Merge pull request #406 from cyberman54/development

maintenance and bug fixes
This commit is contained in:
Verkehrsrot 2019-07-28 23:55:43 +02:00 committed by GitHub
commit 81bfea7c15
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
15 changed files with 167 additions and 130 deletions

View File

@ -12,6 +12,7 @@ Tutorial (in german language): https://www.heise.de/select/make/2019/1/155109923
<img src="img/TTGO-case.jpg">
<img src="img/TTGO-curves.jpg">
<img src="img/Paxcounter-LEDmatrix.jpg">
<img src="img/Paxcounter-Clock.png">
# Use case

BIN
img/Paxcounter-Clock.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 87 KiB

View File

@ -18,10 +18,10 @@ extern gpsStatus_t
extern TaskHandle_t GpsTask;
int gps_init(void);
void IRAM_ATTR gps_storetime(gpsStatus_t &gps_store);
void gps_storelocation(gpsStatus_t &gps_store);
void IRAM_ATTR gps_storetime(gpsStatus_t *gps_store);
void gps_storelocation(gpsStatus_t *gps_store);
void gps_loop(void *pvParameters);
time_t get_gpstime(gpsStatus_t value);
time_t fetch_gpsTime(gpsStatus_t value);
int gps_config();
#endif

View File

@ -5,7 +5,6 @@
#include "globals.h"
#include "battery.h"
//#include "update.h"
#include <Update.h>
#include <WiFi.h>
#include <WiFiClientSecure.h>

View File

@ -1,6 +1,8 @@
#ifndef _PAYLOAD_H_
#define _PAYLOAD_H_
#include "paxcounter.conf"
// MyDevices CayenneLPP 1.0 channels for Synamic sensor payload format
// all payload goes out on LoRa FPort 1
#if (PAYLOAD_ENCODER == 3)
@ -18,8 +20,6 @@
#define LPP_BAROMETER_CHANNEL 30
#define LPP_AIR_CHANNEL 31
#endif
// MyDevices CayenneLPP 2.0 types for Packed Sensor Payload, not using channels,
// but different FPorts
#define LPP_GPS 136 // 3 byte lon/lat 0.0001 °, 3 bytes alt 0.01m
@ -32,6 +32,8 @@
#define LPP_HUMIDITY 104 // 1 byte, 0.5 % unsigned
#define LPP_BAROMETER 115 // 2 bytes, hPa unsigned MSB
#endif
class PayloadConvert {
public:
@ -54,20 +56,21 @@ public:
void addSensor(uint8_t[]);
void addTime(time_t value);
#if PAYLOAD_ENCODER == 1 // format plain
#if (PAYLOAD_ENCODER == 1) // format plain
private:
uint8_t *buffer;
uint8_t cursor;
#elif PAYLOAD_ENCODER == 2 // format packed
#elif (PAYLOAD_ENCODER == 2) // format packed
private:
uint8_t *buffer;
uint8_t cursor;
void intToBytes(uint8_t pos, int32_t i, uint8_t byteSize);
void uintToBytes(uint64_t i, uint8_t byteSize);
void writeUptime(uint64_t unixtime);
void writeLatLng(double latitude, double longitude);
void writeUint64(uint64_t i);
void writeUint32(uint32_t i);
void writeUint16(uint16_t i);
void writeUint8(uint8_t i);
@ -78,7 +81,7 @@ private:
void writeBitmap(bool a, bool b, bool c, bool d, bool e, bool f, bool g,
bool h);
#elif (PAYLOAD_ENCODER == 3 || PAYLOAD_ENCODER == 4) // format cayenne lpp
#elif ((PAYLOAD_ENCODER == 3) || (PAYLOAD_ENCODER == 4)) // format cayenne lpp
private:
uint8_t *buffer;

View File

@ -20,11 +20,11 @@ function Decoder(bytes, port) {
}
// combined wifi counter and gps data
if (bytes.length === 15) {
return decode(bytes, [uint16, latLng, latLng, uint8, hdop, uint16], ['wifi', 'latitude', 'longitude', 'sats', 'hdop', 'altitude']);
return decode(bytes, [uint16, latLng, latLng, uint8, hdop, altitude], ['wifi', 'latitude', 'longitude', 'sats', 'hdop', 'altitude']);
}
// combined wifi + ble counter and gps data
if (bytes.length === 17) {
return decode(bytes, [uint16, uint16, latLng, latLng, uint8, hdop, uint16], ['wifi', 'ble', 'latitude', 'longitude', 'sats', 'hdop', 'altitude']);
return decode(bytes, [uint16, uint16, latLng, latLng, uint8, hdop, altitude], ['wifi', 'ble', 'latitude', 'longitude', 'sats', 'hdop', 'altitude']);
}
}
@ -37,12 +37,12 @@ function Decoder(bytes, port) {
if (port === 3) {
// device config data
return decode(bytes, [uint8, uint8, uint16, uint8, uint8, uint8, uint8, bitmap1, bitmap2, version], ['lorasf', 'txpower', 'rssilimit', 'sendcycle', 'wifichancycle', 'blescantime', 'rgblum', 'flags', 'payloadmask', 'version']);
return decode(bytes, [uint8, uint8, int16, uint8, uint8, uint8, uint8, bitmap1, bitmap2, version], ['lorasf', 'txpower', 'rssilimit', 'sendcycle', 'wifichancycle', 'blescantime', 'rgblum', 'flags', 'payloadmask', 'version']);
}
if (port === 4) {
// gps data
return decode(bytes, [latLng, latLng, uint8, hdop, uint16], ['latitude', 'longitude', 'sats', 'hdop', 'altitude']);
return decode(bytes, [latLng, latLng, uint8, hdop, altitude], ['latitude', 'longitude', 'sats', 'hdop', 'altitude']);
}
if (port === 5) {
@ -52,12 +52,12 @@ function Decoder(bytes, port) {
if (port === 6) {
// beacon proximity alarm
return decode(bytes, [uint8, uint8], ['rssi', 'beacon']);
return decode(bytes, [int8, uint8], ['rssi', 'beacon']);
}
if (port === 7) {
// BME680 sensor data
return decode(bytes, [float, uint16, ufloat, ufloat], ['temperature', 'pressure', 'humidity', 'air']);
return decode(bytes, [float, pressure, ufloat, ufloat], ['temperature', 'pressure', 'humidity', 'air']);
}
if (port === 8) {
@ -123,29 +123,72 @@ var uint32 = function (bytes) {
};
uint32.BYTES = 4;
var latLng = function (bytes) {
if (bytes.length !== latLng.BYTES) {
throw new Error('Lat/Long must have exactly 4 bytes');
}
return bytesToInt(bytes) / 1e6;
};
latLng.BYTES = 4;
var uptime = function (bytes) {
if (bytes.length !== uptime.BYTES) {
throw new Error('Uptime must have exactly 8 bytes');
var uint64 = function (bytes) {
if (bytes.length !== uint64.BYTES) {
throw new Error('uint64 must have exactly 8 bytes');
}
return bytesToInt(bytes);
};
uptime.BYTES = 8;
uint64.BYTES = 8;
var int8 = function (bytes) {
if (bytes.length !== int8.BYTES) {
throw new Error('int8 must have exactly 1 byte');
}
var value = +(bytesToInt(bytes));
if (value > 127) {
value -= 256;
}
return value;
};
int8.BYTES = 1;
var int16 = function (bytes) {
if (bytes.length !== int16.BYTES) {
throw new Error('int16 must have exactly 2 bytes');
}
var value = +(bytesToInt(bytes));
if (value > 32767) {
value -= 65536;
}
return value;
};
int16.BYTES = 2;
var int32 = function (bytes) {
if (bytes.length !== int32.BYTES) {
throw new Error('int32 must have exactly 4 bytes');
}
var value = +(bytesToInt(bytes));
if (value > 2147483647) {
value -= 4294967296;
}
return value;
};
int32.BYTES = 4;
var latLng = function (bytes) {
return +(int32(bytes) / 1e6).toFixed(6);
};
latLng.BYTES = int32.BYTES;
var uptime = function (bytes) {
return uint64(bytes);
};
uptime.BYTES = uint64.BYTES;
var hdop = function (bytes) {
if (bytes.length !== hdop.BYTES) {
throw new Error('hdop must have exactly 2 bytes');
}
return bytesToInt(bytes) / 100;
return +(uint16(bytes) / 100).toFixed(2);
};
hdop.BYTES = 2;
hdop.BYTES = uint16.BYTES;
var altitude = function (bytes) {
// Option to increase altitude resolution (also on encoder side)
// return +(int16(bytes) / 4 - 1000).toFixed(1);
return +(int16(bytes));
};
altitude.BYTES = int16.BYTES;
var float = function (bytes) {
if (bytes.length !== float.BYTES) {
@ -168,29 +211,19 @@ var float = function (bytes) {
if (isNegative) {
t = -t;
}
return +(t / 100).toFixed(1);
return +(t / 100).toFixed(2);
};
float.BYTES = 2;
var ufloat = function (bytes) {
if (bytes.length !== ufloat.BYTES) {
throw new Error('Ufloat must have exactly 2 bytes');
}
var h = bytesToInt(bytes);
return +(h / 100).toFixed(1);
return +(uint16(bytes) / 100).toFixed(2);
};
ufloat.BYTES = 2;
ufloat.BYTES = uint16.BYTES;
var pressure = function (bytes) {
if (bytes.length !== pressure.BYTES) {
throw new Error('Pressure must have exactly 2 bytes');
}
var h = bytesToInt(bytes);
return +(h / 10).toFixed(1);
return +(uint16(bytes) / 10).toFixed(1);
};
pressure.BYTES = 2;
pressure.BYTES = uint16.BYTES;
var bitmap1 = function (byte) {
if (byte.length !== bitmap1.BYTES) {
@ -247,12 +280,16 @@ if (typeof module === 'object' && typeof module.exports !== 'undefined') {
uint8: uint8,
uint16: uint16,
uint32: uint32,
int8: int8,
int16: int16,
int32: int32,
uptime: uptime,
float: float,
ufloat: ufloat,
pressure: pressure,
latLng: latLng,
hdop: hdop,
altitude: altitude,
bitmap1: bitmap1,
bitmap2: bitmap2,
version: version,

View File

@ -20,7 +20,7 @@ function Decoder(bytes, port) {
decoded.longitude = ((bytes[i++] << 24) | (bytes[i++] << 16) | (bytes[i++] << 8) | bytes[i++]);
decoded.sats = bytes[i++];
decoded.hdop = (bytes[i++] << 8) | (bytes[i++]);
decoded.altitude = (bytes[i++] << 8) | (bytes[i++]);
decoded.altitude = ((bytes[i++] << 8) | (bytes[i++]));
}
}
@ -41,7 +41,7 @@ function Decoder(bytes, port) {
decoded.longitude = ((bytes[i++] << 24) | (bytes[i++] << 16) | (bytes[i++] << 8) | bytes[i++]);
decoded.sats = bytes[i++];
decoded.hdop = (bytes[i++] << 8) | (bytes[i++]);
decoded.altitude = (bytes[i++] << 8) | (bytes[i++]);
decoded.altitude = ((bytes[i++] << 8) | (bytes[i++]));
}
if (port === 5) {

View File

@ -146,15 +146,17 @@ void bme_loop(void *pvParameters) {
// block i2c bus access
if (I2C_MUTEX_LOCK()) {
if (iaqSensor.run()) { // If new data is available
bme_status.raw_temperature = iaqSensor.rawTemperature;
bme_status.raw_temperature =
iaqSensor.rawTemperature; // Temperature in degree celsius
bme_status.raw_humidity = iaqSensor.rawHumidity;
bme_status.temperature = iaqSensor.temperature;
bme_status.humidity = iaqSensor.humidity;
bme_status.pressure =
bme_status.humidity =
iaqSensor.humidity; // Humidity in % relative humidity x1000
bme_status.pressure = // Pressure in Pascal
(iaqSensor.pressure / 100.0); // conversion Pa -> hPa
bme_status.iaq = iaqSensor.iaqEstimate;
bme_status.iaq_accuracy = iaqSensor.iaqAccuracy;
bme_status.gas = iaqSensor.gasResistance;
bme_status.gas = iaqSensor.gasResistance; // Gas resistance in Ohms
updateState();
}
I2C_MUTEX_UNLOCK();

View File

@ -63,7 +63,7 @@ void init_display(const char *Productname, const char *Version) {
// block i2c bus access
if (!I2C_MUTEX_LOCK())
ESP_LOGD(TAG, "[%0.3f] i2c mutex lock failed", millis() / 1000.0);
ESP_LOGV(TAG, "[%0.3f] i2c mutex lock failed", millis() / 1000.0);
else {
// show startup screen
uint8_t buf[32];
@ -143,7 +143,7 @@ void refreshTheDisplay(bool nextPage) {
// block i2c bus access
if (!I2C_MUTEX_LOCK())
ESP_LOGD(TAG, "[%0.3f] i2c mutex lock failed", millis() / 1000.0);
ESP_LOGV(TAG, "[%0.3f] i2c mutex lock failed", millis() / 1000.0);
else {
// set display on/off according to current device configuration
if (DisplayIsOn != cfg.screenon) {
@ -195,16 +195,13 @@ void draw_page(time_t t, uint8_t page) {
// update GPS status (line 2)
#if (HAS_GPS)
// have we ever got valid gps data?
if (gps.passedChecksum() > 0) {
u8x8.setCursor(9, 2);
if (!gps.location.isValid()) // if no fix then display Sats value inverse
{
if (gps.location.age() < 1500) // if no fix then display Sats value inverse
u8x8.printf("Sats:%.2d", gps.satellites.value());
else {
u8x8.setInverseFont(1);
u8x8.printf("Sats:%.2d", gps.satellites.value());
u8x8.setInverseFont(0);
} else
u8x8.printf("Sats:%.2d", gps.satellites.value());
}
#endif
@ -252,12 +249,11 @@ void draw_page(time_t t, uint8_t page) {
u8x8.setInverseFont(1);
u8x8.printf("%c", timeState);
u8x8.setInverseFont(0);
u8x8.printf(" %2d.%3s", day(t), printmonth[month(t)]);
#else
u8x8.printf("%02d:%02d:%02d%c %2d.%3s", hour(t), minute(t), second(t),
timeState, day(t), printmonth[month(t)]);
u8x8.printf("%02d:%02d:%02d%c", hour(t), minute(t), second(t), timeState);
#endif // HAS_DCF77 || HAS_IF482
if (timeSource != _unsynced)
u8x8.printf(" %2d.%3s", day(t), printmonth[month(t)]);
#else // update LoRa status display
#if (HAS_LORA)
u8x8.printf("%-16s", display_line6);

View File

@ -66,53 +66,50 @@ int gps_config() {
}
// store current GPS location data in struct
void gps_storelocation(gpsStatus_t &gps_store) {
gps_store.latitude = (int32_t)(gps.location.lat() * 1e6);
gps_store.longitude = (int32_t)(gps.location.lng() * 1e6);
gps_store.satellites = (uint8_t)gps.satellites.value();
gps_store.hdop = (uint16_t)gps.hdop.value();
gps_store.altitude = (int16_t)gps.altitude.meters();
void gps_storelocation(gpsStatus_t *gps_store) {
if (gps.location.isUpdated() && gps.location.isValid() &&
(gps.time.age() < 1500)) {
gps_store->latitude = (int32_t)(gps.location.lat() * 1e6);
gps_store->longitude = (int32_t)(gps.location.lng() * 1e6);
gps_store->satellites = (uint8_t)gps.satellites.value();
gps_store->hdop = (uint16_t)gps.hdop.value();
gps_store->altitude = (int16_t)gps.altitude.meters();
}
}
// store current GPS timedate in struct
void IRAM_ATTR gps_storetime(gpsStatus_t &gps_store) {
void IRAM_ATTR gps_storetime(gpsStatus_t *gps_store) {
if (gps.time.isUpdated() && gps.date.isValid() && (gps.time.age() < 1000)) {
// nmea telegram serial delay compensation; not sure if we need this?
/*
if (gps.time.age() > nmea_txDelay_ms)
gps_store.timedate.Second = gps.time.second() + 1;
gps_store->timedate.Second = gps.time.second() + 1;
else
gps_store.timedate.Second = gps.time.second();
gps_store->timedate.Second = gps.time.second();
*/
gps_store.timedate.Second = gps.time.second();
gps_store.timedate.Minute = gps.time.minute();
gps_store.timedate.Hour = gps.time.hour();
gps_store.timedate.Day = gps.date.day();
gps_store.timedate.Month = gps.date.month();
gps_store.timedate.Year =
gps_store->timedate.Second = gps.time.second();
gps_store->timedate.Minute = gps.time.minute();
gps_store->timedate.Hour = gps.time.hour();
gps_store->timedate.Day = gps.date.day();
gps_store->timedate.Month = gps.date.month();
gps_store->timedate.Year =
CalendarYrToTm(gps.date.year()); // year offset from 1970 in microTime.h
} else
gps_store.timedate = {0};
gps_store->timedate = {0};
}
// function to fetch current time from struct; note: this is costly
time_t get_gpstime(gpsStatus_t value) {
time_t fetch_gpsTime(gpsStatus_t value) {
time_t t = timeIsValid(makeTime(value.timedate));
// show NMEA data in verbose mode, useful for debugging GPS
ESP_LOGD(
TAG,
"GPS time: %d | GPS NMEA data: passed %d / failed: %d / with fix: %d", t,
gps.passedChecksum(), gps.failedChecksum(), gps.sentencesWithFix());
ESP_LOGD(TAG, "GPS time: %d", t);
return t;
} // get_gpstime()
} // fetch_gpsTime()
// GPS serial feed FreeRTos Task
void gps_loop(void *pvParameters) {
@ -136,6 +133,11 @@ void gps_loop(void *pvParameters) {
#endif
} // if
// show NMEA data in verbose mode, useful for debugging GPS
ESP_LOGV(TAG, "GPS NMEA data: passed %d / failed: %d / with fix: %d",
gps.passedChecksum(), gps.failedChecksum(),
gps.sentencesWithFix());
delay(2); // yield to CPU
} // end of infinite loop

View File

@ -55,7 +55,7 @@
// GPS settings
#define HAS_GPS 1 // use on board GPS
#define GPS_SERIAL 9600, SERIAL_8N1, GPIO_NUM_12, GPIO_NUM_15 // UBlox NEO 6M
#define GPS_SERIAL 9600, SERIAL_8N1, GPIO_NUM_12, GPIO_NUM_15 // UBlox NEO 6M RX, TX
#define GPS_INT GPIO_NUM_13 // 30ns accurary timepulse, to be external wired on pcb: NEO 6M Pin#3 -> GPIO13
// Pins for I2C interface of OLED Display

View File

@ -48,7 +48,7 @@ void irqHandler(void *pvParameters) {
// gps refresh buffer?
#if (HAS_GPS)
if (InterruptStatus & GPS_IRQ)
gps_storelocation(gps_status);
gps_storelocation(&gps_status);
#endif
// are cyclic tasks due?

View File

@ -438,6 +438,11 @@ void setup() {
#warning you did not specify a time source, time will not be synched
#endif
// initialize gps time
#if (HAS_GPS)
gps_storetime(&gps_status);
#endif
#if (defined HAS_IF482 || defined HAS_DCF77)
ESP_LOGI(TAG, "Starting Clock Controller...");
clock_init();

View File

@ -16,7 +16,7 @@ uint8_t *PayloadConvert::getBuffer(void) { return buffer; }
/* ---------------- plain format without special encoding ---------- */
#if PAYLOAD_ENCODER == 1
#if (PAYLOAD_ENCODER == 1)
void PayloadConvert::addByte(uint8_t value) { buffer[cursor++] = (value); }
@ -141,7 +141,7 @@ void PayloadConvert::addTime(time_t value) {
// derived from
// https://github.com/thesolarnomad/lora-serialization/blob/master/src/LoraEncoder.cpp
#elif PAYLOAD_ENCODER == 2
#elif (PAYLOAD_ENCODER == 2)
void PayloadConvert::addByte(uint8_t value) { writeUint8(value); }
@ -227,15 +227,19 @@ void PayloadConvert::addTime(time_t value) {
writeUint32(time);
}
void PayloadConvert::intToBytes(uint8_t pos, int32_t i, uint8_t byteSize) {
void PayloadConvert::uintToBytes(uint64_t value, uint8_t byteSize) {
for (uint8_t x = 0; x < byteSize; x++) {
buffer[x + pos] = (byte)(i >> (x * 8));
byte next = 0;
if (sizeof(value) > x) {
next = static_cast<byte>((value >> (x * 8)) & 0xFF);
}
buffer[cursor] = next;
++cursor;
}
cursor += byteSize;
}
void PayloadConvert::writeUptime(uint64_t uptime) {
intToBytes(cursor, uptime, 8);
writeUint64(uptime);
}
void PayloadConvert::writeVersion(char *version) {
@ -244,24 +248,25 @@ void PayloadConvert::writeVersion(char *version) {
}
void PayloadConvert::writeLatLng(double latitude, double longitude) {
intToBytes(cursor, latitude, 4);
intToBytes(cursor, longitude, 4);
// Tested to at least work with int32_t, which are processed correctly.
writeUint32(latitude);
writeUint32(longitude);
}
void PayloadConvert::writeUint32(uint32_t i) { intToBytes(cursor, i, 4); }
void PayloadConvert::writeUint64(uint64_t i) { uintToBytes(i, 8); }
void PayloadConvert::writeUint16(uint16_t i) { intToBytes(cursor, i, 2); }
void PayloadConvert::writeUint32(uint32_t i) { uintToBytes(i, 4); }
void PayloadConvert::writeUint8(uint8_t i) { intToBytes(cursor, i, 1); }
void PayloadConvert::writeUint16(uint16_t i) { uintToBytes(i, 2); }
void PayloadConvert::writeUint8(uint8_t i) { uintToBytes(i, 1); }
void PayloadConvert::writeUFloat(float value) {
int16_t h = (int16_t)(value * 100);
intToBytes(cursor, h, 2);
writeUint16(value * 100);
}
void PayloadConvert::writePressure(float value) {
int16_t h = (int16_t)(value);
intToBytes(cursor, h, 2);
writeUint16(value * 10);
}
/**
@ -301,7 +306,7 @@ void PayloadConvert::writeBitmap(bool a, bool b, bool c, bool d, bool e, bool f,
// FPort 1 PAYLOAD_ENCODER == 4 -> Packed Sensor Payload, not using channels ->
// FPort 2
#elif (PAYLOAD_ENCODER == 3 || PAYLOAD_ENCODER == 4)
#elif ((PAYLOAD_ENCODER == 3) || (PAYLOAD_ENCODER == 4))
void PayloadConvert::addByte(uint8_t value) {
/*
@ -412,7 +417,7 @@ void PayloadConvert::addSensor(uint8_t buf[]) {
memcpy(buffer, buf+1, length);
cursor += length; // length of buffer
*/
#endif
#endif // HAS_SENSORS
}
void PayloadConvert::addBME(bmeStatus_t value) {
@ -481,6 +486,4 @@ void PayloadConvert::addTime(time_t value) {
#endif
}
#else
#error No valid payload converter defined!
#endif

View File

@ -18,10 +18,6 @@ const char timeSetSymbols[] = {'G', 'R', 'L', '?'};
HardwareSerial IF482(2); // use UART #2 (#1 may be in use for serial GPS)
#endif
#if (HAS_GPS)
static gpsStatus_t gps_pps_status;
#endif
Ticker timesyncer;
void timeSync() { xTaskNotify(irqHandlerTask, TIMESYNC_IRQ, eSetBits); }
@ -32,7 +28,7 @@ time_t timeProvider(void) {
#if (HAS_GPS)
// fetch recent time from last NMEA record
t = get_gpstime(gps_pps_status);
t = fetch_gpsTime(gps_status);
if (t) {
#ifdef HAS_RTC
set_rtctime(t, do_mutex); // calibrate RTC
@ -44,7 +40,7 @@ time_t timeProvider(void) {
}
#endif
// no GPS -> fallback to RTC time while trying lora sync
// no time from GPS -> fallback to RTC time while trying lora sync
#ifdef HAS_RTC
t = get_rtctime();
if (t) {
@ -123,11 +119,6 @@ void timepulse_start(void) {
timerAlarmEnable(ppsIRQ);
#endif
// initialize gps time
#if (HAS_GPS)
gps_storetime(gps_pps_status);
#endif
// start cyclic time sync
timeSync(); // init systime by RTC or GPS or LORA
timesyncer.attach(TIME_SYNC_INTERVAL * 60, timeSync);
@ -142,9 +133,7 @@ void IRAM_ATTR CLOCKIRQ(void) {
// store recent gps time, and try to get gps time if time is not synced
#if (HAS_GPS)
gps_storetime(gps_pps_status);
if (timeSource == _unsynced)
timeSync();
gps_storetime(&gps_status);
#endif
// advance wall clock, if we have