From 701461805673d29dba4a6981f9d7552f2d6d0000 Mon Sep 17 00:00:00 2001 From: August Quint <49277349+AugustQu@users.noreply.github.com> Date: Wed, 5 Feb 2020 16:45:12 +0100 Subject: [PATCH] Add files via upload --- lib/EspSoftwareSerial/src/SoftwareSerial.cpp | 542 +++++ lib/EspSoftwareSerial/src/SoftwareSerial.h | 255 +++ .../src/circular_queue/Delegate.h | 1786 +++++++++++++++++ .../src/circular_queue/MultiDelegate.h | 503 +++++ .../src/circular_queue/circular_queue.h | 399 ++++ .../src/circular_queue/circular_queue_mp.h | 200 ++ .../src/circular_queue/ghostl.h | 92 + 7 files changed, 3777 insertions(+) create mode 100644 lib/EspSoftwareSerial/src/SoftwareSerial.cpp create mode 100644 lib/EspSoftwareSerial/src/SoftwareSerial.h create mode 100644 lib/EspSoftwareSerial/src/circular_queue/Delegate.h create mode 100644 lib/EspSoftwareSerial/src/circular_queue/MultiDelegate.h create mode 100644 lib/EspSoftwareSerial/src/circular_queue/circular_queue.h create mode 100644 lib/EspSoftwareSerial/src/circular_queue/circular_queue_mp.h create mode 100644 lib/EspSoftwareSerial/src/circular_queue/ghostl.h diff --git a/lib/EspSoftwareSerial/src/SoftwareSerial.cpp b/lib/EspSoftwareSerial/src/SoftwareSerial.cpp new file mode 100644 index 00000000..0e7b8e08 --- /dev/null +++ b/lib/EspSoftwareSerial/src/SoftwareSerial.cpp @@ -0,0 +1,542 @@ +/* + +SoftwareSerial.cpp - Implementation of the Arduino software serial for ESP8266/ESP32. +Copyright (c) 2015-2016 Peter Lerup. All rights reserved. +Copyright (c) 2018-2019 Dirk O. Kaar. All rights reserved. + +This library is free software; you can redistribute it and/or +modify it under the terms of the GNU Lesser General Public +License as published by the Free Software Foundation; either +version 2.1 of the License, or (at your option) any later version. + +This library is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +Lesser General Public License for more details. + +You should have received a copy of the GNU Lesser General Public +License along with this library; if not, write to the Free Software +Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + +*/ + +#include "SoftwareSerial.h" +#include + +#ifdef ESP32 +#define xt_rsil(a) (a) +#define xt_wsr_ps(a) +#endif + +constexpr uint8_t BYTE_ALL_BITS_SET = ~static_cast(0); + +SoftwareSerial::SoftwareSerial() { + m_isrOverflow = false; +} + +SoftwareSerial::SoftwareSerial(int8_t rxPin, int8_t txPin, bool invert) +{ + m_isrOverflow = false; + m_rxPin = rxPin; + m_txPin = txPin; + m_invert = invert; +} + +SoftwareSerial::~SoftwareSerial() { + end(); +} + +bool SoftwareSerial::isValidGPIOpin(int8_t pin) { +#if defined(ESP8266) + return (pin >= 0 && pin <= 5) || (pin >= 12 && pin <= 15); +#elif defined(ESP32) + return pin == 0 || pin == 2 || (pin >= 4 && pin <= 5) || (pin >= 12 && pin <= 19) || + (pin >= 21 && pin <= 23) || (pin >= 25 && pin <= 27) || (pin >= 32 && pin <= 35); +#else + return true; +#endif +} + +void SoftwareSerial::begin(uint32_t baud, SoftwareSerialConfig config, + int8_t rxPin, int8_t txPin, + bool invert, int bufCapacity, int isrBufCapacity) { + if (-1 != rxPin) m_rxPin = rxPin; + if (-1 != txPin) m_txPin = txPin; + m_oneWire = (m_rxPin == m_txPin); + m_invert = invert; + m_dataBits = 5 + (config & 07); + m_parityMode = static_cast(config & 070); + m_stopBits = 1 + ((config & 0300) ? 1 : 0); + m_pduBits = m_dataBits + static_cast(m_parityMode) + m_stopBits; + m_bitCycles = (ESP.getCpuFreqMHz() * 1000000UL + baud / 2) / baud; + m_intTxEnabled = true; + if (isValidGPIOpin(m_rxPin)) { + std::unique_ptr > buffer(new circular_queue((bufCapacity > 0) ? bufCapacity : 64)); + m_buffer = move(buffer); + if (m_parityMode) + { + std::unique_ptr > parityBuffer(new circular_queue((bufCapacity > 0) ? (bufCapacity + 7) / 8 : 8)); + m_parityBuffer = move(parityBuffer); + m_parityInPos = m_parityOutPos = 1; + } + std::unique_ptr > isrBuffer(new circular_queue((isrBufCapacity > 0) ? isrBufCapacity : (sizeof(uint8_t) * 8 + 2) * bufCapacity)); + m_isrBuffer = move(isrBuffer); + if (m_buffer && (!m_parityMode || m_parityBuffer) && m_isrBuffer) { + m_rxValid = true; + pinMode(m_rxPin, INPUT_PULLUP); + } + } + if (isValidGPIOpin(m_txPin) +#ifdef ESP8266 + || ((m_txPin == 16) && !m_oneWire)) { +#else + ) { +#endif + m_txValid = true; + if (!m_oneWire) { + pinMode(m_txPin, OUTPUT); + digitalWrite(m_txPin, !m_invert); + } + } + if (!m_rxEnabled) { enableRx(true); } +} + +void SoftwareSerial::end() +{ + enableRx(false); + m_txValid = false; + if (m_buffer) { + m_buffer.reset(); + } + m_parityBuffer.reset(); + if (m_isrBuffer) { + m_isrBuffer.reset(); + } +} + +uint32_t SoftwareSerial::baudRate() { + return ESP.getCpuFreqMHz() * 1000000UL / m_bitCycles; +} + +void SoftwareSerial::setTransmitEnablePin(int8_t txEnablePin) { + if (isValidGPIOpin(txEnablePin)) { + m_txEnableValid = true; + m_txEnablePin = txEnablePin; + pinMode(m_txEnablePin, OUTPUT); + digitalWrite(m_txEnablePin, LOW); + } + else { + m_txEnableValid = false; + } +} + +void SoftwareSerial::enableIntTx(bool on) { + m_intTxEnabled = on; +} + +void SoftwareSerial::enableTx(bool on) { + if (m_txValid && m_oneWire) { + if (on) { + enableRx(false); + pinMode(m_txPin, OUTPUT); + digitalWrite(m_txPin, !m_invert); + } + else { + pinMode(m_rxPin, INPUT_PULLUP); + enableRx(true); + } + } +} + +void SoftwareSerial::enableRx(bool on) { + if (m_rxValid) { + if (on) { + m_rxCurBit = m_pduBits - 1; + // Init to stop bit level and current cycle + m_isrLastCycle = (ESP.getCycleCount() | 1) ^ m_invert; + if (m_bitCycles >= (ESP.getCpuFreqMHz() * 1000000UL) / 74880UL) + attachInterruptArg(digitalPinToInterrupt(m_rxPin), reinterpret_cast(rxBitISR), this, CHANGE); + else + attachInterruptArg(digitalPinToInterrupt(m_rxPin), reinterpret_cast(rxBitSyncISR), this, m_invert ? RISING : FALLING); + } + else { + detachInterrupt(digitalPinToInterrupt(m_rxPin)); + } + m_rxEnabled = on; + } +} + +int SoftwareSerial::read() { + if (!m_rxValid) { return -1; } + if (!m_buffer->available()) { + rxBits(); + if (!m_buffer->available()) { return -1; } + } + auto val = m_buffer->pop(); + if (m_parityBuffer) + { + m_lastReadParity = m_parityBuffer->peek() & m_parityOutPos; + m_parityOutPos <<= 1; + if (!m_parityOutPos) + { + m_parityOutPos = 1; + m_parityBuffer->pop(); + } + } + return val; +} + +size_t SoftwareSerial::read(uint8_t * buffer, size_t size) { + if (!m_rxValid) { return 0; } + size_t avail; + if (0 == (avail = m_buffer->pop_n(buffer, size))) { + rxBits(); + avail = m_buffer->pop_n(buffer, size); + } + if (!avail) return 0; + if (m_parityBuffer) { + uint32_t parityBits = avail; + while (m_parityOutPos >>= 1) ++parityBits; + m_parityOutPos = (1 << (parityBits % 8)); + m_parityBuffer->pop_n(nullptr, parityBits / 8); + } + return avail; +} + +size_t SoftwareSerial::readBytes(uint8_t * buffer, size_t size) { + if (!m_rxValid || !size) { return 0; } + size_t count = 0; + const auto start = millis(); + do { + count += read(&buffer[count], size - count); + if (count >= size) break; + yield(); + } while (millis() - start < _timeout); + return count; +} + +int SoftwareSerial::available() { + if (!m_rxValid) { return 0; } + rxBits(); + int avail = m_buffer->available(); + if (!avail) { + optimistic_yield(10000UL); + } + return avail; +} + +void ICACHE_RAM_ATTR SoftwareSerial::preciseDelay(bool sync) { + if (!sync) + { + // Reenable interrupts while delaying to avoid other tasks piling up + if (!m_intTxEnabled) { xt_wsr_ps(m_savedPS); } + auto expired = ESP.getCycleCount() - m_periodStart; + if (expired < m_periodDuration) + { + auto ms = (m_periodDuration - expired) / ESP.getCpuFreqMHz() / 1000UL; + if (ms) delay(ms); + } + while ((ESP.getCycleCount() - m_periodStart) < m_periodDuration) { optimistic_yield(10000); } + // Disable interrupts again + if (!m_intTxEnabled) { m_savedPS = xt_rsil(15); } + } + else + { + while ((ESP.getCycleCount() - m_periodStart) < m_periodDuration) {} + } + m_periodDuration = 0; + m_periodStart = ESP.getCycleCount(); +} + +void ICACHE_RAM_ATTR SoftwareSerial::writePeriod( + uint32_t dutyCycle, uint32_t offCycle, bool withStopBit) { + preciseDelay(true); + if (dutyCycle) + { + digitalWrite(m_txPin, HIGH); + m_periodDuration += dutyCycle; + if (offCycle || (withStopBit && !m_invert)) preciseDelay(!withStopBit || m_invert); + } + if (offCycle) + { + digitalWrite(m_txPin, LOW); + m_periodDuration += offCycle; + if (withStopBit && m_invert) preciseDelay(false); + } +} + +size_t SoftwareSerial::write(uint8_t byte) { + return write(&byte, 1); +} + +size_t SoftwareSerial::write(uint8_t byte, SoftwareSerialParity parity) { + return write(&byte, 1, parity); +} + +size_t SoftwareSerial::write(const uint8_t * buffer, size_t size) { + return write(buffer, size, m_parityMode); +} + +size_t ICACHE_RAM_ATTR SoftwareSerial::write(const uint8_t * buffer, size_t size, SoftwareSerialParity parity) { + if (m_rxValid) { rxBits(); } + if (!m_txValid) { return -1; } + + if (m_txEnableValid) { + digitalWrite(m_txEnablePin, HIGH); + } + // Stop bit: if inverted, LOW, otherwise HIGH + bool b = !m_invert; + uint32_t dutyCycle = 0; + uint32_t offCycle = 0; + if (!m_intTxEnabled) { + // Disable interrupts in order to get a clean transmit timing + m_savedPS = xt_rsil(15); + } + const uint32_t dataMask = ((1UL << m_dataBits) - 1); + bool withStopBit = true; + m_periodDuration = 0; + m_periodStart = ESP.getCycleCount(); + for (size_t cnt = 0; cnt < size; ++cnt) { + uint8_t byte = ~buffer[cnt] & dataMask; + // push LSB start-data-parity-stop bit pattern into uint32_t + // Stop bits: HIGH + uint32_t word = ~0UL; + // parity bit, if any + if (parity && m_parityMode) + { + uint32_t parityBit; + switch (parity) + { + case SWSERIAL_PARITY_EVEN: + // from inverted, so use odd parity + parityBit = byte; + parityBit ^= parityBit >> 4; + parityBit &= 0xf; + parityBit = (0x9669 >> parityBit) & 1; + break; + case SWSERIAL_PARITY_ODD: + // from inverted, so use even parity + parityBit = byte; + parityBit ^= parityBit >> 4; + parityBit &= 0xf; + parityBit = (0x6996 >> parityBit) & 1; + break; + case SWSERIAL_PARITY_MARK: + parityBit = false; + break; + case SWSERIAL_PARITY_SPACE: + // suppresses warning parityBit uninitialized + default: + parityBit = true; + break; + } + word ^= parityBit << m_dataBits; + } + word ^= byte; + // Stop bit: LOW + word <<= 1; + if (m_invert) word = ~word; + for (int i = 0; i <= m_pduBits; ++i) { + bool pb = b; + b = word & (1UL << i); + if (!pb && b) { + writePeriod(dutyCycle, offCycle, withStopBit); + withStopBit = false; + dutyCycle = offCycle = 0; + } + if (b) { + dutyCycle += m_bitCycles; + } + else { + offCycle += m_bitCycles; + } + } + withStopBit = true; + } + writePeriod(dutyCycle, offCycle, true); + if (!m_intTxEnabled) { + // restore the interrupt state + xt_wsr_ps(m_savedPS); + } + if (m_txEnableValid) { + digitalWrite(m_txEnablePin, LOW); + } + return size; +} + +void SoftwareSerial::flush() { + if (!m_rxValid) { return; } + m_buffer->flush(); + if (m_parityBuffer) + { + m_parityInPos = m_parityOutPos = 1; + m_parityBuffer->flush(); + } +} + +bool SoftwareSerial::overflow() { + bool res = m_overflow; + m_overflow = false; + return res; +} + +int SoftwareSerial::peek() { + if (!m_rxValid) { return -1; } + if (!m_buffer->available()) { + rxBits(); + if (!m_buffer->available()) return -1; + } + auto val = m_buffer->peek(); + if (m_parityBuffer) m_lastReadParity = m_parityBuffer->peek() & m_parityOutPos; + return val; +} + +void SoftwareSerial::rxBits() { + int isrAvail = m_isrBuffer->available(); +#ifdef ESP8266 + if (m_isrOverflow.load()) { + m_overflow = true; + m_isrOverflow.store(false); + } +#else + if (m_isrOverflow.exchange(false)) { + m_overflow = true; + } +#endif + + // stop bit can go undetected if leading data bits are at same level + // and there was also no next start bit yet, so one byte may be pending. + // low-cost check first + if (!isrAvail && m_rxCurBit >= -1 && m_rxCurBit < m_pduBits - m_stopBits) { + uint32_t detectionCycles = (m_pduBits - m_stopBits - m_rxCurBit) * m_bitCycles; + if (ESP.getCycleCount() - m_isrLastCycle > detectionCycles) { + // Produce faux stop bit level, prevents start bit maldetection + // cycle's LSB is repurposed for the level bit + rxBits(((m_isrLastCycle + detectionCycles) | 1) ^ m_invert); + } + } + + m_isrBuffer->for_each([this](const uint32_t& isrCycle) { rxBits(isrCycle); }); +} + +void SoftwareSerial::rxBits(const uint32_t & isrCycle) { + bool level = (m_isrLastCycle & 1) ^ m_invert; + + // error introduced by edge value in LSB of isrCycle is negligible + int32_t cycles = isrCycle - m_isrLastCycle; + m_isrLastCycle = isrCycle; + + uint8_t bits = cycles / m_bitCycles; + if (cycles % m_bitCycles > (m_bitCycles >> 1)) ++bits; + while (bits > 0) { + // start bit detection + if (m_rxCurBit >= (m_pduBits - 1)) { + // leading edge of start bit + if (level) break; + m_rxCurBit = -1; + --bits; + continue; + } + // data bits + if (m_rxCurBit >= -1 && m_rxCurBit < (m_dataBits - 1)) { + int8_t dataBits = min(bits, static_cast(m_dataBits - 1 - m_rxCurBit)); + m_rxCurBit += dataBits; + bits -= dataBits; + m_rxCurByte >>= dataBits; + if (level) { m_rxCurByte |= (BYTE_ALL_BITS_SET << (8 - dataBits)); } + continue; + } + // parity bit + if (m_parityMode && m_rxCurBit == (m_dataBits - 1)) { + ++m_rxCurBit; + --bits; + m_rxCurParity = level; + continue; + } + // stop bits + if (m_rxCurBit < (m_pduBits - m_stopBits - 1)) { + ++m_rxCurBit; + --bits; + continue; + } + if (m_rxCurBit == (m_pduBits - m_stopBits - 1)) { + // Store the received value in the buffer unless we have an overflow + // if not high stop bit level, discard word + if (level) + { + m_rxCurByte >>= (sizeof(uint8_t) * 8 - m_dataBits); + if (!m_buffer->push(m_rxCurByte)) { + m_overflow = true; + } + else { + if (m_parityBuffer) + { + if (m_rxCurParity) { + m_parityBuffer->pushpeek() |= m_parityInPos; + } + else { + m_parityBuffer->pushpeek() &= ~m_parityInPos; + } + m_parityInPos <<= 1; + if (!m_parityInPos) + { + m_parityBuffer->push(); + m_parityInPos = 1; + } + } + } + } + m_rxCurBit = m_pduBits; + // reset to 0 is important for masked bit logic + m_rxCurByte = 0; + m_rxCurParity = false; + break; + } + break; + } +} + +void ICACHE_RAM_ATTR SoftwareSerial::rxBitISR(SoftwareSerial * self) { + uint32_t curCycle = ESP.getCycleCount(); + bool level = digitalRead(self->m_rxPin); + + // Store level and cycle in the buffer unless we have an overflow + // cycle's LSB is repurposed for the level bit + if (!self->m_isrBuffer->push((curCycle | 1U) ^ !level)) self->m_isrOverflow.store(true); +} + +void ICACHE_RAM_ATTR SoftwareSerial::rxBitSyncISR(SoftwareSerial * self) { + uint32_t start = ESP.getCycleCount(); + uint32_t wait = self->m_bitCycles - 172U; + + bool level = self->m_invert; + // Store level and cycle in the buffer unless we have an overflow + // cycle's LSB is repurposed for the level bit + if (!self->m_isrBuffer->push(((start + wait) | 1U) ^ !level)) self->m_isrOverflow.store(true); + + for (uint32_t i = 0; i < self->m_pduBits; ++i) { + while (ESP.getCycleCount() - start < wait) {}; + wait += self->m_bitCycles; + + // Store level and cycle in the buffer unless we have an overflow + // cycle's LSB is repurposed for the level bit + if (digitalRead(self->m_rxPin) != level) + { + if (!self->m_isrBuffer->push(((start + wait) | 1U) ^ level)) self->m_isrOverflow.store(true); + level = !level; + } + } +} + +void SoftwareSerial::onReceive(Delegate handler) { + receiveHandler = handler; +} + +void SoftwareSerial::perform_work() { + if (!m_rxValid) { return; } + rxBits(); + if (receiveHandler) { + int avail = m_buffer->available(); + if (avail) { receiveHandler(avail); } + } +} diff --git a/lib/EspSoftwareSerial/src/SoftwareSerial.h b/lib/EspSoftwareSerial/src/SoftwareSerial.h new file mode 100644 index 00000000..371e3731 --- /dev/null +++ b/lib/EspSoftwareSerial/src/SoftwareSerial.h @@ -0,0 +1,255 @@ +/* +SoftwareSerial.h + +SoftwareSerial.cpp - Implementation of the Arduino software serial for ESP8266/ESP32. +Copyright (c) 2015-2016 Peter Lerup. All rights reserved. +Copyright (c) 2018-2019 Dirk O. Kaar. All rights reserved. + +This library is free software; you can redistribute it and/or +modify it under the terms of the GNU Lesser General Public +License as published by the Free Software Foundation; either +version 2.1 of the License, or (at your option) any later version. + +This library is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +Lesser General Public License for more details. + +You should have received a copy of the GNU Lesser General Public +License along with this library; if not, write to the Free Software +Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + +*/ + +#ifndef __SoftwareSerial_h +#define __SoftwareSerial_h + +#include "circular_queue/circular_queue.h" +#include + +enum SoftwareSerialParity : uint8_t { + SWSERIAL_PARITY_NONE = 000, + SWSERIAL_PARITY_EVEN = 020, + SWSERIAL_PARITY_ODD = 030, + SWSERIAL_PARITY_MARK = 040, + SWSERIAL_PARITY_SPACE = 070, +}; + +enum SoftwareSerialConfig { + SWSERIAL_5N1 = SWSERIAL_PARITY_NONE, + SWSERIAL_6N1, + SWSERIAL_7N1, + SWSERIAL_8N1, + SWSERIAL_5E1 = SWSERIAL_PARITY_EVEN, + SWSERIAL_6E1, + SWSERIAL_7E1, + SWSERIAL_8E1, + SWSERIAL_5O1 = SWSERIAL_PARITY_ODD, + SWSERIAL_6O1, + SWSERIAL_7O1, + SWSERIAL_8O1, + SWSERIAL_5M1 = SWSERIAL_PARITY_MARK, + SWSERIAL_6M1, + SWSERIAL_7M1, + SWSERIAL_8M1, + SWSERIAL_5S1 = SWSERIAL_PARITY_SPACE, + SWSERIAL_6S1, + SWSERIAL_7S1, + SWSERIAL_8S1, + SWSERIAL_5N2 = 0200 | SWSERIAL_PARITY_NONE, + SWSERIAL_6N2, + SWSERIAL_7N2, + SWSERIAL_8N2, + SWSERIAL_5E2 = 0200 | SWSERIAL_PARITY_EVEN, + SWSERIAL_6E2, + SWSERIAL_7E2, + SWSERIAL_8E2, + SWSERIAL_5O2 = 0200 | SWSERIAL_PARITY_ODD, + SWSERIAL_6O2, + SWSERIAL_7O2, + SWSERIAL_8O2, + SWSERIAL_5M2 = 0200 | SWSERIAL_PARITY_MARK, + SWSERIAL_6M2, + SWSERIAL_7M2, + SWSERIAL_8M2, + SWSERIAL_5S2 = 0200 | SWSERIAL_PARITY_SPACE, + SWSERIAL_6S2, + SWSERIAL_7S2, + SWSERIAL_8S2, +}; + +/// This class is compatible with the corresponding AVR one, however, +/// the constructor takes no arguments, for compatibility with the +/// HardwareSerial class. +/// Instead, the begin() function handles pin assignments and logic inversion. +/// It also has optional input buffer capacity arguments for byte buffer and ISR bit buffer. +/// Bitrates up to at least 115200 can be used. +class SoftwareSerial : public Stream { +public: + SoftwareSerial(); + /// Ctor to set defaults for pins. + /// @param rxPin the GPIO pin used for RX + /// @param txPin -1 for onewire protocol, GPIO pin used for twowire TX + SoftwareSerial(int8_t rxPin, int8_t txPin = -1, bool invert = false); + SoftwareSerial(const SoftwareSerial&) = delete; + SoftwareSerial& operator= (const SoftwareSerial&) = delete; + virtual ~SoftwareSerial(); + /// Configure the SoftwareSerial object for use. + /// @param baud the TX/RX bitrate + /// @param config sets databits, parity, and stop bit count + /// @param rxPin -1 or default: either no RX pin, or keeps the rxPin set in the ctor + /// @param txPin -1 or default: either no TX pin (onewire), or keeps the txPin set in the ctor + /// @param invert true: uses invert line level logic + /// @param bufCapacity the capacity for the received bytes buffer + /// @param isrBufCapacity 0: derived from bufCapacity. The capacity of the internal asynchronous + /// bit receive buffer, a suggested size is bufCapacity times the sum of + /// start, data, parity and stop bit count. + void begin(uint32_t baud, SoftwareSerialConfig config, + int8_t rxPin, int8_t txPin, bool invert, + int bufCapacity = 64, int isrBufCapacity = 0); + void begin(uint32_t baud, SoftwareSerialConfig config, + int8_t rxPin, int8_t txPin) { + begin(baud, config, rxPin, txPin, m_invert); + } + void begin(uint32_t baud, SoftwareSerialConfig config, + int8_t rxPin) { + begin(baud, config, rxPin, m_txPin, m_invert); + } + void begin(uint32_t baud, SoftwareSerialConfig config = SWSERIAL_8N1) { + begin(baud, config, m_rxPin, m_txPin, m_invert); + } + + uint32_t baudRate(); + /// Transmit control pin. + void setTransmitEnablePin(int8_t txEnablePin); + /// Enable or disable interrupts during tx. + void enableIntTx(bool on); + + bool overflow(); + + int available() override; + int availableForWrite() { + if (!m_txValid) return 0; + return 1; + } + int peek() override; + int read() override; + /// @returns The verbatim parity bit associated with the last read() or peek() call + bool readParity() + { + return m_lastReadParity; + } + /// @returns The calculated bit for even parity of the parameter byte + static bool parityEven(uint8_t byte) { + byte ^= byte >> 4; + byte &= 0xf; + return (0x6996 >> byte) & 1; + } + /// @returns The calculated bit for odd parity of the parameter byte + static bool parityOdd(uint8_t byte) { + byte ^= byte >> 4; + byte &= 0xf; + return (0x9669 >> byte) & 1; + } + /// The read(buffer, size) functions are non-blocking, the same as readBytes but without timeout + size_t read(uint8_t* buffer, size_t size); + /// The read(buffer, size) functions are non-blocking, the same as readBytes but without timeout + size_t read(char* buffer, size_t size) { + return read(reinterpret_cast(buffer), size); + } + /// @returns The number of bytes read into buffer, up to size. Times out if the limit set through + /// Stream::setTimeout() is reached. + size_t readBytes(uint8_t* buffer, size_t size) override; + /// @returns The number of bytes read into buffer, up to size. Times out if the limit set through + /// Stream::setTimeout() is reached. + size_t readBytes(char* buffer, size_t size) override { + return readBytes(reinterpret_cast(buffer), size); + } + void flush() override; + size_t write(uint8_t byte) override; + size_t write(uint8_t byte, SoftwareSerialParity parity); + size_t write(const uint8_t* buffer, size_t size) override; + size_t write(const char* buffer, size_t size) { + return write(reinterpret_cast(buffer), size); + } + size_t write(const uint8_t* buffer, size_t size, SoftwareSerialParity parity); + size_t write(const char* buffer, size_t size, SoftwareSerialParity parity) { + return write(reinterpret_cast(buffer), size, parity); + } + operator bool() const { return m_rxValid || m_txValid; } + + /// Disable or enable interrupts on the rx pin. + void enableRx(bool on); + /// One wire control. + void enableTx(bool on); + + // AVR compatibility methods. + bool listen() { enableRx(true); return true; } + void end(); + bool isListening() { return m_rxEnabled; } + bool stopListening() { enableRx(false); return true; } + + /// Set an event handler for received data. + void onReceive(Delegate handler); + + /// Run the internal processing and event engine. Can be iteratively called + /// from loop, or otherwise scheduled. + void perform_work(); + + using Print::write; + +private: + // If sync is false, it's legal to exceed the deadline, for instance, + // by enabling interrupts. + void preciseDelay(bool sync); + // If withStopBit is set, either cycle contains a stop bit. + // If dutyCycle == 0, the level is not forced to HIGH. + // If offCycle == 0, the level remains unchanged from dutyCycle. + void writePeriod( + uint32_t dutyCycle, uint32_t offCycle, bool withStopBit); + bool isValidGPIOpin(int8_t pin); + /* check m_rxValid that calling is safe */ + void rxBits(); + void rxBits(const uint32_t& isrCycle); + + static void rxBitISR(SoftwareSerial* self); + static void rxBitSyncISR(SoftwareSerial* self); + + // Member variables + int8_t m_rxPin = -1; + int8_t m_txPin = -1; + int8_t m_txEnablePin = -1; + uint8_t m_dataBits; + bool m_oneWire; + bool m_rxValid = false; + bool m_rxEnabled = false; + bool m_txValid = false; + bool m_txEnableValid = false; + bool m_invert; + /// PDU bits include data, parity and stop bits; the start bit is not counted. + uint8_t m_pduBits; + bool m_intTxEnabled; + SoftwareSerialParity m_parityMode; + uint8_t m_stopBits; + bool m_lastReadParity; + bool m_overflow = false; + uint32_t m_bitCycles; + uint8_t m_parityInPos; + uint8_t m_parityOutPos; + int8_t m_rxCurBit; // 0 thru (m_pduBits - m_stopBits - 1): data/parity bits. -1: start bit. (m_pduBits - 1): stop bit. + uint8_t m_rxCurByte = 0; + std::unique_ptr > m_buffer; + std::unique_ptr > m_parityBuffer; + uint32_t m_periodStart; + uint32_t m_periodDuration; + uint32_t m_savedPS = 0; + // the ISR stores the relative bit times in the buffer. The inversion corrected level is used as sign bit (2's complement): + // 1 = positive including 0, 0 = negative. + std::unique_ptr > m_isrBuffer; + std::atomic m_isrOverflow; + uint32_t m_isrLastCycle; + bool m_rxCurParity = false; + Delegate receiveHandler; +}; + +#endif // __SoftwareSerial_h diff --git a/lib/EspSoftwareSerial/src/circular_queue/Delegate.h b/lib/EspSoftwareSerial/src/circular_queue/Delegate.h new file mode 100644 index 00000000..bd19c66e --- /dev/null +++ b/lib/EspSoftwareSerial/src/circular_queue/Delegate.h @@ -0,0 +1,1786 @@ +/* +Delegate.h - An efficient interchangeable C function ptr and C++ std::function delegate +Copyright (c) 2019 Dirk O. Kaar. All rights reserved. + +This library is free software; you can redistribute it and/or +modify it under the terms of the GNU Lesser General Public +License as published by the Free Software Foundation; either +version 2.1 of the License, or (at your option) any later version. + +This library is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +Lesser General Public License for more details. + +You should have received a copy of the GNU Lesser General Public +License along with this library; if not, write to the Free Software +Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA +*/ + +#ifndef __Delegate_h +#define __Delegate_h + +#if defined(ESP8266) +#include +#elif defined(ESP32) +#include +#else +#define ICACHE_RAM_ATTR +#define IRAM_ATTR +#endif + +#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32) +#include +#include +#else +#include "circular_queue/ghostl.h" +#endif + +namespace detail +{ + template + static R IRAM_ATTR vPtrToFunPtrExec(void* fn, P... args) + { + using target_type = R(P...); + return reinterpret_cast(fn)(std::forward(args...)); + } + +#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32) + template + class DelegatePImpl { + public: + using target_type = R(P...); + protected: + using FunPtr = target_type*; + using FunAPtr = R(*)(A, P...); + using FunVPPtr = R(*)(void*, P...); + using FunctionType = std::function; + public: + DelegatePImpl() + { + kind = FP; + fn = nullptr; + } + + DelegatePImpl(std::nullptr_t) + { + kind = FP; + fn = nullptr; + } + + ~DelegatePImpl() + { + if (FUNC == kind) + functional.~FunctionType(); + else if (FPA == kind) + obj.~A(); + } + + DelegatePImpl(const DelegatePImpl& del) + { + kind = del.kind; + if (FUNC == del.kind) + { + new (&functional) FunctionType(del.functional); + } + else if (FPA == del.kind) + { + fnA = del.fnA; + new (&obj) A(del.obj); + } + else + { + fn = del.fn; + } + } + + DelegatePImpl(DelegatePImpl&& del) + { + kind = del.kind; + if (FUNC == del.kind) + { + new (&functional) FunctionType(std::move(del.functional)); + } + else if (FPA == del.kind) + { + fnA = del.fnA; + new (&obj) A(std::move(del.obj)); + } + else + { + fn = del.fn; + } + } + + DelegatePImpl(FunAPtr fnA, const A& obj) + { + kind = FPA; + DelegatePImpl::fnA = fnA; + new (&this->obj) A(obj); + } + + DelegatePImpl(FunAPtr fnA, A&& obj) + { + kind = FPA; + DelegatePImpl::fnA = fnA; + new (&this->obj) A(std::move(obj)); + } + + DelegatePImpl(FunPtr fn) + { + kind = FP; + DelegatePImpl::fn = fn; + } + + template DelegatePImpl(F functional) + { + kind = FUNC; + new (&this->functional) FunctionType(std::forward(functional)); + } + + DelegatePImpl& operator=(const DelegatePImpl& del) + { + if (this == &del) return *this; + if (kind != del.kind) + { + if (FUNC == kind) + { + functional.~FunctionType(); + } + else if (FPA == kind) + { + obj.~A(); + } + if (FUNC == del.kind) + { + new (&this->functional) FunctionType(); + } + else if (FPA == del.kind) + { + new (&obj) A; + } + kind = del.kind; + } + if (FUNC == del.kind) + { + functional = del.functional; + } + else if (FPA == del.kind) + { + fnA = del.fnA; + obj = del.obj; + } + else + { + fn = del.fn; + } + return *this; + } + + DelegatePImpl& operator=(DelegatePImpl&& del) + { + if (this == &del) return *this; + if (kind != del.kind) + { + if (FUNC == kind) + { + functional.~FunctionType(); + } + else if (FPA == kind) + { + obj.~A(); + } + if (FUNC == del.kind) + { + new (&this->functional) FunctionType(); + } + else if (FPA == del.kind) + { + new (&obj) A; + } + kind = del.kind; + } + if (FUNC == del.kind) + { + functional = std::move(del.functional); + } + else if (FPA == del.kind) + { + fnA = del.fnA; + obj = std::move(del.obj); + } + else + { + fn = del.fn; + } + return *this; + } + + DelegatePImpl& operator=(FunPtr fn) + { + if (FUNC == kind) + { + functional.~FunctionType(); + } + else if (FPA == kind) + { + obj.~A(); + } + kind = FP; + this->fn = fn; + return *this; + } + + DelegatePImpl& IRAM_ATTR operator=(std::nullptr_t) + { + if (FUNC == kind) + { + functional.~FunctionType(); + } + else if (FPA == kind) + { + obj.~A(); + } + kind = FP; + fn = nullptr; + return *this; + } + + operator bool() const + { + if (FP == kind) + { + return fn; + } + else if (FPA == kind) + { + return fnA; + } + else + { + return functional ? true : false; + } + } + + static R IRAM_ATTR vPtrToFunAPtrExec(void* self, P... args) + { + return static_cast(self)->fnA( + static_cast(self)->obj, + std::forward(args...)); + }; + + operator FunVPPtr() const + { + if (FP == kind) + { + return vPtrToFunPtrExec; + } + else if (FPA == kind) + { + return vPtrToFunAPtrExec; + } + else + { + return [](void* self, P... args) -> R + { + return static_cast(self)->functional(std::forward(args...)); + }; + } + } + + void* arg() const + { + if (FP == kind) + { + return reinterpret_cast(fn); + } + else + { + return const_cast(this); + } + } + + operator FunctionType() const + { + if (FP == kind) + { + return fn; + } + else if (FPA == kind) + { + return [this](P... args) { return fnA(obj, std::forward(args...)); }; + } + else + { + return functional; + } + } + + R IRAM_ATTR operator()(P... args) const + { + if (FP == kind) + { + return fn(std::forward(args...)); + } + else if (FPA == kind) + { + return fnA(obj, std::forward(args...)); + } + else + { + return functional(std::forward(args...)); + } + } + + protected: + enum { FUNC, FP, FPA } kind; + union { + FunctionType functional; + FunPtr fn; + struct { + FunAPtr fnA; + A obj; + }; + }; + }; +#else + template + class DelegatePImpl { + public: + using target_type = R(P...); + protected: + using FunPtr = target_type*; + using FunAPtr = R(*)(A, P...); + using FunVPPtr = R(*)(void*, P...); + public: + DelegatePImpl() + { + kind = FP; + fn = nullptr; + } + + DelegatePImpl(std::nullptr_t) + { + kind = FP; + fn = nullptr; + } + + DelegatePImpl(const DelegatePImpl& del) + { + kind = del.kind; + if (FPA == del.kind) + { + fnA = del.fnA; + obj = del.obj; + } + else + { + fn = del.fn; + } + } + + DelegatePImpl(DelegatePImpl&& del) + { + kind = del.kind; + if (FPA == del.kind) + { + fnA = del.fnA; + obj = std::move(del.obj); + } + else + { + fn = del.fn; + } + } + + DelegatePImpl(FunAPtr fnA, const A& obj) + { + kind = FPA; + DelegatePImpl::fnA = fnA; + this->obj = obj; + } + + DelegatePImpl(FunAPtr fnA, A&& obj) + { + kind = FPA; + DelegatePImpl::fnA = fnA; + this->obj = std::move(obj); + } + + DelegatePImpl(FunPtr fn) + { + kind = FP; + DelegatePImpl::fn = fn; + } + + template DelegatePImpl(F fn) + { + kind = FP; + DelegatePImpl::fn = std::forward(fn); + } + + DelegatePImpl& operator=(const DelegatePImpl& del) + { + if (this == &del) return *this; + if (kind != del.kind) + { + if (FPA == kind) + { + obj = {}; + } + kind = del.kind; + } + if (FPA == del.kind) + { + fnA = del.fnA; + obj = del.obj; + } + else + { + fn = del.fn; + } + return *this; + } + + DelegatePImpl& operator=(DelegatePImpl&& del) + { + if (this == &del) return *this; + if (kind != del.kind) + { + if (FPA == kind) + { + obj = {}; + } + kind = del.kind; + } + if (FPA == del.kind) + { + fnA = del.fnA; + obj = std::move(del.obj); + } + else + { + fn = del.fn; + } + return *this; + } + + DelegatePImpl& operator=(FunPtr fn) + { + if (FPA == kind) + { + obj = {}; + } + kind = FP; + this->fn = fn; + return *this; + } + + DelegatePImpl& IRAM_ATTR operator=(std::nullptr_t) + { + if (FPA == kind) + { + obj = {}; + } + kind = FP; + fn = nullptr; + return *this; + } + + operator bool() const + { + if (FP == kind) + { + return fn; + } + else + { + return fnA; + } + } + + static R IRAM_ATTR vPtrToFunAPtrExec(void* self, P... args) + { + return static_cast(self)->fnA( + static_cast(self)->obj, + std::forward(args...)); + }; + + operator FunVPPtr() const + { + if (FP == kind) + { + return vPtrToFunPtrExec; + } + else + { + return vPtrToFunAPtrExec; + } + } + + void* arg() const + { + if (FP == kind) + { + return reinterpret_cast(fn); + } + else + { + return const_cast(this); + } + } + + R IRAM_ATTR operator()(P... args) const + { + if (FP == kind) + { + return fn(std::forward(args...)); + } + else + { + return fnA(obj, std::forward(args...)); + } + } + + protected: + enum { FP, FPA } kind; + union { + FunPtr fn; + FunAPtr fnA; + }; + A obj; + }; +#endif + +#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32) + template + class DelegatePImpl { + public: + using target_type = R(P...); + protected: + using FunPtr = target_type*; + using FunctionType = std::function; + using FunVPPtr = R(*)(void*, P...); + public: + DelegatePImpl() + { + kind = FP; + fn = nullptr; + } + + DelegatePImpl(std::nullptr_t) + { + kind = FP; + fn = nullptr; + } + + ~DelegatePImpl() + { + if (FUNC == kind) + functional.~FunctionType(); + } + + DelegatePImpl(const DelegatePImpl& del) + { + kind = del.kind; + if (FUNC == del.kind) + { + new (&functional) FunctionType(del.functional); + } + else + { + fn = del.fn; + } + } + + DelegatePImpl(DelegatePImpl&& del) + { + kind = del.kind; + if (FUNC == del.kind) + { + new (&functional) FunctionType(std::move(del.functional)); + } + else + { + fn = del.fn; + } + } + + DelegatePImpl(FunPtr fn) + { + kind = FP; + DelegatePImpl::fn = fn; + } + + template DelegatePImpl(F functional) + { + kind = FUNC; + new (&this->functional) FunctionType(std::forward(functional)); + } + + DelegatePImpl& operator=(const DelegatePImpl& del) + { + if (this == &del) return *this; + if (FUNC == kind && FUNC != del.kind) + { + functional.~FunctionType(); + } + else if (FUNC != kind && FUNC == del.kind) + { + new (&this->functional) FunctionType(); + } + kind = del.kind; + if (FUNC == del.kind) + { + functional = del.functional; + } + else + { + fn = del.fn; + } + return *this; + } + + DelegatePImpl& operator=(DelegatePImpl&& del) + { + if (this == &del) return *this; + if (FUNC == kind && FUNC != del.kind) + { + functional.~FunctionType(); + } + else if (FUNC != kind && FUNC == del.kind) + { + new (&this->functional) FunctionType(); + } + kind = del.kind; + if (FUNC == del.kind) + { + functional = std::move(del.functional); + } + else + { + fn = del.fn; + } + return *this; + } + + DelegatePImpl& operator=(FunPtr fn) + { + if (FUNC == kind) + { + functional.~FunctionType(); + kind = FP; + } + DelegatePImpl::fn = fn; + return *this; + } + + DelegatePImpl& IRAM_ATTR operator=(std::nullptr_t) + { + if (FUNC == kind) + { + functional.~FunctionType(); + } + kind = FP; + fn = nullptr; + return *this; + } + + operator bool() const + { + if (FP == kind) + { + return fn; + } + else + { + return functional ? true : false; + } + } + + operator FunVPPtr() const + { + if (FP == kind) + { + return vPtrToFunPtrExec; + } + else + { + return [](void* self, P... args) -> R + { + return static_cast(self)->functional(std::forward(args...)); + }; + } + } + + void* arg() const + { + if (FP == kind) + { + return reinterpret_cast(fn); + } + else + { + return const_cast(this); + } + } + + operator FunctionType() const + { + if (FP == kind) + { + return fn; + } + else + { + return functional; + } + } + + R IRAM_ATTR operator()(P... args) const + { + if (FP == kind) + { + return fn(std::forward(args...)); + } + else + { + return functional(std::forward(args...)); + } + } + + protected: + enum { FUNC, FP } kind; + union { + FunctionType functional; + FunPtr fn; + }; + }; +#else + template + class DelegatePImpl { + public: + using target_type = R(P...); + protected: + using FunPtr = target_type*; + using FunVPPtr = R(*)(void*, P...); + public: + DelegatePImpl() + { + fn = nullptr; + } + + DelegatePImpl(std::nullptr_t) + { + fn = nullptr; + } + + DelegatePImpl(const DelegatePImpl& del) + { + fn = del.fn; + } + + DelegatePImpl(DelegatePImpl&& del) + { + fn = std::move(del.fn); + } + + DelegatePImpl(FunPtr fn) + { + DelegatePImpl::fn = fn; + } + + template DelegatePImpl(F fn) + { + DelegatePImpl::fn = std::forward(fn); + } + + DelegatePImpl& operator=(const DelegatePImpl& del) + { + if (this == &del) return *this; + fn = del.fn; + return *this; + } + + DelegatePImpl& operator=(DelegatePImpl&& del) + { + if (this == &del) return *this; + fn = std::move(del.fn); + return *this; + } + + DelegatePImpl& operator=(FunPtr fn) + { + DelegatePImpl::fn = fn; + return *this; + } + + DelegatePImpl& IRAM_ATTR operator=(std::nullptr_t) + { + fn = nullptr; + return *this; + } + + operator bool() const + { + return fn; + } + + operator FunVPPtr() const + { + return vPtrToFunPtrExec; + } + + void* arg() const + { + return reinterpret_cast(fn); + } + + R IRAM_ATTR operator()(P... args) const + { + return fn(std::forward(args...)); + } + + protected: + FunPtr fn; + }; +#endif + +#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32) + template + class DelegateImpl { + public: + using target_type = R(); + protected: + using FunPtr = target_type*; + using FunAPtr = R(*)(A); + using FunctionType = std::function; + using FunVPPtr = R(*)(void*); + public: + DelegateImpl() + { + kind = FP; + fn = nullptr; + } + + DelegateImpl(std::nullptr_t) + { + kind = FP; + fn = nullptr; + } + + ~DelegateImpl() + { + if (FUNC == kind) + functional.~FunctionType(); + else if (FPA == kind) + obj.~A(); + } + + DelegateImpl(const DelegateImpl& del) + { + kind = del.kind; + if (FUNC == del.kind) + { + new (&functional) FunctionType(del.functional); + } + else if (FPA == del.kind) + { + fnA = del.fnA; + new (&obj) A(del.obj); + } + else + { + fn = del.fn; + } + } + + DelegateImpl(DelegateImpl&& del) + { + kind = del.kind; + if (FUNC == del.kind) + { + new (&functional) FunctionType(std::move(del.functional)); + } + else if (FPA == del.kind) + { + fnA = del.fnA; + new (&obj) A(std::move(del.obj)); + } + else + { + fn = del.fn; + } + } + + DelegateImpl(FunAPtr fnA, const A& obj) + { + kind = FPA; + DelegateImpl::fnA = fnA; + new (&this->obj) A(obj); + } + + DelegateImpl(FunAPtr fnA, A&& obj) + { + kind = FPA; + DelegateImpl::fnA = fnA; + new (&this->obj) A(std::move(obj)); + } + + DelegateImpl(FunPtr fn) + { + kind = FP; + DelegateImpl::fn = fn; + } + + template DelegateImpl(F functional) + { + kind = FUNC; + new (&this->functional) FunctionType(std::forward(functional)); + } + + DelegateImpl& operator=(const DelegateImpl& del) + { + if (this == &del) return *this; + if (kind != del.kind) + { + if (FUNC == kind) + { + functional.~FunctionType(); + } + else if (FPA == kind) + { + obj.~A(); + } + if (FUNC == del.kind) + { + new (&this->functional) FunctionType(); + } + else if (FPA == del.kind) + { + new (&obj) A; + } + kind = del.kind; + } + if (FUNC == del.kind) + { + functional = del.functional; + } + else if (FPA == del.kind) + { + fnA = del.fnA; + obj = del.obj; + } + else + { + fn = del.fn; + } + return *this; + } + + DelegateImpl& operator=(DelegateImpl&& del) + { + if (this == &del) return *this; + if (kind != del.kind) + { + if (FUNC == kind) + { + functional.~FunctionType(); + } + else if (FPA == kind) + { + obj.~A(); + } + if (FUNC == del.kind) + { + new (&this->functional) FunctionType(); + } + else if (FPA == del.kind) + { + new (&obj) A; + } + kind = del.kind; + } + if (FUNC == del.kind) + { + functional = std::move(del.functional); + } + else if (FPA == del.kind) + { + fnA = del.fnA; + obj = std::move(del.obj); + } + else + { + fn = del.fn; + } + return *this; + } + + DelegateImpl& operator=(FunPtr fn) + { + if (FUNC == kind) + { + functional.~FunctionType(); + } + else if (FPA == kind) + { + obj.~A(); + } + kind = FP; + this->fn = fn; + return *this; + } + + DelegateImpl& IRAM_ATTR operator=(std::nullptr_t) + { + if (FUNC == kind) + { + functional.~FunctionType(); + } + else if (FPA == kind) + { + obj.~A(); + } + kind = FP; + fn = nullptr; + return *this; + } + + operator bool() const + { + if (FP == kind) + { + return fn; + } + else if (FPA == kind) + { + return fnA; + } + else + { + return functional ? true : false; + } + } + + static R IRAM_ATTR vPtrToFunAPtrExec(void* self) + { + return static_cast(self)->fnA( + static_cast(self)->obj); + }; + + operator FunVPPtr() const + { + if (FP == kind) + { + return reinterpret_cast(fn); + } + else if (FPA == kind) + { + return vPtrToFunAPtrExec; + } + else + { + return [](void* self) -> R + { + return static_cast(self)->functional(); + }; + } + } + + void* arg() const + { + if (FP == kind) + { + return nullptr; + } + else + { + return const_cast(this); + } + } + + operator FunctionType() const + { + if (FP == kind) + { + return fn; + } + else if (FPA == kind) + { + return [this]() { return fnA(obj); }; + } + else + { + return functional; + } + } + + R IRAM_ATTR operator()() const + { + if (FP == kind) + { + return fn(); + } + else if (FPA == kind) + { + return fnA(obj); + } + else + { + return functional(); + } + } + + protected: + enum { FUNC, FP, FPA } kind; + union { + FunctionType functional; + FunPtr fn; + struct { + FunAPtr fnA; + A obj; + }; + }; + }; +#else + template + class DelegateImpl { + public: + using target_type = R(); + protected: + using FunPtr = target_type*; + using FunAPtr = R(*)(A); + using FunVPPtr = R(*)(void*); + public: + DelegateImpl() + { + kind = FP; + fn = nullptr; + } + + DelegateImpl(std::nullptr_t) + { + kind = FP; + fn = nullptr; + } + + DelegateImpl(const DelegateImpl& del) + { + kind = del.kind; + if (FPA == del.kind) + { + fnA = del.fnA; + obj = del.obj; + } + else + { + fn = del.fn; + } + } + + DelegateImpl(DelegateImpl&& del) + { + kind = del.kind; + if (FPA == del.kind) + { + fnA = del.fnA; + obj = std::move(del.obj); + } + else + { + fn = del.fn; + } + } + + DelegateImpl(FunAPtr fnA, const A& obj) + { + kind = FPA; + DelegateImpl::fnA = fnA; + this->obj = obj; + } + + DelegateImpl(FunAPtr fnA, A&& obj) + { + kind = FPA; + DelegateImpl::fnA = fnA; + this->obj = std::move(obj); + } + + DelegateImpl(FunPtr fn) + { + kind = FP; + DelegateImpl::fn = fn; + } + + template DelegateImpl(F fn) + { + kind = FP; + DelegateImpl::fn = std::forward(fn); + } + + DelegateImpl& operator=(const DelegateImpl& del) + { + if (this == &del) return *this; + if (kind != del.kind) + { + if (FPA == kind) + { + obj = {}; + } + kind = del.kind; + } + if (FPA == del.kind) + { + fnA = del.fnA; + obj = del.obj; + } + else + { + fn = del.fn; + } + return *this; + } + + DelegateImpl& operator=(DelegateImpl&& del) + { + if (this == &del) return *this; + if (kind != del.kind) + { + if (FPA == kind) + { + obj = {}; + } + kind = del.kind; + } + if (FPA == del.kind) + { + fnA = del.fnA; + obj = std::move(del.obj); + } + else + { + fn = del.fn; + } + return *this; + } + + DelegateImpl& operator=(FunPtr fn) + { + if (FPA == kind) + { + obj = {}; + } + kind = FP; + this->fn = fn; + return *this; + } + + DelegateImpl& IRAM_ATTR operator=(std::nullptr_t) + { + if (FPA == kind) + { + obj = {}; + } + kind = FP; + fn = nullptr; + return *this; + } + + operator bool() const + { + if (FP == kind) + { + return fn; + } + else + { + return fnA; + } + } + + static R IRAM_ATTR vPtrToFunAPtrExec(void* self) + { + return static_cast(self)->fnA( + static_cast(self)->obj); + }; + + operator FunVPPtr() const + { + if (FP == kind) + { + return reinterpret_cast(fn); + } + else + { + return vPtrToFunAPtrExec; + } + } + + void* arg() const + { + if (FP == kind) + { + return nullptr; + } + else + { + return const_cast(this); + } + } + + R IRAM_ATTR operator()() const + { + if (FP == kind) + { + return fn(); + } + else + { + return fnA(obj); + } + } + + protected: + enum { FP, FPA } kind; + union { + FunPtr fn; + FunAPtr fnA; + }; + A obj; + }; +#endif + +#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32) + template + class DelegateImpl { + public: + using target_type = R(); + protected: + using FunPtr = target_type*; + using FunctionType = std::function; + using FunVPPtr = R(*)(void*); + public: + DelegateImpl() + { + kind = FP; + fn = nullptr; + } + + DelegateImpl(std::nullptr_t) + { + kind = FP; + fn = nullptr; + } + + ~DelegateImpl() + { + if (FUNC == kind) + functional.~FunctionType(); + } + + DelegateImpl(const DelegateImpl& del) + { + kind = del.kind; + if (FUNC == del.kind) + { + new (&functional) FunctionType(del.functional); + } + else + { + fn = del.fn; + } + } + + DelegateImpl(DelegateImpl&& del) + { + kind = del.kind; + if (FUNC == del.kind) + { + new (&functional) FunctionType(std::move(del.functional)); + } + else + { + fn = del.fn; + } + } + + DelegateImpl(FunPtr fn) + { + kind = FP; + DelegateImpl::fn = fn; + } + + template DelegateImpl(F functional) + { + kind = FUNC; + new (&this->functional) FunctionType(std::forward(functional)); + } + + DelegateImpl& operator=(const DelegateImpl& del) + { + if (this == &del) return *this; + if (FUNC == kind && FUNC != del.kind) + { + functional.~FunctionType(); + } + else if (FUNC != kind && FUNC == del.kind) + { + new (&this->functional) FunctionType(); + } + kind = del.kind; + if (FUNC == del.kind) + { + functional = del.functional; + } + else + { + fn = del.fn; + } + return *this; + } + + DelegateImpl& operator=(DelegateImpl&& del) + { + if (this == &del) return *this; + if (FUNC == kind && FUNC != del.kind) + { + functional.~FunctionType(); + } + else if (FUNC != kind && FUNC == del.kind) + { + new (&this->functional) FunctionType(); + } + kind = del.kind; + if (FUNC == del.kind) + { + functional = std::move(del.functional); + } + else + { + fn = del.fn; + } + return *this; + } + + DelegateImpl& operator=(FunPtr fn) + { + if (FUNC == kind) + { + functional.~FunctionType(); + kind = FP; + } + DelegateImpl::fn = fn; + return *this; + } + + DelegateImpl& IRAM_ATTR operator=(std::nullptr_t) + { + if (FUNC == kind) + { + functional.~FunctionType(); + } + kind = FP; + fn = nullptr; + return *this; + } + + operator bool() const + { + if (FP == kind) + { + return fn; + } + else + { + return functional ? true : false; + } + } + + operator FunVPPtr() const + { + if (FP == kind) + { + return reinterpret_cast(fn); + } + else + { + return [](void* self) -> R + { + return static_cast(self)->functional(); + }; + } + } + + void* arg() const + { + if (FP == kind) + { + return nullptr; + } + else + { + return const_cast(this); + } + } + + operator FunctionType() const + { + if (FP == kind) + { + return fn; + } + else + { + return functional; + } + } + + R IRAM_ATTR operator()() const + { + if (FP == kind) + { + return fn(); + } + else + { + return functional(); + } + } + + protected: + enum { FUNC, FP } kind; + union { + FunctionType functional; + FunPtr fn; + }; + }; +#else + template + class DelegateImpl { + public: + using target_type = R(); + protected: + using FunPtr = target_type*; + using FunVPPtr = R(*)(void*); + public: + DelegateImpl() + { + fn = nullptr; + } + + DelegateImpl(std::nullptr_t) + { + fn = nullptr; + } + + DelegateImpl(const DelegateImpl& del) + { + fn = del.fn; + } + + DelegateImpl(DelegateImpl&& del) + { + fn = std::move(del.fn); + } + + DelegateImpl(FunPtr fn) + { + DelegateImpl::fn = fn; + } + + template DelegateImpl(F fn) + { + DelegateImpl::fn = std::forward(fn); + } + + DelegateImpl& operator=(const DelegateImpl& del) + { + if (this == &del) return *this; + fn = del.fn; + return *this; + } + + DelegateImpl& operator=(DelegateImpl&& del) + { + if (this == &del) return *this; + fn = std::move(del.fn); + return *this; + } + + DelegateImpl& operator=(FunPtr fn) + { + DelegateImpl::fn = fn; + return *this; + } + + DelegateImpl& IRAM_ATTR operator=(std::nullptr_t) + { + fn = nullptr; + return *this; + } + + operator bool() const + { + return fn; + } + + operator FunVPPtr() const + { + return reinterpret_cast(fn); + } + + void* arg() const + { + return nullptr; + } + + R IRAM_ATTR operator()() const + { + return fn(); + } + + protected: + FunPtr fn; + }; +#endif + + template + class Delegate : private detail::DelegatePImpl + { + private: + using typename detail::DelegatePImpl::FunVPPtr; +#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32) + using typename detail::DelegatePImpl::FunctionType; +#endif + public: + using detail::DelegatePImpl::target_type; + using detail::DelegatePImpl::DelegatePImpl; + using detail::DelegatePImpl::operator=; + using detail::DelegatePImpl::operator bool; + using detail::DelegatePImpl::operator FunVPPtr; + using detail::DelegatePImpl::arg; +#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32) + using detail::DelegatePImpl::operator FunctionType; +#endif + using detail::DelegatePImpl::operator(); + }; + + template + class Delegate : private detail::DelegatePImpl + { + private: + using typename detail::DelegatePImpl::FunVPPtr; +#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32) + using typename detail::DelegatePImpl::FunctionType; +#endif + public: + using detail::DelegatePImpl::target_type; + using detail::DelegatePImpl::DelegatePImpl; + using detail::DelegatePImpl::operator=; + using detail::DelegatePImpl::operator bool; +#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32) + using detail::DelegatePImpl::operator FunctionType; +#endif + using detail::DelegatePImpl::operator(); + operator FunVPPtr() const + { + if (detail::DelegatePImpl::FPA == detail::DelegatePImpl::kind) + { + return reinterpret_cast(detail::DelegatePImpl::fnA); + } + else + { + return detail::DelegatePImpl::operator FunVPPtr(); + } + } + void* arg() const + { + if (detail::DelegatePImpl::FPA == detail::DelegatePImpl::kind) + { + return detail::DelegatePImpl::obj; + } + else + { + return detail::DelegatePImpl::arg(); + } + } + }; + + template + class Delegate : private detail::DelegateImpl + { + private: + using typename detail::DelegateImpl::FunVPPtr; +#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32) + using typename detail::DelegateImpl::FunctionType; +#endif + public: + using detail::DelegateImpl::target_type; + using detail::DelegateImpl::DelegateImpl; + using detail::DelegateImpl::operator=; + using detail::DelegateImpl::operator bool; + using detail::DelegateImpl::operator FunVPPtr; + using detail::DelegateImpl::arg; +#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32) + using detail::DelegateImpl::operator FunctionType; +#endif + using detail::DelegateImpl::operator(); + }; + + template + class Delegate : private detail::DelegateImpl + { + private: + using typename detail::DelegateImpl::FunVPPtr; +#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32) + using typename detail::DelegateImpl::FunctionType; +#endif + public: + using detail::DelegateImpl::target_type; + using detail::DelegateImpl::DelegateImpl; + using detail::DelegateImpl::operator=; + using detail::DelegateImpl::operator bool; +#if !defined(ARDUINO) || defined(ESP8266) || defined(ESP32) + using detail::DelegateImpl::operator FunctionType; +#endif + using detail::DelegateImpl::operator(); + operator FunVPPtr() const + { + if (detail::DelegateImpl::FPA == detail::DelegateImpl::kind) + { + return reinterpret_cast(detail::DelegateImpl::fnA); + } + else + { + return detail::DelegateImpl::operator FunVPPtr(); + } + } + void* arg() const + { + if (detail::DelegateImpl::FPA == detail::DelegateImpl::kind) + { + return detail::DelegateImpl::obj; + } + else + { + return detail::DelegateImpl::arg(); + } + } + }; + +} + +template class Delegate; +template class Delegate : public detail::Delegate +{ +public: + using detail::Delegate::Delegate; +}; +template class Delegate : public detail::Delegate +{ +public: + using detail::Delegate::Delegate; +}; + +#endif // __Delegate_h diff --git a/lib/EspSoftwareSerial/src/circular_queue/MultiDelegate.h b/lib/EspSoftwareSerial/src/circular_queue/MultiDelegate.h new file mode 100644 index 00000000..1fd4188d --- /dev/null +++ b/lib/EspSoftwareSerial/src/circular_queue/MultiDelegate.h @@ -0,0 +1,503 @@ +/* +MultiDelegate.h - A queue or event multiplexer based on the efficient Delegate +class +Copyright (c) 2019 Dirk O. Kaar. All rights reserved. + +This library is free software; you can redistribute it and/or +modify it under the terms of the GNU Lesser General Public +License as published by the Free Software Foundation; either +version 2.1 of the License, or (at your option) any later version. + +This library is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +Lesser General Public License for more details. + +You should have received a copy of the GNU Lesser General Public +License along with this library; if not, write to the Free Software +Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA +*/ + +#ifndef __MULTIDELEGATE_H +#define __MULTIDELEGATE_H + +#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO) +#include +#else +#include "circular_queue/ghostl.h" +#endif + +#if defined(ESP8266) +#include +using esp8266::InterruptLock; +#elif defined(ARDUINO) +class InterruptLock { +public: + InterruptLock() { + noInterrupts(); + } + ~InterruptLock() { + interrupts(); + } +}; +#else +#include +#endif + +namespace detail +{ + namespace + { + template< typename Delegate, typename R, bool ISQUEUE = false, typename... P> + struct CallP + { + static R execute(Delegate& del, P... args) + { + return del(std::forward(args...)) ? !ISQUEUE : ISQUEUE; + } + }; + + template< typename Delegate, bool ISQUEUE, typename... P> + struct CallP + { + static bool execute(Delegate& del, P... args) + { + del(std::forward(args...)); + return !ISQUEUE; + } + }; + + template< typename Delegate, typename R, bool ISQUEUE = false> + struct Call + { + static R execute(Delegate& del) + { + return del() ? !ISQUEUE : ISQUEUE; + } + }; + + template< typename Delegate, bool ISQUEUE> + struct Call + { + static bool execute(Delegate& del) + { + del(); + return !ISQUEUE; + } + }; + }; + + template< typename Delegate, typename R = void, bool ISQUEUE = false, uint32_t QUEUE_CAPACITY = 32, typename... P> + class MultiDelegatePImpl + { + public: + MultiDelegatePImpl() = default; + ~MultiDelegatePImpl() + { + *this = nullptr; + } + + MultiDelegatePImpl(const MultiDelegatePImpl&) = delete; + MultiDelegatePImpl& operator=(const MultiDelegatePImpl&) = delete; + + MultiDelegatePImpl(MultiDelegatePImpl&& md) + { + first = md.first; + last = md.last; + unused = md.unused; + nodeCount = md.nodeCount; + md.first = nullptr; + md.last = nullptr; + md.unused = nullptr; + md.nodeCount = 0; + } + + MultiDelegatePImpl(const Delegate& del) + { + add(del); + } + + MultiDelegatePImpl(Delegate&& del) + { + add(std::move(del)); + } + + MultiDelegatePImpl& operator=(MultiDelegatePImpl&& md) + { + first = md.first; + last = md.last; + unused = md.unused; + nodeCount = md.nodeCount; + md.first = nullptr; + md.last = nullptr; + md.unused = nullptr; + md.nodeCount = 0; + return *this; + } + + MultiDelegatePImpl& operator=(std::nullptr_t) + { + if (last) + last->mNext = unused; + if (first) + unused = first; + while (unused) + { + auto to_delete = unused; + unused = unused->mNext; + delete(to_delete); + } + return *this; + } + + MultiDelegatePImpl& operator+=(const Delegate& del) + { + add(del); + return *this; + } + + MultiDelegatePImpl& operator+=(Delegate&& del) + { + add(std::move(del)); + return *this; + } + + protected: + struct Node_t + { + ~Node_t() + { + mDelegate = nullptr; // special overload in Delegate + } + Node_t* mNext = nullptr; + Delegate mDelegate; + }; + + Node_t* first = nullptr; + Node_t* last = nullptr; + Node_t* unused = nullptr; + uint32_t nodeCount = 0; + + // Returns a pointer to an unused Node_t, + // or if none are available allocates a new one, + // or nullptr if limit is reached + Node_t* IRAM_ATTR get_node_unsafe() + { + Node_t* result = nullptr; + // try to get an item from unused items list + if (unused) + { + result = unused; + unused = unused->mNext; + } + // if no unused items, and count not too high, allocate a new one + else if (nodeCount < QUEUE_CAPACITY) + { +#if defined(ESP8266) || defined(ESP32) + result = new (std::nothrow) Node_t; +#else + result = new Node_t; +#endif + if (result) + ++nodeCount; + } + return result; + } + + void recycle_node_unsafe(Node_t* node) + { + node->mDelegate = nullptr; // special overload in Delegate + node->mNext = unused; + unused = node; + } + +#ifndef ARDUINO + std::mutex mutex_unused; +#endif + public: + const Delegate* IRAM_ATTR add(const Delegate& del) + { + return add(Delegate(del)); + } + + const Delegate* IRAM_ATTR add(Delegate&& del) + { + if (!del) + return nullptr; + +#ifdef ARDUINO + InterruptLock lockAllInterruptsInThisScope; +#else + std::lock_guard lock(mutex_unused); +#endif + + Node_t* item = ISQUEUE ? get_node_unsafe() : +#if defined(ESP8266) || defined(ESP32) + new (std::nothrow) Node_t; +#else + new Node_t; +#endif + if (!item) + return nullptr; + + item->mDelegate = std::move(del); + item->mNext = nullptr; + + if (last) + last->mNext = item; + else + first = item; + last = item; + + return &item->mDelegate; + } + + bool remove(const Delegate* del) + { + auto current = first; + if (!current) + return false; + + Node_t* prev = nullptr; + do + { + if (del == ¤t->mDelegate) + { + // remove callback from stack +#ifdef ARDUINO + InterruptLock lockAllInterruptsInThisScope; +#else + std::lock_guard lock(mutex_unused); +#endif + + auto to_recycle = current; + + // removing rLast + if (last == current) + last = prev; + + current = current->mNext; + if (prev) + { + prev->mNext = current; + } + else + { + first = current; + } + + if (ISQUEUE) + recycle_node_unsafe(to_recycle); + else + delete to_recycle; + return true; + } + else + { + prev = current; + current = current->mNext; + } + } while (current); + return false; + } + + void operator()(P... args) + { + auto current = first; + if (!current) + return; + + static std::atomic fence(false); + // prevent recursive calls +#if defined(ARDUINO) && !defined(ESP32) + if (fence.load()) return; + fence.store(true); +#else + if (fence.exchange(true)) return; +#endif + + Node_t* prev = nullptr; + // prevent execution of new callbacks during this run + auto stop = last; + + bool done; + do + { + done = current == stop; + if (!CallP::execute(current->mDelegate, args...)) + { + // remove callback from stack +#ifdef ARDUINO + InterruptLock lockAllInterruptsInThisScope; +#else + std::lock_guard lock(mutex_unused); +#endif + + auto to_recycle = current; + + // removing rLast + if (last == current) + last = prev; + + current = current->mNext; + if (prev) + { + prev->mNext = current; + } + else + { + first = current; + } + + if (ISQUEUE) + recycle_node_unsafe(to_recycle); + else + delete to_recycle; + } + else + { + prev = current; + current = current->mNext; + } + +#if defined(ESP8266) || defined(ESP32) + // running callbacks might last too long for watchdog etc. + optimistic_yield(10000); +#endif + } while (current && !done); + + fence.store(false); + } + }; + + template< typename Delegate, typename R = void, bool ISQUEUE = false, uint32_t QUEUE_CAPACITY = 32> + class MultiDelegateImpl : public MultiDelegatePImpl + { + protected: + using typename MultiDelegatePImpl::Node_t; + using MultiDelegatePImpl::first; + using MultiDelegatePImpl::last; + using MultiDelegatePImpl::unused; + using MultiDelegatePImpl::nodeCount; + using MultiDelegatePImpl::recycle_node_unsafe; +#ifndef ARDUINO + using MultiDelegatePImpl::mutex_unused; +#endif + + public: + using MultiDelegatePImpl::MultiDelegatePImpl; + + void operator()() + { + auto current = first; + if (!current) + return; + + static std::atomic fence(false); + // prevent recursive calls +#if defined(ARDUINO) && !defined(ESP32) + if (fence.load()) return; + fence.store(true); +#else + if (fence.exchange(true)) return; +#endif + + Node_t* prev = nullptr; + // prevent execution of new callbacks during this run + auto stop = last; + + bool done; + do + { + done = current == stop; + if (!Call::execute(current->mDelegate)) + { + // remove callback from stack +#ifdef ARDUINO + InterruptLock lockAllInterruptsInThisScope; +#else + std::lock_guard lock(mutex_unused); +#endif + + auto to_recycle = current; + + // removing rLast + if (last == current) + last = prev; + + current = current->mNext; + if (prev) + { + prev->mNext = current; + } + else + { + first = current; + } + + if (ISQUEUE) + recycle_node_unsafe(to_recycle); + else + delete to_recycle; + } + else + { + prev = current; + current = current->mNext; + } + +#if defined(ESP8266) || defined(ESP32) + // running callbacks might last too long for watchdog etc. + optimistic_yield(10000); +#endif + } while (current && !done); + + fence.store(false); + } + }; + + template< typename Delegate, typename R, bool ISQUEUE, uint32_t QUEUE_CAPACITY, typename... P> class MultiDelegate; + + template< typename Delegate, typename R, bool ISQUEUE, uint32_t QUEUE_CAPACITY, typename... P> + class MultiDelegate : public MultiDelegatePImpl + { + public: + using MultiDelegatePImpl::MultiDelegatePImpl; + }; + + template< typename Delegate, typename R, bool ISQUEUE, uint32_t QUEUE_CAPACITY> + class MultiDelegate : public MultiDelegateImpl + { + public: + using MultiDelegateImpl::MultiDelegateImpl; + }; +}; + +/** +The MultiDelegate class template can be specialized to either a queue or an event multiplexer. +It is designed to be used with Delegate, the efficient runtime wrapper for C function ptr and C++ std::function. +@tparam Delegate specifies the concrete type that MultiDelegate bases the queue or event multiplexer on. +@tparam ISQUEUE modifies the generated MultiDelegate class in subtle ways. In queue mode (ISQUEUE == true), + the value of QUEUE_CAPACITY enforces the maximum number of simultaneous items the queue can contain. + This is exploited to minimize the use of new and delete by reusing already allocated items, thus + reducing heap fragmentation. In event multiplexer mode (ISQUEUE = false), new and delete are + used for allocation of the event handler items. + If the result type of the function call operator of Delegate is void, calling a MultiDelegate queue + removes each item after calling it; a Multidelegate event multiplexer keeps event handlers until + explicitly removed. + If the result type of the function call operator of Delegate is non-void, the type-conversion to bool + of that result determines if the item is immediately removed or kept after each call: a Multidelegate + queue removes an item only if true is returned, but a Multidelegate event multiplexer removes event + handlers that return false. +@tparam QUEUE_CAPACITY is only used if ISQUEUE == true. Then, it sets the maximum capacity that the queue dynamically + allocates from the heap. Unused items are not returned to the heap, but are managed by the MultiDelegate + instance during its own lifetime for efficiency. +*/ +template< typename Delegate, bool ISQUEUE = false, uint32_t QUEUE_CAPACITY = 32> +class MultiDelegate : public detail::MultiDelegate +{ +public: + using detail::MultiDelegate::MultiDelegate; +}; + +#endif // __MULTIDELEGATE_H diff --git a/lib/EspSoftwareSerial/src/circular_queue/circular_queue.h b/lib/EspSoftwareSerial/src/circular_queue/circular_queue.h new file mode 100644 index 00000000..46e3f66e --- /dev/null +++ b/lib/EspSoftwareSerial/src/circular_queue/circular_queue.h @@ -0,0 +1,399 @@ +/* +circular_queue.h - Implementation of a lock-free circular queue for EspSoftwareSerial. +Copyright (c) 2019 Dirk O. Kaar. All rights reserved. + +This library is free software; you can redistribute it and/or +modify it under the terms of the GNU Lesser General Public +License as published by the Free Software Foundation; either +version 2.1 of the License, or (at your option) any later version. + +This library is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +Lesser General Public License for more details. + +You should have received a copy of the GNU Lesser General Public +License along with this library; if not, write to the Free Software +Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA +*/ + +#ifndef __circular_queue_h +#define __circular_queue_h + +#ifdef ARDUINO +#include +#endif + +#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO) +#include +#include +#include +#include "Delegate.h" +using std::min; +#else +#include "ghostl.h" +#endif + +#if !defined(ESP32) && !defined(ESP8266) +#define ICACHE_RAM_ATTR +#define IRAM_ATTR +#endif + +/*! + @brief Instance class for a single-producer, single-consumer circular queue / ring buffer (FIFO). + This implementation is lock-free between producer and consumer for the available(), peek(), + pop(), and push() type functions. +*/ +template< typename T, typename ForEachArg = void > +class circular_queue +{ +public: + /*! + @brief Constructs a valid, but zero-capacity dummy queue. + */ + circular_queue() : m_bufSize(1) + { + m_inPos.store(0); + m_outPos.store(0); + } + /*! + @brief Constructs a queue of the given maximum capacity. + */ + circular_queue(const size_t capacity) : m_bufSize(capacity + 1), m_buffer(new T[m_bufSize]) + { + m_inPos.store(0); + m_outPos.store(0); + } + circular_queue(circular_queue&& cq) : + m_bufSize(cq.m_bufSize), m_buffer(cq.m_buffer), m_inPos(cq.m_inPos.load()), m_outPos(cq.m_outPos.load()) + {} + ~circular_queue() + { + m_buffer.reset(); + } + circular_queue(const circular_queue&) = delete; + circular_queue& operator=(circular_queue&& cq) + { + m_bufSize = cq.m_bufSize; + m_buffer = cq.m_buffer; + m_inPos.store(cq.m_inPos.load()); + m_outPos.store(cq.m_outPos.load()); + } + circular_queue& operator=(const circular_queue&) = delete; + + /*! + @brief Get the numer of elements the queue can hold at most. + */ + size_t capacity() const + { + return m_bufSize - 1; + } + + /*! + @brief Resize the queue. The available elements in the queue are preserved. + This is not lock-free and concurrent producer or consumer access + will lead to corruption. + @return True if the new capacity could accommodate the present elements in + the queue, otherwise nothing is done and false is returned. + */ + bool capacity(const size_t cap); + + /*! + @brief Discard all data in the queue. + */ + void flush() + { + m_outPos.store(m_inPos.load()); + } + + /*! + @brief Get a snapshot number of elements that can be retrieved by pop. + */ + size_t available() const + { + int avail = static_cast(m_inPos.load() - m_outPos.load()); + if (avail < 0) avail += m_bufSize; + return avail; + } + + /*! + @brief Get the remaining free elementes for pushing. + */ + size_t available_for_push() const + { + int avail = static_cast(m_outPos.load() - m_inPos.load()) - 1; + if (avail < 0) avail += m_bufSize; + return avail; + } + + /*! + @brief Peek at the next element pop will return without removing it from the queue. + @return An rvalue copy of the next element that can be popped. If the queue is empty, + return an rvalue copy of the element that is pending the next push. + */ + T peek() const + { + const auto outPos = m_outPos.load(std::memory_order_relaxed); + std::atomic_thread_fence(std::memory_order_acquire); + return m_buffer[outPos]; + } + + /*! + @brief Peek at the next pending input value. + @return A reference to the next element that can be pushed. + */ + T& IRAM_ATTR pushpeek() + { + const auto inPos = m_inPos.load(std::memory_order_relaxed); + std::atomic_thread_fence(std::memory_order_acquire); + return m_buffer[inPos]; + } + + /*! + @brief Release the next pending input value, accessible by pushpeek(), into the queue. + @return true if the queue accepted the value, false if the queue + was full. + */ + bool IRAM_ATTR push(); + + /*! + @brief Move the rvalue parameter into the queue. + @return true if the queue accepted the value, false if the queue + was full. + */ + bool IRAM_ATTR push(T&& val); + + /*! + @brief Push a copy of the parameter into the queue. + @return true if the queue accepted the value, false if the queue + was full. + */ + bool IRAM_ATTR push(const T& val) + { + return push(T(val)); + } + +#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO) + /*! + @brief Push copies of multiple elements from a buffer into the queue, + in order, beginning at buffer's head. + @return The number of elements actually copied into the queue, counted + from the buffer head. + */ + size_t push_n(const T* buffer, size_t size); +#endif + + /*! + @brief Pop the next available element from the queue. + @return An rvalue copy of the popped element, or a default + value of type T if the queue is empty. + */ + T pop(); + +#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO) + /*! + @brief Pop multiple elements in ordered sequence from the queue to a buffer. + If buffer is nullptr, simply discards up to size elements from the queue. + @return The number of elements actually popped from the queue to + buffer. + */ + size_t pop_n(T* buffer, size_t size); +#endif + + /*! + @brief Iterate over and remove each available element from queue, + calling back fun with an rvalue reference of every single element. + */ +#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO) + void for_each(const Delegate& fun); +#else + void for_each(Delegate fun); +#endif + + /*! + @brief In reverse order, iterate over, pop and optionally requeue each available element from the queue, + calling back fun with a reference of every single element. + Requeuing is dependent on the return boolean of the callback function. If it + returns true, the requeue occurs. + */ +#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO) + bool for_each_rev_requeue(const Delegate& fun); +#else + bool for_each_rev_requeue(Delegate fun); +#endif + +protected: + const T defaultValue = {}; + unsigned m_bufSize; +#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO) + std::unique_ptr m_buffer; +#else + std::unique_ptr m_buffer; +#endif + std::atomic m_inPos; + std::atomic m_outPos; +}; + +template< typename T, typename ForEachArg > +bool circular_queue::capacity(const size_t cap) +{ + if (cap + 1 == m_bufSize) return true; + else if (available() > cap) return false; + std::unique_ptr buffer(new T[cap + 1]); + const auto available = pop_n(buffer, cap); + m_buffer.reset(buffer); + m_bufSize = cap + 1; + std::atomic_thread_fence(std::memory_order_release); + m_inPos.store(available, std::memory_order_relaxed); + m_outPos.store(0, std::memory_order_release); + return true; +} + +template< typename T, typename ForEachArg > +bool IRAM_ATTR circular_queue::push() +{ + const auto inPos = m_inPos.load(std::memory_order_acquire); + const unsigned next = (inPos + 1) % m_bufSize; + if (next == m_outPos.load(std::memory_order_relaxed)) { + return false; + } + + std::atomic_thread_fence(std::memory_order_acquire); + + m_inPos.store(next, std::memory_order_release); + return true; +} + +template< typename T, typename ForEachArg > +bool IRAM_ATTR circular_queue::push(T&& val) +{ + const auto inPos = m_inPos.load(std::memory_order_acquire); + const unsigned next = (inPos + 1) % m_bufSize; + if (next == m_outPos.load(std::memory_order_relaxed)) { + return false; + } + + std::atomic_thread_fence(std::memory_order_acquire); + + m_buffer[inPos] = std::move(val); + + std::atomic_thread_fence(std::memory_order_release); + + m_inPos.store(next, std::memory_order_release); + return true; +} + +#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO) +template< typename T, typename ForEachArg > +size_t circular_queue::push_n(const T* buffer, size_t size) +{ + const auto inPos = m_inPos.load(std::memory_order_acquire); + const auto outPos = m_outPos.load(std::memory_order_relaxed); + + size_t blockSize = (outPos > inPos) ? outPos - 1 - inPos : (outPos == 0) ? m_bufSize - 1 - inPos : m_bufSize - inPos; + blockSize = min(size, blockSize); + if (!blockSize) return 0; + int next = (inPos + blockSize) % m_bufSize; + + std::atomic_thread_fence(std::memory_order_acquire); + + auto dest = m_buffer.get() + inPos; + std::copy_n(std::make_move_iterator(buffer), blockSize, dest); + size = min(size - blockSize, outPos > 1 ? static_cast(outPos - next - 1) : 0); + next += size; + dest = m_buffer.get(); + std::copy_n(std::make_move_iterator(buffer + blockSize), size, dest); + + std::atomic_thread_fence(std::memory_order_release); + + m_inPos.store(next, std::memory_order_release); + return blockSize + size; +} +#endif + +template< typename T, typename ForEachArg > +T circular_queue::pop() +{ + const auto outPos = m_outPos.load(std::memory_order_acquire); + if (m_inPos.load(std::memory_order_relaxed) == outPos) return defaultValue; + + std::atomic_thread_fence(std::memory_order_acquire); + + auto val = std::move(m_buffer[outPos]); + + std::atomic_thread_fence(std::memory_order_release); + + m_outPos.store((outPos + 1) % m_bufSize, std::memory_order_release); + return val; +} + +#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO) +template< typename T, typename ForEachArg > +size_t circular_queue::pop_n(T* buffer, size_t size) { + size_t avail = size = min(size, available()); + if (!avail) return 0; + const auto outPos = m_outPos.load(std::memory_order_acquire); + size_t n = min(avail, static_cast(m_bufSize - outPos)); + + std::atomic_thread_fence(std::memory_order_acquire); + + if (buffer) { + buffer = std::copy_n(std::make_move_iterator(m_buffer.get() + outPos), n, buffer); + avail -= n; + std::copy_n(std::make_move_iterator(m_buffer.get()), avail, buffer); + } + + std::atomic_thread_fence(std::memory_order_release); + + m_outPos.store((outPos + size) % m_bufSize, std::memory_order_release); + return size; +} +#endif + +template< typename T, typename ForEachArg > +#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO) +void circular_queue::for_each(const Delegate& fun) +#else +void circular_queue::for_each(Delegate fun) +#endif +{ + auto outPos = m_outPos.load(std::memory_order_acquire); + const auto inPos = m_inPos.load(std::memory_order_relaxed); + std::atomic_thread_fence(std::memory_order_acquire); + while (outPos != inPos) + { + fun(std::move(m_buffer[outPos])); + std::atomic_thread_fence(std::memory_order_release); + outPos = (outPos + 1) % m_bufSize; + m_outPos.store(outPos, std::memory_order_release); + } +} + +template< typename T, typename ForEachArg > +#if defined(ESP8266) || defined(ESP32) || !defined(ARDUINO) +bool circular_queue::for_each_rev_requeue(const Delegate& fun) +#else +bool circular_queue::for_each_rev_requeue(Delegate fun) +#endif +{ + auto inPos0 = circular_queue::m_inPos.load(std::memory_order_acquire); + auto outPos = circular_queue::m_outPos.load(std::memory_order_relaxed); + std::atomic_thread_fence(std::memory_order_acquire); + if (outPos == inPos0) return false; + auto pos = inPos0; + auto outPos1 = inPos0; + const auto posDecr = circular_queue::m_bufSize - 1; + do { + pos = (pos + posDecr) % circular_queue::m_bufSize; + T&& val = std::move(circular_queue::m_buffer[pos]); + if (fun(val)) + { + outPos1 = (outPos1 + posDecr) % circular_queue::m_bufSize; + if (outPos1 != pos) circular_queue::m_buffer[outPos1] = std::move(val); + } + } while (pos != outPos); + circular_queue::m_outPos.store(outPos1, std::memory_order_release); + return true; +} + +#endif // __circular_queue_h diff --git a/lib/EspSoftwareSerial/src/circular_queue/circular_queue_mp.h b/lib/EspSoftwareSerial/src/circular_queue/circular_queue_mp.h new file mode 100644 index 00000000..7024247a --- /dev/null +++ b/lib/EspSoftwareSerial/src/circular_queue/circular_queue_mp.h @@ -0,0 +1,200 @@ +/* +circular_queue_mp.h - Implementation of a lock-free circular queue for EspSoftwareSerial. +Copyright (c) 2019 Dirk O. Kaar. All rights reserved. + +This library is free software; you can redistribute it and/or +modify it under the terms of the GNU Lesser General Public +License as published by the Free Software Foundation; either +version 2.1 of the License, or (at your option) any later version. + +This library is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +Lesser General Public License for more details. + +You should have received a copy of the GNU Lesser General Public +License along with this library; if not, write to the Free Software +Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA +*/ + +#ifndef __circular_queue_mp_h +#define __circular_queue_mp_h + +#include "circular_queue.h" + +#ifdef ESP8266 +#include "interrupts.h" +#else +#include +#endif + +/*! + @brief Instance class for a multi-producer, single-consumer circular queue / ring buffer (FIFO). + This implementation is lock-free between producers and consumer for the available(), peek(), + pop(), and push() type functions, but is guarded to safely allow only a single producer + at any instant. +*/ +template< typename T, typename ForEachArg = void > +class circular_queue_mp : protected circular_queue +{ +public: + circular_queue_mp() = default; + circular_queue_mp(const size_t capacity) : circular_queue(capacity) + {} + circular_queue_mp(circular_queue&& cq) : circular_queue(std::move(cq)) + {} + using circular_queue::operator=; + using circular_queue::capacity; + using circular_queue::flush; + using circular_queue::available; + using circular_queue::available_for_push; + using circular_queue::peek; + using circular_queue::pop; + using circular_queue::pop_n; + using circular_queue::for_each; + using circular_queue::for_each_rev_requeue; + + /*! + @brief Resize the queue. The available elements in the queue are preserved. + This is not lock-free, but safe, concurrent producer or consumer access + is guarded. + @return True if the new capacity could accommodate the present elements in + the queue, otherwise nothing is done and false is returned. + */ + bool capacity(const size_t cap) + { +#ifdef ESP8266 + esp8266::InterruptLock lock; +#else + std::lock_guard lock(m_pushMtx); +#endif + return circular_queue::capacity(cap); + } + + bool IRAM_ATTR push() = delete; + + /*! + @brief Move the rvalue parameter into the queue, guarded + for multiple concurrent producers. + @return true if the queue accepted the value, false if the queue + was full. + */ + bool IRAM_ATTR push(T&& val) + { +#ifdef ESP8266 + esp8266::InterruptLock lock; +#else + std::lock_guard lock(m_pushMtx); +#endif + return circular_queue::push(std::move(val)); + } + + /*! + @brief Push a copy of the parameter into the queue, guarded + for multiple concurrent producers. + @return true if the queue accepted the value, false if the queue + was full. + */ + bool IRAM_ATTR push(const T& val) + { +#ifdef ESP8266 + esp8266::InterruptLock lock; +#else + std::lock_guard lock(m_pushMtx); +#endif + return circular_queue::push(val); + } + + /*! + @brief Push copies of multiple elements from a buffer into the queue, + in order, beginning at buffer's head. This is guarded for + multiple producers, push_n() is atomic. + @return The number of elements actually copied into the queue, counted + from the buffer head. + */ + size_t push_n(const T* buffer, size_t size) + { +#ifdef ESP8266 + esp8266::InterruptLock lock; +#else + std::lock_guard lock(m_pushMtx); +#endif + return circular_queue::push_n(buffer, size); + } + + /*! + @brief Pops the next available element from the queue, requeues + it immediately. + @return A reference to the just requeued element, or the default + value of type T if the queue is empty. + */ + T& pop_requeue(); + + /*! + @brief Iterate over, pop and optionally requeue each available element from the queue, + calling back fun with a reference of every single element. + Requeuing is dependent on the return boolean of the callback function. If it + returns true, the requeue occurs. + */ + bool for_each_requeue(const Delegate& fun); + +#ifndef ESP8266 +protected: + std::mutex m_pushMtx; +#endif +}; + +template< typename T, typename ForEachArg > +T& circular_queue_mp::pop_requeue() +{ +#ifdef ESP8266 + esp8266::InterruptLock lock; +#else + std::lock_guard lock(m_pushMtx); +#endif + const auto outPos = circular_queue::m_outPos.load(std::memory_order_acquire); + const auto inPos = circular_queue::m_inPos.load(std::memory_order_relaxed); + std::atomic_thread_fence(std::memory_order_acquire); + if (inPos == outPos) return circular_queue::defaultValue; + T& val = circular_queue::m_buffer[inPos] = std::move(circular_queue::m_buffer[outPos]); + const auto bufSize = circular_queue::m_bufSize; + std::atomic_thread_fence(std::memory_order_release); + circular_queue::m_outPos.store((outPos + 1) % bufSize, std::memory_order_relaxed); + circular_queue::m_inPos.store((inPos + 1) % bufSize, std::memory_order_release); + return val; +} + +template< typename T, typename ForEachArg > +bool circular_queue_mp::for_each_requeue(const Delegate& fun) +{ + auto inPos0 = circular_queue::m_inPos.load(std::memory_order_acquire); + auto outPos = circular_queue::m_outPos.load(std::memory_order_relaxed); + std::atomic_thread_fence(std::memory_order_acquire); + if (outPos == inPos0) return false; + do { + T&& val = std::move(circular_queue::m_buffer[outPos]); + if (fun(val)) + { +#ifdef ESP8266 + esp8266::InterruptLock lock; +#else + std::lock_guard lock(m_pushMtx); +#endif + std::atomic_thread_fence(std::memory_order_release); + auto inPos = circular_queue::m_inPos.load(std::memory_order_relaxed); + std::atomic_thread_fence(std::memory_order_acquire); + circular_queue::m_buffer[inPos] = std::move(val); + std::atomic_thread_fence(std::memory_order_release); + circular_queue::m_inPos.store((inPos + 1) % circular_queue::m_bufSize, std::memory_order_release); + } + else + { + std::atomic_thread_fence(std::memory_order_release); + } + outPos = (outPos + 1) % circular_queue::m_bufSize; + circular_queue::m_outPos.store(outPos, std::memory_order_release); + } while (outPos != inPos0); + return true; +} + +#endif // __circular_queue_mp_h diff --git a/lib/EspSoftwareSerial/src/circular_queue/ghostl.h b/lib/EspSoftwareSerial/src/circular_queue/ghostl.h new file mode 100644 index 00000000..11683805 --- /dev/null +++ b/lib/EspSoftwareSerial/src/circular_queue/ghostl.h @@ -0,0 +1,92 @@ +/* +ghostl.h - Implementation of a bare-bones, mostly no-op, C++ STL shell + that allows building some Arduino ESP8266/ESP32 + libraries on Aruduino AVR. +Copyright (c) 2019 Dirk O. Kaar. All rights reserved. + +This library is free software; you can redistribute it and/or +modify it under the terms of the GNU Lesser General Public +License as published by the Free Software Foundation; either +version 2.1 of the License, or (at your option) any later version. + +This library is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +Lesser General Public License for more details. + +You should have received a copy of the GNU Lesser General Public +License along with this library; if not, write to the Free Software +Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA +*/ + +#ifndef __ghostl_h +#define __ghostl_h + +#if defined(ARDUINO_ARCH_SAMD) +#include +#endif + +namespace std +{ +#if !defined(ARDUINO_ARCH_SAMD) + typedef enum memory_order { + memory_order_relaxed, + memory_order_acquire, + memory_order_release, + memory_order_seq_cst + } memory_order; + template< typename T > class atomic { + private: + T value; + public: + atomic() {} + atomic(T desired) { value = desired; } + void store(T desired, std::memory_order = std::memory_order_seq_cst) volatile noexcept { value = desired; } + T load(std::memory_order = std::memory_order_seq_cst) const volatile noexcept { return value; } + }; + inline void atomic_thread_fence(std::memory_order order) noexcept {} + template< typename T > T&& move(T& t) noexcept { return static_cast(t); } +#endif + + template< typename T, unsigned long N > struct array + { + T _M_elems[N]; + decltype(sizeof(0)) size() const { return N; } + T& operator[](decltype(sizeof(0)) i) { return _M_elems[i]; } + const T& operator[](decltype(sizeof(0)) i) const { return _M_elems[i]; } + }; + + template< typename T > class unique_ptr + { + public: + using pointer = T*; + unique_ptr() noexcept : ptr(nullptr) {} + unique_ptr(pointer p) : ptr(p) {} + pointer operator->() const noexcept { return ptr; } + T& operator[](decltype(sizeof(0)) i) const { return ptr[i]; } + void reset(pointer p = pointer()) noexcept + { + delete ptr; + ptr = p; + } + T& operator*() const { return *ptr; } + private: + pointer ptr; + }; + + template< typename T > using function = T*; + using nullptr_t = decltype(nullptr); + + template + struct identity { + typedef T type; + }; + + template + inline T&& forward(typename identity::type& t) noexcept + { + return static_cast::type&&>(t); + } +} + +#endif // __ghostl_h