periodDuration = 0;
m_periodStart = ESP.getCycleCount();
}
void ICACHE_RAM_ATTR SoftwareSerial::writePeriod(
uint32_t dutyCycle, uint32_t offCycle, bool withStopBit) {
preciseDelay(true);
if (dutyCycle)
{
digitalWrite(m_txPin, HIGH);
m_periodDuration += dutyCycle;
if (offCycle || (withStopBit && !m_invert)) preciseDelay(!withStopBit || m_invert);
}
if (offCycle)
{
digitalWrite(m_txPin, LOW);
m_periodDuration += offCycle;
if (withStopBit && m_invert) preciseDelay(false);
}
}
size_t SoftwareSerial::write(uint8_t byte) {
return write(&byte, 1);
}
size_t SoftwareSerial::write(uint8_t byte, SoftwareSerialParity parity) {
return write(&byte, 1, parity);
}
size_t SoftwareSerial::write(const uint8_t * buffer, size_t size) {
return write(buffer, size, m_parityMode);
}
size_t ICACHE_RAM_ATTR SoftwareSerial::write(const uint8_t * buffer, size_t size, SoftwareSerialParity parity) {
if (m_rxValid) { rxBits(); }
if (!m_txValid) { return -1; }
if (m_txEnableValid) {
digitalWrite(m_txEnablePin, HIGH);
}
// Stop bit: if inverted, LOW, otherwise HIGH
bool b = !m_invert;
uint32_t dutyCycle = 0;
uint32_t offCycle = 0;
if (!m_intTxEnabled) {
// Disable interrupts in order to get a clean transmit timing
m_savedPS = xt_rsil(15);
}
const uint32_t dataMask = ((1UL << m_dataBits) - 1);
bool withStopBit = true;
m_periodDuration = 0;
m_periodStart = ESP.getCycleCount();
for (size_t cnt = 0; cnt < size; ++cnt) {
uint8_t byte = ~buffer[cnt] & dataMask;
// push LSB start-data-parity-stop bit pattern into uint32_t
// Stop bits: HIGH
uint32_t word = ~0UL;
// parity bit, if any
if (parity && m_parityMode)
{
uint32_t parityBit;
switch (parity)
{
case SWSERIAL_PARITY_EVEN:
// from inverted, so use odd parity
parityBit = byte;
parityBit ^= parityBit >> 4;
parityBit &= 0xf;
parityBit = (0x9669 >> parityBit) & 1;
break;
case SWSERIAL_PARITY_ODD:
// from inverted, so use even parity
parityBit = byte;
parityBit ^= parityBit >> 4;
parityBit &= 0xf;
parityBit = (0x6996 >> parityBit) & 1;
break;
case SWSERIAL_PARITY_MARK:
parityBit = false;
break;
case SWSERIAL_PARITY_SPACE:
// suppresses warning parityBit uninitialized
default:
parityBit = true;
break;
}
word ^= parityBit << m_dataBits;
}
word ^= byte;
// Stop bit: LOW
word <<= 1;
if (m_invert) word = ~word;
for (int i = 0; i <= m_pduBits; ++i) {
bool pb = b;
b = word & (1UL << i);
if (!pb && b) {
writePeriod(dutyCycle, offCycle, withStopBit);
withStopBit = false;
dutyCycle = offCycle = 0;
}
if (b) {
dutyCycle += m_bitCycles;
}
else {
offCycle += m_bitCycles;
}
}
withStopBit = true;
}
writePeriod(dutyCycle, offCycle, true);
if (!m_intTxEnabled) {
// restore the interrupt state
xt_wsr_ps(m_savedPS);
}
if (m_txEnableValid) {
digitalWrite(m_txEnablePin, LOW);
}
return size;
}
void SoftwareSerial::flush() {
if (!m_rxValid) { return; }
m_buffer->flush();
if (m_parityBuffer)
{
m_parityInPos = m_parityOutPos = 1;
m_parityBuffer->flush();
}
}
bool SoftwareSerial::overflow() {
bool res = m_overflow;
m_overflow = false;
return res;
}
int SoftwareSerial::peek() {
if (!m_rxValid) { return -1; }
if (!m_buffer->available()) {
rxBits();
if (!m_buffer->available()) return -1;
}
auto val = m_buffer->peek();
if (m_parityBuffer) m_lastReadParity = m_parityBuffer->peek() & m_parityOutPos;
return val;
}
void SoftwareSerial::rxBits() {
int isrAvail = m_isrBuffer->available();
#ifdef ESP8266
if (m_isrOverflow.load()) {
m_overflow = true;
m_isrOverflow.store(false);
}
#else
if (m_isrOverflow.exchange(false)) {
m_overflow = true;
}
#endif
// stop bit can go undetected if leading data bits are at same level
// and there was also no next start bit yet, so one byte may be pending.
// low-cost check first
if (!isrAvail && m_rxCurBit >= -1 && m_rxCurBit < m_pduBits - m_stopBits) {
uint32_t detectionCycles = (m_pduBits - m_stopBits - m_rxCurBit) * m_bitCycles;
if (ESP.getCycleCount() - m_isrLastCycle > detectionCycles) {
// Produce faux stop bit level, prevents start bit maldetection
// cycle's LSB is repurposed for the level bit
rxBits(((m_isrLastCycle + detectionCycles) | 1) ^ m_invert);
}
}
m_isrBuffer->for_each([this](const uint32_t& isrCycle) { rxBits(isrCycle); });
}
void SoftwareSerial::rxBits(const uint32_t & isrCycle) {
bool level = (m_isrLastCycle & 1) ^ m_invert;
// error introduced by edge value in LSB of isrCycle is negligible
int32_t cycles = isrCycle - m_isrLastCycle;
m_isrLastCycle = isrCycle;
uint8_t bits = cycles / m_bitCycles;
if (cycles % m_bitCycles > (m_bitCycles >> 1)) ++bits;
while (bits > 0) {
// start bit detection
if (m_rxCurBit >= (m_pduBits - 1)) {
// leading edge of start bit
if (level) break;
m_rxCurBit = -1;
--bits;
continue;
}
// data bits
if (m_rxCurBit >= -1 && m_rxCurBit < (m_dataBits - 1)) {
int8_t dataBits = min(bits, static_cast<uint8_t>(m_dataBits - 1 - m_rxCurBit));
m_rxCurBit += dataBits;
bits -= dataBits;
m_rxCurByte >>= dataBits;
if (level) { m_rxCurByte |= (BYTE_ALL_BITS_SET << (8 - dataBits)); }
continue;
}
// parity bit
if (m_parityMode && m_rxCurBit == (m_dataBits - 1)) {
++m_rxCurBit;
--bits;
m_rxCurParity = level;
continue;
}
// stop bits
if (m_rxCurBit < (m_pduBits - m_stopBits - 1)) {
++m_rxCurBit;
--bits;
continue;
}
if (m_rxCurBit == (m_pduBits - m_stopBits - 1)) {
// Store the received value in the buffer unless we have an overflow
// if not high stop bit level, discard word
if (level)
{
m_rxCurByte >>= (sizeof(uint8_t) * 8 - m_dataBits);
if (!m_buffer->push(m_rxCurByte)) {
m_overflow = true;
}
else {
if (m_parityBuffer)
{
if (m_rxCurParity) {
m_parityBuffer->pushpeek() |= m_parityInPos;
}
else {
m_parityBuffer->pushpeek() &= ~m_parityInPos;
}
m_parityInPos <<= 1;
if (!m_parityInPos)
{
m_parityBuffer->push();
m_parityInPos = 1;
}
}
}
}
m_rxCurBit = m_pduBits;
// reset to 0 is important for masked bit logic
m_rxCurByte = 0;
m_rxCurParity = false;
break;
}
break;
}
}
void ICACHE_RAM_ATTR SoftwareSerial::rxBitISR(SoftwareSerial * self) {
uint32_t curCycle = ESP.getCycleCount();
bool level = digitalRead(self->m_rxPin);
// Store level and cycle in the buffer unless we have an overflow
// cycle's LSB is repurposed for the level bit
if (!self->m_isrBuffer->push((curCycle | 1U) ^ !level)) self->m_isrOverflow.store(true);
}
void ICACHE_RAM_ATTR SoftwareSerial::rxBitSyncISR(SoftwareSerial * self) {
uint32_t start = ESP.getCycleCount();
uint32_t wait = self->m_bitCycles - 172U;
bool level = self->m_invert;
// Store level and cycle in the buffer unless we have an overflow
// cycle's LSB is repurposed for the level bit
if (!self->m_isrBuffer->push(((start + wait) | 1U) ^ !level)) self->m_isrOverflow.store(true);
for (uint32_t i = 0; i < self->m_pduBits; ++i) {
while (ESP.getCycleCount() - start < wait) {};
wait += self->m_bitCycles;
// Store level and cycle in the buffer unless we have an overflow
// cycle's LSB is repurposed for the level bit
if (digitalRead(self->m_rxPin) != level)
{
if (!self->m_isrBuffer->push(((start + wait) | 1U) ^ level)) self->m_isrOverflow.store(true);
level = !level;
}
}
}
void SoftwareSerial::onReceive(Delegate<void(int available), void*> handler) {
receiveHandler = handler;
}
void SoftwareSerial::perform_work() {
if (!m_rxValid) { return; }
rxBits();
if (receiveHandler) {
int avail = m_buffer->available();
if (avail) { receiveHandler(avail); }
}
}